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Abstract

Caregiving by nonparents (alloparenting) and fathers is a defining aspect of human social behavior, yet this phenomenon is
rare among mammals. Male prairie voles (Microtus ochrogaster) spontaneously exhibit high levels of alloparental care, even
in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased
activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study,
physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral
consequences of exposing male prairie voles to a pup. Reproductively naı̈ve, adult male prairie voles were implanted with
radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate
during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation.
Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA) did not differ between these
males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-
adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the
pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males’ approach to the pup. Increased
activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings
suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased
sympathetic excitation of the heart, while maintaining some vagal cardiac tone) associated with male caregiving behavior
may allow males to both nurture and protect infants.
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Introduction

Caregiving directed toward infants by nonparents, sometimes

called alloparenting, is common to many human cultures [1] and

is critical to human evolution and development [2–4]. Whereas

the neurobiology of female parental behavior has received

extensive attention [5,6], male parental behaviors and alloparent-

ing remain poorly understood. Understanding alloparental care is

critically important for many reasons including the fact that

children are between eight [7] and fifty [8] times more likely to

suffer fatal abuse when living with an unrelated adult male, i.e.

while under alloparental care.

Prairie voles (Microtus ochrogaster) are small, socially monogamous

rodents that have been useful for understanding the neurobiolog-

ical basis of various social behaviors [9,10]. Male prairie voles

display high levels of alloparental behavior [11] and often remain

with their natal family, serving as alloparents [12].

Factors that may influence the expression of alloparental care

include the physiological and emotional states of the alloparent.

For example, stressful experiences, such as a forced swim or

treatment with exogenous corticosterone, facilitate subsequent

alloparental behavior in male, but not female prairie voles [13].

Our studies of the immediate consequences of pup exposure

revealed a decreased concentration of plasma corticosterone

compared to control subjects [14], initially suggesting the

hypothesis that interactions with the pup might have anxiolytic

properties; that is, males may approach and huddle over the pup

as a means to cope emotionally with negative experiences.

Based on the above observations, we originally hypothesized

that males’ alloparental interactions with a pup would be

associated with a reduction in arousal. Furthermore, we hypoth-

esized that this might be due to an increase in the vagal influences

on the heart, manifesting in slower heart rate, with a concomitant

increase in respiratory sinus arrhythmia (RSA). RSA is a sensitive

measure of the component of cardiac vagal tone mediated through

the myelinated vagal efferent pathways originating in the nucleus

ambiguus, which allows an integrated social engagement system

and permits a functional coupling of social behavior and emotion

regulation [15,16].
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The dynamic regulation of heart rate is coordinated in several

brainstem nuclei, including the nucleus ambiguus (NA), dorsal

motor nucleus of the vagus (DMX), nucleus tractus solitarius

(NTS), and rostral ventrolateral medulla (RVLM). The purpose of

the present study was to use the male prairie vole as a model to

examine the autonomic substrates of alloparenting. Using

radiotelemetry, pharmacology and immunohistochemistry, we

evaluated the changes in the ANS following exposure to a pup

or to other social or nonsocial stimuli.

Methods

Animals
Male F2 or F3 descendants of prairie voles originally captured

near Champaign, Illinois were used in these experiments. All of

the experiments used sexually naı̈ve adult males, 60–100 days old.

Unrelated and unfamiliar pups, 1–3 days of age, as well as

unrelated and unfamiliar adult females were used as stimuli.

Subjects were maintained on a 14 h/10 h light/dark cycle on at

06.30 h in a temperature and humidity controlled vivarium. Food

(Purina rabbit chow) and water were available ad libitum. Prairie

vole offspring remained in their natal group with their parents in

large polycarbonate cages (24646615 cm) containing cotton

nesting material. Offspring were weaned at 21 days of age, prior

to the arrival of the next litter to prevent premature exposure to

pups. After weaning, they were pair-housed with a same-sex

sibling in smaller cages (17.5628612 cm) in a single-sex colony

room until testing. Thus, all test subjects were sexually naı̈ve and

had never been exposed to pups. All procedures were conducted in

accordance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals and were approved by the

University of Illinois at Chicago Institutional Animal Care and

Use Committee. Experiments began during the lights-on period

between 9:00 h and 10:00 h.

