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Fuchs’ uveitis syndrome (FUS) is one of the most under- or misdiagnosed uveitis entities.
Many undiagnosed FUS patients are unnecessarily overtreated with anti-inflammatory
drugs, which may lead to serious complications. To offer assistance for ophthalmologists
in the screening and diagnosis of FUS, we developed seven deep convolutional
neural networks (DCNNs) to detect FUS using slit-lamp images. We also proposed
a new optimized model with a mixed “attention” module to improve test accuracy.
In the same independent set, we compared the performance between these DCNNs
and ophthalmologists in detecting FUS. Seven different network models, including
Xception, Resnet50, SE-Resnet50, ResNext50, SE-ResNext50, ST-ResNext50, and
SET-ResNext50, were used to predict FUS automatically with the area under the receiver
operating characteristic curves (AUCs) that ranged from 0.951 to 0.977. Our proposed
SET-ResNext50 model (accuracy = 0.930; Precision = 0.918; Recall = 0.923; F1
measure = 0.920) with an AUC of 0.977 consistently outperformed the other networks
and outperformed general ophthalmologists by a large margin. Heat-map visualizations
of the SET-ResNext50 were provided to identify the target areas in the slit-lamp images.
In conclusion, we confirmed that a trained classification method based on DCNNs
achieved high effectiveness in distinguishing FUS from other forms of anterior uveitis.
The performance of the DCNNs was better than that of general ophthalmologists and
could be of value in the diagnosis of FUS.

Keywords: Fuchs’ uveitis syndrome, diffuse iris depigmentation, slit-lamp images, deep convolutional neural
model, deep learning

INTRODUCTION

Fuchs’ uveitis syndrome (FUS) is a chronic, mostly unilateral, non-granulomatous anterior uveitis,
accounting for 1–20% of all cases of uveitis at referral centers, and is the second most common
form of non-infectious uveitis (Yang et al., 2006; Kazokoglu et al., 2008; Abano et al., 2017). It is
reported to be one of the most under- or misdiagnosed uveitis entities, with its diagnosis often
delayed for years (Norrsell and Sjödell, 2008; Tappeiner et al., 2015; Sun and Ji, 2020). Patients
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with FUS generally present with an asymptomatic mild
inflammation of the anterior segment of the eye (Sun and
Ji, 2020). The syndrome is featured by characteristic keratic
precipitates (KPs), depigmentation in the iris with or without
heterochromia, and absence of posterior synechiae (Tandon
et al., 2012). Heterochromia is a striking feature of FUS in
white people (Bonfioli et al., 2005). However, iris depigmentation
may be absent or subtle, especially in patients from Asian or
African populations, who have a higher melanin density in
their iris (Tabbut et al., 1988; Arellanes-García et al., 2002;
Yang et al., 2006; Tugal-Tutkun et al., 2009). In a previous
study on Chinese FUS patients, we described the presence of
varying degrees of diffuse iris depigmentation without posterior
synechiae rather than heterochromia (Yang et al., 2006). Degrees
of diffuse iris depigmentation may be considered as the most
sensitive and reliable signs of FUS in Chinese as well as in
other highly pigmented populations (Mohamed and Zamir,
2005; Yang et al., 2006). The subtle iris depigmentation is
however often neglected, leading to a misdiagnosis (Tappeiner
et al., 2015). Many undiagnosed FUS patients are unnecessarily
treated chronically or intermittently with topical or systemic
corticosteroids or even other immunosuppressive agents, which
may lead to cataract formation and severe glaucoma (Menezo
and Lightman, 2005; Accorinti et al., 2016; Touhami et al., 2019).
Until now, the diagnosis is highly dependent on the skills of
the uveitis specialist with broad experience in the detection of
subtle iris pigmentation abnormalities in a patient with mild
anterior uveitis.