Alloparenting Test and Behavioral Analysis
Following recovery from radiotransmitter implantation (Exper-

iments 1, 2, 3, 4 and 5), baseline data were recorded from subject

males while they remained with their brothers in the home cage

for 30 minutes. Five minutes of stable, stationary data were

averaged to obtain a baseline value for each animal. The siblings

were removed and the subjects were immediately presented with

one of three stimuli. Adult males in Experiments 6 and 7, were not

implanted with radiotransmitters, but were transferred to new

cages individually where behavioral testing was conducted and

video-recorded for later analysis. Males were considered allopar-

ental if they huddled over the stimulus pup [14,17,18]. In the rare

instances in which males displayed aggression towards the pup, the

test was immediately aborted and the health of the pup was

assessed. Uninjured pups were returned to their parents and

injured pups were euthanized. Videotapes of behavior were scored

by two trained, experimentally blind observers (inter-rater

reliability .95%, Noldus Observer, Noldus Inc.). Behavioral

domains quantified included: first contact with the stimulus

(latency), stimulus retrievals (frequency), licking and/or grooming

the stimulus (duration), auto-grooming (duration), huddling over

the stimulus (duration) that likely serves to protect the pups and

regulate their body temperature, contact with the stimulus

(duration) defined as the subject having contact with the stimulus

but not huddling over it or licking and/or grooming it (duration)

and ‘‘other’’ behaviors, defined as all other behaviors that were not

directed at the stimulus (e.g. drinking, cage exploration).

Radiotelemetry Recording Equipment Implantation
Males were implanted with wireless radiotelemetry transmitters

[Data Sciences International (DSI), St. Paul, MN] according to

procedures described previously [19]. Briefly, telemetric transmit-

ters were implanted intraperitoneally under aseptic conditions,

following anesthesia with ketamine (67 mg/kg sc; NLS Animal

Health, Owings Mills, MD) and xylazine (13.33 mg/kg sc; NLS

Animal Health, Owings Mills, MD). Animals were kept under a

warming lamp, and the surgical area was shaved and cleaned

before any incisions were made. Rostral-to-caudal skin and muscle

incisions were made on the ventral surface of the abdomen. The

transmitter was inserted into the abdominal cavity, then sutured to

the muscle. The process of suturing the transmitter to the muscle

thereby closed the incision. The leads from the transmitter were

pulled rostrally using a trochar and sleeve under the skin, and

anchored in place with permanent sutures (DII placement). Skin

incisions were sutured closed, and subcutaneous fluids and

analgesia (Carprofen) were administered as necessary. All animals

were housed for 5 days in custom-designed cages (24646615 cm)

after surgery [20]. These cages included a divider to permit

adequate healing of suture wounds in the instrumented animal

without socially isolating subjects from their siblings during

recovery. Within these partitioned cages, animals are able to

exchange visual, olfactory and auditory stimuli. Animals were then

returned to the standard home cages (with their sibling) for an

additional 5–7 days before the onset of experiments. In addition to

their use during the subject’s recovery from surgery, these

partioned cages also were utilized during Experiment 4.

Radiotelemetric Recordings
Electrocradiogram (ECG), temperature and activity signals were

recorded with a radiotelemetry receiver (DSI; sampling rate 5 kHz

for ECG and 256 Hz for activity, 12-bit precision digitizing). This

system allows for the recording of heart rate and derived measures

of heart rate variability along with temperature and locomotor

activity. Radiotelemetric data were quantified according to

procedures previously described [20].

Heart rate was evaluated by visual inspection and using vendor

software (Data Sciences International, St. Paul, MN), and R-wave

detections were verified by visual inspection and with a custom-

designed software package (CardioEdit 1.5, Brain Body Center,

University of Illinois at Chicago). The R-R intervals were analyzed

for variations (heart rate variability) using a custom-designed

software package, that calculates amplitude of RSA [21].

RSA was assessed using standardized procedures [22–24],

which were modified for the frequency band of spontaneous

breathing the vole and described in detail elsewhere [19,20,25].

RSA was operationally defined as the natural log of the sum of the

power within the respiratory bandwidth of 1.0–4.0 Hz. This

procedure has been validated pharmacologically in prairie voles

[20] and provides the greatest sensitivity to changes in vagal

activity [21]. The amplitude of RSA represents the functional

vagal impact on the sino-atrial node of myelinated vagal efferent

pathways originating in the brainstem (NA). The ECG signal was

exported into a data file and examined using a custom-designed

software package (CardioEdit; Brain-Body Center, UIC) to ensure

that all R waves were properly detected. The following procedures

were implemented to minimize the possibility of violating the

assumption of stationarity which can distort time series analyses of

RSA: 1) the R–R intervals (heart period) were time-sampled into

equal time intervals with a sampling rate of 20 Hz, 2) the time

series were detrended with a moving polynomial filter that

removed variance in the series below 1 Hz for RSA (i.e., 21-point

cubic polynomial), 3) time series analyses of the detrended data
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quantified the variance within the frequency band of spontaneous

breathing as a measure of RSA, and 4) the derived variances

representing RSA were logarithmically transformed. e spectral

analyses identified the peak amplitude of RSA.

Tissue Fixation
A spinning immersion fixation protocol [26] was used to

preserve brain tissue for immunohistochemistry in Experiment 7.

Brains were carefully extracted from the skull and placed in an ice-

chilled scintillation vial containing 19 ml of 4% buffered

paraformaldehyde and 1 ml of 5% acrolein and spun at low

speed for 10 minutes. Brains were then blocked, exposing the

lateral ventricles and returned to the fixative solution for an

additional 1 hour and 50 minutes. Brains were then placed in a

fresh fixative solution and spun for an additional 2 hours.

Subsequently, brains were immersed in a 25% sucrose solution

and stored at 4uC until sectioned. Tissue containing brainstem

autonomic regions of interest were cut in 40 mm coronal plane

sections using a freezing sliding microtome. Sections were stored in

cryoprotectant at 220uC until processed.

Immunohistochemistry
Brains were stained for c-Fos using standard avidin-biotinylated

enzyme complex (ABC) immunocytochemistry (Vector Labs;

Burlingame, CA). Serial sets (every 3rd section) of free-floating

tissue sections were rinsed in 0.05 M potassium phosphate

buffered saline (KPBS) to remove excess cryoprotectant. Sections

next were incubated in 1% sodium borohydride for 20 minutes at

room temperature (RT) to reduce free aldehydes to alcohol

followed by a rinse in KPBS. Sections then were incubated for 15

minutes in 0.014% phenylhydrazine at RT to block endogenous

peroxidase activity and rinsed again in KPBS. Next, sections were

incubated in rabbit c-Fos antisera (Santa Cruz Biotechnology Inc.,

Santa Cruz, CA) at 1:50,000 concentration in 0.05 M KPBS

+0.4% Triton X-100 for 1 hour at RT and for an additional 48

hours at 4uC. Sections were rinsed in KPBS before being

incubated for 1 hour at RT in biotinylated goat, anti-rabbit IgG

(Vector Labs; 1:600 dilution in KPBS +0.4% Triton X-100).

Sections were rinsed again in KPBS and then incubated in an

avidin-biotin peroxidase complex (45 ml A, 45 ml B per 10 ml

KPBS +0.4% Triton X-100; Vectastain ABC kit-elite pk-6100

standard; Vector Labs) for 1 hours at RT. Sections were rinsed in

KPBS and then with tris buffered saline. c-Fos immunoreactivity

(ir) was visualized following incubation in a solution containing

50 ml of tris buffered saline, 1.25 g nickel sulfate, 41.5 ml of 3%

H2O2 and 10 mg of diaminobenzidine for 15 minutes at RT.

Sections were rinsed in sodium acetate followed by a series of

rinses in KPBS.

Labeled sections were mounted on gelatin-coated slides and air-

dried overnight. Sections then were dehydrated in ascending

ethanol dilutions and cleared with Histoclear (National Diagnos-

tics). Slides were cover slipped with Histomount (National

Diagnostics).

Quantification of Immunoreactivity
Slides were coded and images of hypothalamic sections were

acquired using a Nikon Eclipse E 800 microscope, Sensi-cam

camera, and IP Lab 3.7 computer software (Scanalytics Inc.,

Fairfax, VA). Images were captured using a 4X microscope

objective and scored using ImageJ (NIH software). c-Fos-

immunoreactivity (ir) was quantified relative to background

staining, which was minimal, and was measured if staining

exceeded an arbitrary threshold the intensity of background. In 8-

bit grayscale, threshold was set at 120, with background staining

on average approximately 210+/220. As a stain, c-Fos appears as

small punctate areas corresponding to cell nuclei. Quantification

was limited to specific labeling by excluding labeling that was

outside the size range of nuclei using both automatic and manual

inspection. Optical density was quantified bilaterally using

standardized sampling areas in sections matched to the mouse

brain atlas, Figure 93 [27]. Three brain sections were analyzed

from each subject and results were averaged bilaterally across

sections. Caudal sections of each brain region were chosen to

better guarantee that these neurons would represent cardiovascu-

lar control regions [28,29]. The location of the NA in the vole was

confirmed by staining a subset of slices with choline acetyltrans-

ferase [30], generously provided by Dr. David Wirtshafter.