Deep learning (DL), one of the most promising artificial
intelligence technologies, has been demonstrated to learn from
and make predictions on data sets (He et al., 2019). Deep
convolutional neural network (DCNN), a subtype of DL, has
proven to be a useful method in image-centric specialties,
especially in ophthalmology (Hogarty et al., 2019). The capability
of DCNN to learn a complicated representation of the data
makes it useful for solving the classification problem to facilitate
accurate diagnosis of various diseases (Kapoor et al., 2019; Ting
et al., 2019). To offer assistance for ophthalmologists in the
screening and diagnosis of FUS, we decided to develop DCNNs to
classify slit-lamp images automatically and in this report we show
its feasibility in the detection of FUS.

MATERIALS AND METHODS

Data Sets
We designed a retrospective study based on the slit-lamp images
of 478 Fuchs patients and 474 non-FUS controls from the uveitis
center of the First Affiliated Hospital of Chongqing Medical
University during January 2015 to October 2020. The diagnosis
of FUS was made according to the criteria by La Hey et al.
(1991) in combination with the description for Chinese FUS
patients in a previous report from our group (Yang et al.,
2006). Non-FUS patients with other uveitis entities (Table 1),
who presented with signs and symptoms of anterior uveitis and
had images comparable with those in FUS patients, served as
controls. All enrolled patients were diagnosed by more than two

TABLE 1 | Uveitis entities in the Non-Fuchs’ uveitis syndrome group.

Entity Total Number (%)

The training
and validation

set

The test set

Idiopathic chronic anterior uveitis 124 100 (26.2) 24 (26.1)

Posner–Schlossman syndrome 83 66 (17.3) 17 (18.5)

Presumed viral anterior uveitis 74 60 (15.7) 14 (15.2)

Acute anterior uveitis 66 53 (13.9) 13 (14.1)

Sarcoidosis 62 51 (13.3) 11 (12.0)

Vogt–Koyanagi–Harada disease 35 28 (7.3) 7 (7.6)

Behcet’s disease 30 24 (6.3) 6 (6.5)

Total 474 382 92

specialists from referring hospitals and then verified by uveitis
specialists from our center. The slit-lamp images of each patient
were collected using a digital slit-lamp microscope (Photo-Slit
Lamp BX 900; Haag-Streit, Koeniz, Switzerland). These images
were taken with a 30◦ angle using direct illumination and
focused on the iris with varying degrees of magnification (10,
16, or 25). To highlight the diffusion and uniformity of the iris
depigmentation, only images that covered about half of the iris
appearance were included.

A total of 2,000 standard slit-lamp images were collected
anonymously and removing all personal data except types of
disease. These images were used as the basis for training DCNNs
consisting of 872 slit-lamp images of affected eyes showing
the diffuse and uniform iris depigmentation without posterior
synechiae from FUS patients (FUS group) and 1,128 images of
control eyes from non-FUS patients (non-FUS group). Then,
the 20% aggregate images were set as an independent test set to
evaluate the effectiveness and generalization ability of DCNNs.
The remaining 80% images were randomly and respectively
assigned to the training set and the validation set in an 8:2 ratio.
The training set was used to train DCNNs, whereas the validation
set was utilized to optimize learnable weights and parameters
of DCNNs. The images collected from the same patient (left
and right eyes or from multiple sessions) could ensure to be
not separated between the test set and the other two sets. The
study was approved by the Ethical Committee of First Affiliated
Hospital of Chongqing Medical University (No. 2019356) and
was conducted in accordance with the Declaration of Helsinki for
research involving human subjects.

Development of the DL Algorithm
The slit-lamp images were initially preprocessed to derive
data for developing the DCNNs. Each image was resized to
224 × 224 pixels to be compatible with the original dimensions
of the experiment networks. Then, the pixel values were
scaled to range from 0 to 1. To increase the diversity of
the data set and reduce the risk of overfitting, we applied
several augmentations to each image, involving random cropped,
random rotation, random brightness change, and random flips.
Data augmentation is an essential approach to automatically
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generate new annotated training samples and improve the
generalization of DL models (Tran et al., 2017). We obtained
samples with shearing with ranges of [−15%, + 15%] of the
image width, with rotation [0◦, 360◦], with brightness change
with ranges of [−10%, + 10%], and with or without flipping,
thereby generating 10 images per photograph.