Experimental Design
The present study consisted of 8 experiments. Experiment 1 was

designed to examine the heart rate and RSA responses of the naı̈ve

male to pup exposure. To address the question of whether changes

in heart rate and RSA were due to stimulus novelty, Experiment 2

examined the effect of repeated pup exposures while Experiment 3

observed heart rate and RSA during an extended, hour-long

period of pup exposure. Experiment 4 evaluated whether or not

direct physical contact was required to produce the heart rate

increase. To do this, we used our custom designed cages that

enable the pup to be partitioned from the adult male by means of a

barrier. The barrier prevented males from touching the pup, but

did not limit visual, auditory and olfactory stimulation. Experi-

ment 5 evaluated the sympathetic role in autonomic and

behavioral responses by administering a b adrenergic antagonist

(atenolol). Experiment 6 evaluated the vagal influences on the

behavioral response to a pup by administering a muscarinic

acetylcholine antagonist (atropine) prior to pup exposure. Finally,

Experiment 7 used c-Fos immunohistochemistry to examine the

effects of pup exposure on the activity of autonomic brainstem

nuclei.

Experiment 1 (Pup Exposure)
Adult males (n = 12), implanted with radiotransmitters, were

presented sequentially with three stimuli: an unrelated pup (1–3

days old), a pup-sized wooden dowel, or an unrelated, unfamiliar

adult female (60–90 days old). The order of the pup and dowel

conditions was randomized. Exposure to the adult female always

came last, because exposure to a member of the opposite sex can

activate reproductive processes in this species, which in turn might

have affected the response to a pup. Males were exposed to each of

the three conditions and each exposure was separated by one

week. Female prairie voles do not undergo spontaneous estrus and

thus were not sexually receptive during these exposures. Aggres-

sive displays often were observed between the male and the

stimulus female upon exposure; however, these interactions were

non-violent and did not result in injury. Stimulus females were

used only once each. All stimulus presentations lasted for 20

minutes during which time ECG, temperature, and activity were

recorded. ECG data were then analyzed for heart rate and RSA.

Experiment 2 (Repeated Pup Exposures)
Radiotransmitters were implanted in a second cohort of animals

(n = 7) and behavior was recorded as previously described. These

subjects were exposed to a pup, following the procedures described

in Experiment 1; however, pup exposure was repeated on three

separate occasions at 2 day intervals to examine possible effects of

novelty and to determine whether heart rate and RSA responses

changed in response to repeated pup exposure. Only pups of 1–3

Autonomic Substrates of Alloparenting in Voles
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days of were used and males were exposed to a novel pup on all 3

occasions.

Experiment 3 (Hour-long Pup Exposure)
A third cohort of animals (n = 7) was implanted with radio-

transmitters and behavior was recorded as previously described. In

contrast to Experiments 1 and 2, this cohort was exposed to either

a pup or a dowel for 60 minutes to determine whether heart rate

and RSA responses habituated after a longer exposure period. The

order of exposure to pup or dowel was randomized and tests were

separated by 2 days.

Experiment 4 (Divided Cage)
A fourth cohort of animals (n = 7) was implanted with radio-

transmitters and behavior was recorded as described for the 3

previous experiments. In contrast to those experiments, these

subjects and their siblings were transferred to large cages

(24646615 cm) 24 h prior to testing. These cages were similar

to those used during the animals’ recovery from surgery. The

subject and sibling remained in the new large cage without a cage

divider until the time of testing. The sibling was removed from the

cage immediately prior to testing. After removal of the sibling, the

cage dividers were reinstalled and the subjects in this cohort were

presented with a pup in the middle of the chamber across the

barrier. These custom-designed cages allowed males to be exposed

to various pup stimuli (e.g. vocalizations, visual and olfactory

stimuli) while preventing them from interacting directly with the

pup. To compare conditions within subject, the divider was

removed after 10 minutes, permitting direct interactions with the

pups for an additional 10 minutes, after which time the pup was

removed and the testing ended.

Experiment 5 (Atenolol Pretreatment)
A fifth cohort of animals (n = 6) was implanted with radio-

transmitters and behavior was recorded as previously described. In

this cohort, adult males received an intraperitoneal injection of

either atenolol (Sigma-Aldrich, St. Louis, MO; 8 mg/kg) or saline

vehicle 30 minutes prior to the introduction of the pup. The pup

was placed in the cage for 20 minutes. Animals received both

conditions in a counter-balanced order, spaced 2 days apart and

different pups were used on each occasion. The timing and dosage

were based on our previous work in this species [20]. Atenolol is a

selective b1 receptor antagonist which blunts the peripheral

sympathetic nervous system’s ability to increase heart rate;

atenolol does not cross the blood-brain barrier.

Experiment 6 (Atropine Pretreatment)
Subjects (n = 22) in Experiment 6 were not implanted with

telemetry devices. These animals were randomly assigned to one

of two condition groups, either receiving an intraperitoneal

injection of atropine methyl nitrate (i.e. atropine, 4 mg/kg;

Sigma-Aldrich, St. Louis, MO; n = 12) or saline vehicle (n = 10)

30 minutes prior to the onset of a 20 minute pup exposure. The

timing and dosage used were based on previous work research in

voles, in which heart rate was monitored [20], and based on the

consistent autonomic changes seen in that study, telemetry was not

used here. Behavior towards the pup was compared as a function

of atropine versus vehicle (saline). Atropine is a competitive

antagonist for the muscarinic acetylcholine receptor and blocks

parasympathetic input to the heart without crossing the blood-

brain barrier.

Experiment 7 (Immunohistochemistry)
A seventh cohort of animals, not implanted with a radio-

transmitter, was used to examine the effects of pup exposure versus

control procedures on brainstem nuclei that have been implicated

in the regulation of the autonomic nervous system. Adult male

voles were randomly assigned to two condition groups: Pup

(n = 30) or Dowel (n = 22). Hypothalamic data from these animals

were previously published in a separate study [14]. Following a 20

minute alloparental test, animals remained in the testing cage for

an additional 40 minutes, and then were sacrificed. This timing

was selected to maximize the expression of c-Fos in response to the

stimuli presented. Tissue was collected and processed for

immunohistochemistry in brainstem autonomic regions (i.e.

DMX, NA, NTS and RVLM).

Statistical Analysis
The data are presented as means 6 standard errors in all

figures. In animals instrumented for telemetry, heart period was

extracted from the ECG data and were quantified (i.e., msec

between successive R-waves). Heart period data have been

transformed to heart rate (beats per minute) in the figures to

facilitate visual interpretation. Heart period, RSA, activity, and

temperature data were analyzed using repeated measures analyses

of variance (ANOVA) with time and stimulus/condition as within

subject factors. The correlation between heart rate and RSA was

calculated with a Pearson’s correlation and the strength of the

correlations was compared between conditions via ANOVA after

Fisher transformation. Alloparental behavior was assessed in

Experiments 2–6. The latency to approach the pup, the amount

of time in contact with the pup, the amount of time licking/

grooming and the amount of time huddling over the pup were

compared between conditions (including drugs, repeated expo-

sures, and so forth) by means of a two tailed paired samples t-test

(Experiments 2 and 3) or one tailed t-tests based on an a priori

hypothesis that: (Experiment 5) responsiveness to the pup would

be positively affected by atenolol and (Experiment 6) atropine

would impair these behaviors. In Experiment 7, one tailed t-tests

were used to compare the pup and dowel conditions based on a

priori hypotheses that pup exposure would induce increased activity

in the NA, NTS and DMX. All statistical analyses were conducted

using SPSS 19.0 with a set at 0.05.

Results

Experiment 1 (Pup Exposure)
The results from Experiment 1 are shown in Figure 1. Data

collected from one animal was excluded from Experiment 1 due to

poor signal quality. All males expressed alloparental behavior

during these exposures (n = 11). The signal quality deteriorated in

another subject just prior to the female test condition, so this

subject also was excluded from analysis. A repeated measures

ANOVA of binned heart rate yielded a main effect of stimulus

[F(2,8) = 15.72, p = 0.002] and time [F(4,6) = 32.7, p,0.001], with

the pup condition producing higher heart rate than both the dowel

and female stimuli (p = 0.001 for both comparisons, Fig. 1A).

Heart rate increased at the beginning of the exposure and then

gradually returned to baseline. Across the 20 minutes of stimulus

exposure, the correlations between heart rate and RSA were

significantly stronger in the pup condition (–.546.06), compared

to either the dowel condition (–.256.12) or the female condition (–

.166.11, p,0.02 for both comparisons, Fig. 1B).

RSA did not differ during exposure to a pup, dowel or a female;

however, there was a main effect of time on RSA [F(4,6) = 9.56,

p = 0.009]. RSA gradually decreased with time during all 3
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conditions (Fig. 1C). Analysis of the binned activity data yielded

main effects of stimulus [F(2,8) = 8.23, p = 0.011] and time

[F(2,8) = 86.97, p,0.001] as well as an interaction effect between

stimulus and time [F(2,8) = 181.23, p = 0.005, Fig. 1D]. Relative to

baseline, both dowel and female conditions increased activity

significantly more than the pup condition at the beginning of the

exposure (p#0.011 for these comparisons). The female condition

was significantly more active than the pup (fe-

male = 27.45163.850 counts, pup = 14.46861.908 counts,

p = 0.003); the dowel condition was intermediate and did not

differ from either female or pup. No group differences were found

for temperature.