Resnet, as a residual deep neural network, was widely
used because it is easy to optimize and can gain accuracy
from significantly increased depths (He et al., 2016). There
are various depths of Resnet structures (Resnet50, Resnet101,
and Resnet152), and in this study we used Resnet50 as the
experimental models. ResNext, as a new network derived
on the basis of Resnet, was included since it can improve
accuracy while maintaining Resnet’s high-portability benefits (Xie
et al., 2017). Moreover, we introduced a new “attention” unit:
the Squeeze-and-Excitation (SE) module. This module allows
the network to selectively emphasize informative features and
suppresses less useful ones (Hu et al., 2017). After uniting data
with the SE module, four different networks (Resnet50, SE-
Resnet50, ResNext50, and SE-ResNext50) were included. For
comparison, we also selected the Xception network, containing
a new convolutional structure named depth-wise separable
convolutions that used less parameters and were defined or
modified easily (Chollet, 2017). These five classical DCNNs were
pre-trained to running the detection of FUS.

To improve test accuracy, we constructed a new optimized
model, using ResNext50 as the backend. Considering the
ResNext50 lack of ability to be spatially invariant to the input
data, we introduced a “Spatial Transformer (ST)” module,
which is another “attention” unit to provide explicit spatial
transformation capabilities. This module performs the ability to
learn invariance to translation, scale, rotation, and more generic
warping, resulting in state-of-the-art performance (Jaderberg
et al., 2015). Applying a mixed “attention” module (SE and
ST module), our new model (SET-ResNext50) could not
only learn the informative features but also focus on the
informative location. We also conducted ablation experiments
(ST-ResNext50: ResNext50 with ST module) to verify the
effectiveness of our proposed mixed “attention” module.
Moreover, we manually tuned various combinations of the
hyper-parameters to ensure that the trained models met our
experimental requirements. The architecture of SET-ResNext50
is shown in Figure 1.

We developed DCNNs to classify the slit-lamp images into
two categories: FUS and Non-FUS. To optimize the models and
achieve a better training effect, each model was pre-trained in
a classification dataset Imagenet (Deng et al., 2009) to initialize
its parameters. Then, we used a 2080 Ti GPU and mini-batches
of 96 inputs. The cross entropy was used as a loss function to
update all the parameters of the network. The Adam optimizer
was used as an optimization function with a learning rate
of 10−4. The last layer of DCNNs was modified to output a
two-dimension vector. We applied fivefold cross-validation for
each DCNN to test the statistical significance of the developed
models. The heat maps highlighted lesions and showed the
location on which the decision of the algorithm was based
(Zhou et al., 2016).

Evaluation of the DL Algorithm
The performance of our experimental models was evaluated in
an independent test data set. Images obtained from the same
patient could ensure to be not split across the test set and the other
two sets. The fivefold cross-validation binary classification results
of each model were used to calculate the mean and standard
deviation for testing the statistical significance of the developed
models. We used receiver operating characteristic (ROC) curves,
with calculations of an area under the receiver operating
characteristic curves (AUCs), as an index of the performance of
our automated models (Carter et al., 2016). AUCs were computed
for each finding with 95% confidence intervals computed by
the exact Clopper–Pearson method using the Python scikit-learn
package version 0.18.2. Precision, accuracy, and recall were used
to evaluate the FUS classification performance of our developed
models. To make a trade-off between precision and accuracy, F1
measures were added to assess the effectiveness. SPSS version 24.0
(IBM) was used to compare quantitative variables by Student’s
t-test.

Comparison of the Networks With
Human Ophthalmologists
We compared the performance between seven DCNNs
and the clinical diagnosis of ophthalmologists. We chose
six ophthalmologists in two different levels (attending
ophthalmologists with at least 5 years of clinical training in
uveitis from our center: Dr. Zi Ye, Shenglan Yi, and Handan Tan;
resident ophthalmologists with 1–3 years of clinical training in
ophthalmology from other eye institutes: Dr. Jun Zhang, Yunyun
Zhu, and Liang Chen). None of them has participated in the
current research. The slit-lamp images were subjected to each
ophthalmologist alone and were requested to assign one of three
labels to each image, i.e., FUS, uncertain, non-FUS. They were
strongly advised not to choose the uncertain label because it is
considered as a wrong answer for final evaluation.

RESULTS

Baseline Characteristics
A total of 2,000 slit-lamp images from 478 FUS patients and 474
non-FUS controls were collected and assessed during the study
period. The non-FUS group included various forms of anterior
uveitis and panuveitis with a presentation of anterior uveitis. The
types and proportion of non-FUS cases are listed in Table 1. The
2,000 images were assigned to the training set, the validation set,
and the test set. The training and validation set (1,600 images)
included 698 images from 380 FUS patients and 902 images from
382 non-FUS patients, and the test set (400 images) consisted of
174 images from 98 FUS patients and 226 images from 92 non-
FUS patients.

Performance of the DL Algorithm
After applying fivefold cross-validation, we calculated the mean
value and standard deviation to evaluate the performance of
our developed models. Performance results are reported in
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FIGURE 1 | The architecture of SET-ResNext50. We used ResNext50 as backend uniting a mixed “attention” module (the Squeeze-and-Excitation module and the
Spatial Transform module). This network was pre-trained in a classification dataset Imagenet to initialize its parameters. Then, we modified the last layer to output a
two-dimension vector and updated all the parameters by using the cross entropy.

Table 2. In aggregate, the performance of all trained models
showed promising outcomes when considering the selected
metrics including accuracy, precision, F1 measure, and recall.
In the test set of 400 images, seven DCNNs achieved the
accuracy of 0.883–0.930, while F1 measures were 0.866–0.920.
We found that the performance of ResNext50 was better than
that of SE-ResNext50 or ST-ResNext50, demonstrating that
the combination of SE or ST modules with the model would
not improve the effectiveness of our networks. However, after
uniting with the mixed “attention” module, our SET-ResNext50
model consistently outperformed other network models with its
performance (accuracy = 0.930; Precision = 0.918; Recall = 0.923;
F1 = 0.920). There were significant differences in accuracy
between SET-ResNext50 and the other models except ResNext50
(p < 0.05). The F1 measure of SET-ResNext50 was higher than
that of ResNext50 (p = 0.043), which showed that SET-ResNext50
is more superior than other models.

The ROCs and AUCs are reported in Figure 2. AUCs
were 0.951–0.977 of DCNNs, which also demonstrate good
performance of the developed models. SET-ResNext50 with its
AUC of 0.977 showed that this model could be the optimal choice
to facilitate the diagnosis of FUS among seven networks. The
other metrics in Table 2 also echoed these observations.

Figures 3, 4 present the examples of heat maps of SET-
ResNext50 model for each finding, accompanied by the
corresponding original image. The heat maps showed the most
apparently affected region in slit-lamp images. This region was
the most important indicator to distinguish FUS from non-
FUS. In Figure 3, the affected area of FUS accounted for nearly
half of the total iris appearance and was mostly located in
the pupillary collar. In contrast, the affected area of non-FUS
images (Figure 4) was unevenly distributed, including in the
pupil or around the periphery of the iris. The affected areas
of our SET-ResNext50 model correspond to those identified by
the clinicians for diagnosis. In summary, SET-ResNext50 showed
the best level of performance in our study and emphasized
the most important clues of the image that pointed to the
classification results.

FIGURE 2 | Receiver operating characteristic curves of the performance for
diagnosis of Fuchs uveitis syndrome in the test set. SET-ResNext50 achieved
an AUC of 0.977 (95%CI, 0.975–0.979), which outperformed other developed
networks and outperformed all the ophthalmologists by a large margin.