Experiment 2 (Repeated Pup Exposures)
The heart rate results of repeated pup exposures are shown

Experiment 3 in Fig. 2A. All males expressed alloparental

behavior towards the pup during each of the three testing sessions

(n = 7). Differences in heart period, RSA, temperature, or activity

were not observed between the 1st, 2nd, and 3rd pup exposures.

The strength of the correlation between heart rate and RSA also

did not differ across exposures (p..05). However, behavior did not

differ in any measured domain between any of the exposures

(p..05).

Experiment 3 (Hour-long Pup Exposure)
Figure 2A shows the cardiovascular results of hour-long pup

exposure. All males expressed alloparental behavior towards the

pup during each of the three testing sessions (n = 7). No differences

were found between the first 10 minutes and the last 10 minutes

during the hour-long pup exposure in terms of: heart period, RSA,

temperature, activity, or the strength of the correlation between

heart rate and RSA (all p..05). Behavior did not differ in any

measured domain between any of the exposures (p..05).

Experiment 4 (Divided Cage)
Figure 2B–E shows the results of pup exposure within a divided

cage. All males expressed alloparental behavior towards the pup

(n = 7). Males and pups began Experiment 4 physically separated

by a barrier. When a pup was on the other side of the barrier, male

voles spent most of their time investigating the barrier and digging

at the base of the barrier (8864% combined). Following the

removal of the barrier, males responded to the pup with

alloparental care that did not differ from behavior observed in

other experiments (p.0.05). Across the three conditions (baseline,

pup across barrier and barrier removed), there was a main effect of

condition on heart rate [F(2,5) = 38.88, p = 0.001]. There was also

a trend towards a decrease in RSA (p = 0.051) and no effect on

activity. Compared to baseline, when the pup was across the

barrier, heart rate was higher when the pup was placed in the cage

on the opposite side of the barrier (p = 0.003). Heart rate remained

elevated after the barrier was removed and the subject was allowed

to interact with the stimulus pup. Heart rate was higher in males

allowed access to the pup compared to both baseline (p,0.001)

and during the time while the pup was on the other side of the

barrier (p = 0.035). Temperature and the strength of the correla-

tion between heart rate and RSA were not affected by testing

conditions (p..05).

Figure 1. Respiratory sinus arrhythmia (RSA) is maintained and heart rate increased during alloparental behavior which is not
explained by locomotor activity. (A) Heart rate during exposure to social (pup, female) and non-social (dowel) stimuli yielded main effects of
stimulus and time, with the pup condition generally highest. (B) The correlation between heart rate and RSA during exposure was highest in the pup
condition. (C) There were no effects on RSA other than a main effect of time. (D) Locomotor activity yielded main effects of stimulus and time as well
as an interaction between stimulus and time. * indicates the effect of stimulus, such that both the dowel and female stimuli were significantly
different than the pup condition (p,0.05), # difference significant only between the female and pup groups (p,0.05).
doi:10.1371/journal.pone.0069965.g001
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Experiment 5 (Atenolol Pretreatment)
Figure 3A shows the results of atenolol pretreatment. All males

in Experiment 6 expressed alloparental behavior when presented

with a pup following both the saline and atenolol injections (n = 6).

Atenolol pretreatment had no effect on baseline heart rate, activity

or on either the quantity or quality of alloparental behavior

(p.0.05). In contrast, a repeated measures ANOVA assessing

heart rate during pup exposure detected main effects of time

[F(4,2) = 676.59, p = 0.001] and condition [F(1,5) = 8.28,

p = 0.035]. Average heart rate in the atenolol condition was lower

than during the saline condition (p,0.05). There were no effects of

atenolol on temperature or the strength of the correlation between

heart rate and RSA (p..05).

Experiment 6 (Atropine Pretreatment)
Figure 3B shows the results of atropine pretreatment. Atropine

did not affect the overall tendency to express alloparental behavior

as 10 of 12 atropine-treated animals and 7 of 10 saline-treated

animals huddled over the pup during the 20 minute of the test.

Atropine also did not affect the expression of any specific domain

of alloparental behavior (p..05), although it did significantly

increase the latency to approach the pup (atropine = 45.1668.37 -

sec, saline = 21.4864.19 sec, [F(1,17) = 5.074, p = 0.038]).

In a separate pilot study we also examined the possibility that

the effects of atropine on pup approach seen in Experiment 6

might have been due to a deficit in motor abilities. The same time

points and dosages described in Experiment 6 were used in a

group of telemetry-implanted animals tested alone in their home

cage. The telemetry device provides an estimate of locomotor

activity. Administration of either atropine or saline injection,

administered in a counter-balanced order (n = 8 subjects) did not

significantly influence locomotor activity (p..05), suggesting that

the increased latency to approach the pup observed in Experiment

6 probably was not due to neuromuscular deficits.

Experiment 7 (Immunohistochemistry)
Figure 4 shows brainstem c-Fos data. Animals exposed to a pup

had significantly higher c-Fos-ir in the NA (p = 0.007) and the

NTS (p = 0.004) compared to males exposed to a dowel. There

also was a trend towards higher c-Fos-ir in the DMX in the pup

condition, although this did not reach statistical significance

(p = 0.069). In contrast, there was no difference in c-Fos-ir

observed in the RVLM between conditions (p = 0.26). Of the 30

males exposed to a pup, 23 expressed alloparental behavior. Due

to the small sample sizes and short duration of stimulus

presentation in the pup attacking subset, data from the animals

that did not show alloparenting were not analyzed.

Discussion

The results of this series of experiments revealed that

alloparental behavior in male prairie voles is associated with a

sustained increase in heart rate. This contradicted our initial

prediction that being in the presence of a pup might reduce

arousal, and suggests an alternative behavioral and physiological

Figure 2. The cardiovascular response to a pup does not readily habituate. (A) Heart rate during interaction with a pup did not differ
during repeated pup exposures (1st three bars) or during prolonged pup exposure (4th bar) (p.0.05). Time was collapsed across the 10 minutes of
each condition (baseline, divided cage, united with pup) to yield a main effect of condition on heart rate (B), no effect on activity (C) and a trend
towards an effect on RSA (D) (p.0.05). * indicates p,0.05 in comparison to both other conditions.
doi:10.1371/journal.pone.0069965.g002
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interpretation of the emotional experiences of males during

alloparental behavior.

The observed heart rate increase was specific to pup exposure.

Although exposure to either another social stimulus, i.e. a novel

adult female, or a wooden dowel produced a transient increase in

heart rate, these stimuli did not produce the extended pattern of

increased heart rate seen during pup exposure (Figure 1). Changes

in heart rate could not be attributed to an increase in locomotor

activity, since males with a pup were less physically active than in

other conditions. The observed increase in heart rate was not

simply a consequence of novelty, nor did it habituate during either

repeated trials or extended 60 minute exposures to the infant.

Furthermore, the body temperature of the alloparental males did

not change across either a 20 minute or 60 minute pup exposure.

Physical contact with the pup was essential for the increase in heart

rate to occur. Previous work in the socially monogamous prairie

vole led to the hypothesis that exposure to a pup was anxiolytic in

adult male voles [13,14,17]. In contrast, the present findings

suggest that pup exposure induces a state of increased sympathetic

activity, possibly associated with arousal and heightened vigilance.

These findings also are consistent with previous evidence that

arousal or stressful experiences may increase the tendency of males

to show alloparental behavior (Bales, Kim, Lewis-Reese and

Carter, 2004; Bales, Kramer, Lewis-Reese and Carter, 2006).

Additionally, these results recontextualize earlier findings on the

neuroendocrine elements of alloparental behavior in the vole. We

previously observed a transient attenuation of plasma corticoste-

rone following exposure to a pup [14], which was seen as potential

evidence of an anxiolytic effect of pup exposure. However, when

presented with a pup, males tend to show reductions in

ambulation –i.e. kyphotic huddling. This sedentary action may

underlie the reduction in HPA-axis activity. At the same time, our

current observations suggest that cardiac sympathetic activity is

high.

An infant-induced increase in heart rate is not without

precedent in the literature on human infant care. Humans often

respond to infant cries with an acceleration of heart rate [31].

Furthermore, in humans there is greater cardiac reactivity in non-

parents than in parents and in males relative to females [32].

The increase in heart rate concomitant with alloparental

behavior in male voles appears to rely on an increase in peripheral

sympathetic drive to the heart. The heart rate increase during pup

exposure was blocked by atenolol, a selective, peripheral b1

receptor antagonist, which did not affect basal heart rate or our

measures of alloparental behavior, including pup approach,

retrieval and arched back huddling. Atropine, in the dose used

here, is known to diminish RSA by blocking the bradycardic

influence of the vagus and in so doing, increases heart rate [20].

Atropine treatment increased the latency to approach the pup,

although once the pup was contacted the alloparental behavior of

the males did not differ from controls. In the present study

atropine did not have any effects on locomotor activity. The

mechanisms for the atropine-induced hesitancy to initiate

approach the pup could reflect an altered perception of safety,

resulting from visceral parasympathetic antagonism, or other side-

effects of atropine.

The heart rate changes seen during pup exposure differ from

the classic tachycardic response, in which heart rate increases are

typically accompanied by vagal withdrawal. In fact, the correlation

between RSA and heart period was highest in the pup condition,

suggesting that heart rate was under greater vagal control [33].