Comparison With Ophthalmologists
Three resident ophthalmologists and three attending
ophthalmologists were included to detect FUS. The average
accuracy is 0.709 for attending ophthalmologists from
our uveitis center, which is higher than that (0.597) for
resident ophthalmologists from other eye institutes. There is
significant difference in accuracy between these two groups
(p = 0.024). Moreover, there was a huge performance gap
between ophthalmologists and DCNNs (Table 2). The average
accuracy of ophthalmologists is significantly lower than that of
DCNNs (p < 0.01). As shown in Table 2, comparing the accuracy
of ophthalmologists (0.597 and 0.709), the SET-ResNext50
model with the accuracy of 0.930 shows that the latter is superior
for detecting FUS.
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TABLE 2 | Performance of the deep convolutional neural networks with fivefold cross-validation and the compared methods in the test set.

Accuracy (SD) Precision (SD) Recall (SD) F1-measure (SD) P-value*

The classical DCNNs Xception 0.883 (0.007) 0.861 (0.039) 0.875 (0.047) 0.866 (0.008) <0.01

Resnet50 0.903 (0.016) 0.879 (0.047) 0.905 (0.044) 0.890 (0.016) 0.044

SE-Resnet50 0.893 (0.025) 0.855 (0.040) 0.909 (0.052) 0.880 (0.028) 0.007

ResNext50 0.904 (0.015) 0.889 (0.019) 0.890 (0.048) 0.889 (0.020) 0.052

SE-ResNext50 0.893 (0.024) 0.897 (0.038) 0.852 (0.045) 0.873 (0.029) <0.01

Ablation experiments ST-ResNext50 0.896 (0.013) 0.885 (0.036) 0.879 (0.068) 0.880 (0.021) 0.014

Our proposed model SET-ResNext50 0.930 (0.005) 0.918 (0.028) 0.923 (0.027) 0.920 (0.004) −

Ophthalmologists Resident 0.597 (0.045) 0.539 (0.054) 0.638 (0.095) 0.578 (0.009) <0.01

Attending 0.709 (0.032) 0.648 (0.018) 0.722 (0.100) 0.681 (0.056) <0.01

*Comparison of accuracy with the SET-ResNext50.
SD, standard deviation; SE, Squeeze-and-Excitation; ST, Spatial Transformer.

FIGURE 3 | The heat maps of the SET-ResNext50 model in slit-lamp image with Fuchs uveitis syndrome demonstrating representative findings, shown in the original
slit-lamp image (right) and corresponding heat map for target areas (left).

FIGURE 4 | The heat maps of the SET-ResNext50 model in slit-lamp image with non-Fuchs uveitis syndrome demonstrating representative findings, shown in the
original slit-lamp image (right) and corresponding heat map for target areas (left).
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DISCUSSION

In this study, we developed DCNNs to prove a well-trained
DL method for distinguishing FUS from various anterior
uveitis and even identify the diagnostic clues that many
clinical ophthalmologists neglect. Our study includes three
meaningful conclusions. Firstly, to our knowledge, this is the
first initiative to assist ophthalmologists in making a correct
diagnosis of FUS using slit-lamp images. Secondly, we trained
seven DCNNs and developed a new optimized model (SET-
ResNext50). SET-ResNext50 achieved both high accuracy and
precision, consistently outperforming other models and the
general ophthalmologists. Thirdly, our study provided heat maps
that highlighted and showed the location of lesions in slit-
lamp images. Applying the DCNNs to assist the detection
of hidden lesions can facilitate the clinical diagnosis and
treatment process.

Recently, DCNNs have been rapidly popularized in clinical
practice to make predictions of diseases automatically. Schlegl
et al. (2018) achieved excellent accuracy for the detection
and quantification of macular fluid in OCT images by using
DL in retinal image analysis. Several studies have suggested
that applying a DCNN-based automated assessment of age-
related macular degeneration from fundus images can produce
results that are similar to human performance levels (Burlina
et al., 2017; Grassmann et al., 2018; Russakoff et al., 2019).
Intensive efforts to develop automated methods highlight
the attraction of these tools for advanced management of
clinical disease, especially for diseases like FUS. The slit-lamp
microscope is the most widely used auxiliary instrument in
clinical practice (Jiang et al., 2018). In busy clinics, taking
a mass of slit-lamp images into consideration is inherently
impractical and error-prone for ophthalmologists. Therefore,
automated DCNNs could be used to screen slit-lamp image
data sets, direct the ophthalmologists’ attention to the lesion,
and in the near future perform diagnosis independently. Our
presented DCNNs with high accuracy for the detection of
FUS highlighted the location of lesions and may become
widely applicable.