Activation of both sympathetic and myelinated vagal pathways

during alloparental behavior may be an example in which there is

dual autonomic activation.

Increases in c-Fos in autonomic brainstem nuclei also support

the conclusion that both sympathetic and parasympathetic inputs

to the heart are activated during pup exposure. Exposure to a pup

was associated with increased neuronal activity in the NA, which is

a source nucleus for the myelinated branch of the vagus [34].

Stimulation of the NTS is known to produce activation of

glutamatergic currents in the cardiac vagal neurons of the NA

[35]. c-Fos activation in RVLM did not differ between groups,

suggesting that both pup exposure and dowel exposure induced

sympathetic activation. However, the latter conclusion is limited

by the absence of an unhandled group.

Although uncommon, there are other examples of dual

activation [36]. For instance, electrical stimulation of the

hypothalamus, presumably through effects on the paraventricular

nucleus, produced activation of both cardiac sympathetic and

vagal nerves [37] and oxytocin release. Oxytocin has been

implicated in social engagement and other forms of social

behavior, including alloparenting in voles [17,38]. We have

previously observed that oxytocin is quickly released in male

prairie voles by pup exposure, with the possibility to facilitate

subsequent alloparenting [14].

The response to infant cries in humans is modulated in part by

oxytocin pathways [39–41] and the cardiac response to infant

crying varies as a function of polymorphisms in the gene for the

oxytocin receptor [41]. Oxytocin may decrease the activity of

neural circuitry related to anxiety during infant crying [40], but

also increases sympathetic tone to the heart when acting on spinal

preganglionic neurons [42]. In addition, oxytocin facilitates

Figure 3. Pharmacological manipulations illustrate the contri-
butions of the sympathetic and parasympathetic branches of
the autonomic nervous system. (A) Atenolol (8 mg/kg, i.p.) blocked
the pup-induced heart rate increase, with main effects of time and
treatment. * indicates the effect of treatment, such that the saline
treatment produced a higher heart rate than the atenolol treatment. (B)
Atropine (4 mg/kg, i.p.) delayed initial approach to the pup. * indicates
p,0.05.
doi:10.1371/journal.pone.0069965.g003
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parasympathetic activity [43,44] and in humans can simulta-

neously activate both sympathetic and parasympathetic branches

of the ANS [45].

The apparent contradiction of the classic opponent process view

of the ANS reinforces the need for a more refined understanding

of the ANS, constructed upon an understanding of the evolution of

the ANS [16]. The present findings indicate that alloparental care

involves the more recently evolved, myelinated vagal input to the

heart, with source nuclei in the NA. Activity in this system can

occur in conjunction with increased cardiac sympathetic input.

However, the features of social engagement required by allopar-

enting appear to be dependent on a degree of arousal (i.e., cardiac

output) that cannot be accomplished by withdrawal of vagal

inhibition to the heart acting alone. The somewhat novel

physiological responses seen in the presence of a pup suggest that

alloparenting may be an example of eustress or ‘‘good stress’’

[46,47] and therefore a promising avenue for future research.

However, under conditions of excessive or chronic stress,

unchecked arousal could leave males vulnerable to inappropriate

or aggressive reactions to the infant.

Figure 4. c-Fos activity is higher in brainstem autonomic nuclei related to parasympathetic function (A). Mean c-Fos optical density (+/
2 SEM) in the dorsal motor nucleus of the vagus (DMX), nucleus ambiguus (NA), nucleus tractus solitarius (NTS), and rostral ventrolateral medulla
(RVLM) following exposure to either a dowel (gray) or pup (blue). { indicates p,0.1 * indicates p,0.05. Representative photomicrographs at 46
magnification (B).
doi:10.1371/journal.pone.0069965.g004
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Alloparenting is an ethologically relevant behavior that can

provide a window into the role of endogenous neuropeptides and

their effects on the ANS. Alloparenting occurs in many mammals

including primates (Hrdy, 2009). However, in humans, infant

abuse or neglect are male-biased and especially common in

unrelated males left to care for unrelated young [7,8,48]. In the

present experiments conducted in male prairie voles, we observed

a sustained increase in heart rate in response to caring for an

infant. This heart rate increase was accomplished by an increased

sympathetic drive to the heart while maintaining myelinated vagal

influence. A complex cocktail of neuroendocrine processes,

including oxytocin, vasopressin and CRH, may induce or support

the demands of male alloparental behavior and protection of the

offspring, in part through effects on the ANS. Knowledge of the

psychophysiology and neuroendocrinology of parental behavior is

essential to understanding the biology of healthy parenting.
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