Building and optimizing a new DCNN may require a
substantial amount of hyper-parameter tuning time. Therefore,
many studies have used classical networks such as Resnet as
the backend (Wu et al., 2017). In this study, as the basis of
ResNext50, we proposed a mixed “attention” module combining
informative attention and spatial attention in our optimized
model architecture. We found that SET-ResNext50 with a
mixed “attention” module outperformed the models combining
with one of the SE and ST modules, indicating that there is
mutual promotion between the SE module and ST module. The
innovative method of using this mixed module may be useful
in other areas of ophthalmology. With too few images or too
many training steps, the DL classifier may show overfitting,
resulting in the poor generalization of results (Treder et al.,
2018). In this study, we used data augmentation to generate
new annotated training samples and set an independent test
set to evaluate the generalization ability of DCNNs. We found
that the performance of our DCNNs was consistently good in

the test set, indicating that the models had the generalization
ability without overfitting. We compared the effectiveness of
DCNNs against ophthalmologists with different experience
levels. The performance of attending ophthalmologists was
better than that of the resident ophthalmologists, indicating
that the misdiagnosis of FUS may be due to a lack of
accumulation of clinical experience. As expected, the DCNNs
achieving the highest sensitivity while keeping high specificity
outperformed the resident and attending ophthalmologists by
a large margin. Moreover, our model produced the heat map
visualizations to identify the existence of the target areas in
images and then generated the output of the classification.
In the heat maps, the most apparently affected regions of
FUS images were mainly located in the depigmentation of the
pupil collar and accounted for nearly half of the overall iris
appearance (Figure 3), which generally proved the characteristic
of diffuse and uniform iris depigmentation in the vicinity
of the pupil in FUS patients. Other uveitis entities like
the Posner–Schlossman syndrome may show heterogeneous
and uneven iris depigmentation. Iris depigmentation can
also be detected in patients with herpetic uveitis, but it
usually displays a local appearance. Those signs correspond
to the irregular affected areas on the heat maps of non-
FUS (Figure 4). Some affected areas in non-FUS cases
(like idiopathic chronic anterior uveitis) that were located
in the pupil may arise from the presentation of posterior
synechiae without iris depigmentation. However, the heat maps
produced by DCNNs are challenging and difficult to interpret
(Ramanishka et al., 2017). In image-based diagnostic specialties,
interpreting the heat map may facilitate a better understanding
of the diagnosis.

We realize that our study has several limitations. First, our
data of slit-lamp images only included Chinese patients with
highly pigmented iris and our findings therefore need to be
validated in other ethnic populations. Unfortunately, there is
no other public dataset of the FUS patients from different
populations to validate our models. Such a dataset would be a
significant value for further research and expected to evaluate
the performance of other DCNNs in the future. Second, the
available data set is relatively small for training or validation.
Unlike in other common eye diseases such as age-related macular
degeneration or diabetic retinopathy, there are a relatively
smaller number of cases with FUS. Third, the program we
developed could only distinguish FUS from non-FUS according
to the iris change. Further research is expected to combine
DCNNs with other clinical findings in the diagnosis of complex
diseases. Anyhow, we believe that the method presented here
is a meaningful step toward the automated analysis of slit-lamp
images and may aid in the detection of FUS.

CONCLUSION

In conclusion, we have developed various DCNNs and validated
a sensitive automated model (SET-ResNext50) to detect
FUS using slit-lamp images. Our presented models achieved
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both high accuracy and precision, and outperformed general
ophthalmologists by a large margin. The SET-ResNext50 model
may be the optimal choice to facilitate the diagnosis of FUS.
Moreover, the heat map could extract important features from the
iris, which proved that DCNNs could be trained to detect specific
disease-related changes. The DCNNs are expected to be applied
to auxiliary imaging instruments for preliminary screening of
diseases, which is of value in future clinical practices.
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