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Abstract

Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes spanning

a wide spectrum of diseases, from simple steatosis to the more complex nonalcoholic stea-

tohepatitis. To identify the deregulation that occurs in metabolic processes at the molecular

level that give rise to these various NAFLD phenotypes, algorithms such as pathway enrich-

ment analysis (PEA) can be used. These analyses require the use of predefined pathway

maps, which are composed of reactions describing metabolic processes/subsystems.

Unfortunately, the annotation of the metabolic subsystems can differ depending on the path-

way database used, making these approaches subject to biases associated with different

pathway annotations, and these methods cannot capture the balancing of cofactors and

byproducts through the complex nature and interactions of genome-scale metabolic net-

works (GEMs). Here, we introduce a framework entitled Minimum Network Enrichment

Analysis (MiNEA) that is applied to GEMs to generate all possible alternative minimal net-

works (MiNs), which are possible and feasible networks composed of all the reactions per-

taining to various metabolic subsystems that can synthesize a target metabolite. We applied

MiNEA to investigate deregulated MiNs and to identify key regulators in different NAFLD

phenotypes, such as a fatty liver and liver inflammation, in both humans and mice by inte-

grating condition-specific transcriptomics data from liver samples. We identified key deregu-

lations in the synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both

humans and mice, and we found that key regulators of the hydrogen peroxide synthesis net-

work were regulated differently in humans and mice. We further identified which MiNs dem-

onstrate the general and specific characteristics of the different NAFLD phenotypes. MiNEA

is applicable to any GEM and to any desired target metabolite, making MiNEA flexible

enough to study condition-specific metabolism for any given disease or organism.
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Author summary

This work aims to introduce a network-based enrichment analysis using metabolic net-

works and transcriptomics data. Previous pathways/subsystems enrichment methods use

predefined gene annotations of metabolic processes and gene annotations can differ based

on different resources and can produce bias in pathway definitions. Thus, we introduce a

framework, Minimum Network Enrichment Analysis (MiNEA), which first finds all pos-

sible minimal-size networks for a given metabolic process/task and then identifies deregu-

lated minimal networks using deregulated genes between two conditions. MiNEA also

identifies the deregulation in key reactions that are overlapped across all possible mini-

mal-size networks. We applied MiNEA to identify deregulated metabolic tasks and their

synthesis networks in the steatosis and the nonalcoholic steatohepatitis (NASH) diseases

using a metabolic network and transcriptomics data of mouse and human liver samples.

We identified key regulators of NASH for the synthesis networks of hydrogen peroxide

and ceramide in both humans and mice. We also identified opposite deregulation in

NASH for the phosphatidylserine synthesis network between humans and mice. MiNEA

finds synthesis networks for a given target metabolite and due to this it is flexible to study

deregulation in different phenotypes. MiNEA can be widely applicable for studying con-

text-specific metabolism for any organism because the metabolic networks and context-

specific gene expression data are now available for many organisms.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in western

countries [1], affecting an estimated 25% to 45% of the general US population, though this per-

centage is much higher among individuals suffering from obesity and diabetes [1, 2]. There are

two categories of NAFLD: steatosis, which is an accumulation of fat in the liver, and nonalco-

holic steatohepatitis (NASH), which consists of the additional presence of liver inflammation

and hepatocellular injury with or without fibrosis [2].

Gene deregulation occurs when the cell no longer maintains precise control over certain

genes, and therefore expressed proteins, and is associated with various diseases such as NAFLD.

Determining which genes are deregulated in disease and how these genes are deregulated can

increase the understanding of any disease as well as provide new pathways for therapeutic treat-

ments. To study gene deregulation, pathway enrichment analysis (PEA) uses maps of metabolic

processes and subsystem reactions to determine if a given list of genes (gene set) is associated

with a certain biochemical pathway, shedding important conceptual insight into gene deregula-

tion. Many PEA algorithms, such as ConsensusPathDB [3] and Piano [3, 4], have been devel-

oped to identify biological processes based on gene sets, while other algorithms, such as IMPaLA

[5], are based on both gene and metabolite sets. While these algorithms can successfully provide

insights about various disease phenotypes, they use predefined metabolic maps that are limited

to our current knowledge of these hugely intricate pathways and can differ depending on the

pathway database used, meaning they could miss information about the wide range of complex

metabolic interactions. These approaches are also subject to biases associated with the different

pathway annotations, and they cannot capture the balancing of cofactors and byproducts

through the complex nature and interactions of genome-scale metabolic networks (GEMs).

To overcome this, a method has been developed based on elementary flux modes (EFMs),

which are non-decomposable flux distributions in metabolic networks [6].These flux distribu-

tions indicate a conceptual description of metabolic pathways. This method computes EFMs
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from a given GEM and uses tissue-specific transcriptomics to identify a subset of tissue-spe-

cific EFMs. However, the enumeration of all EFMs in a GEM can be computationally intracta-

ble, and EFMs are not necessarily specific to a target metabolite synthesis, meaning that

targeted pathways are not always able to elucidated using EFMs.

Modeling methods of biological networks, such as metabolic, signaling, and protein-protein

interaction can be used as a framework to study biological functions of the liver for the preven-

tion and treatment of liver-associated disease [7]. For example, one can use graph-based meth-

ods (GBM) that require network topologies and gene expression profiles as inputs to extract

deregulated subnetworks that occur between two conditions [8–10]. These methods have been

applied to protein-protein networks for prostate cancer study, and they are potentially applica-

ble to metabolic networks. GBM methods use graph-theoretic properties on network topolo-

gies but miss information about additional constraints, such as mass balance [11] and

thermodynamics [12]. Ideally, the results for these studies would include a set of mass balanced

subnetworks that could be used to understand the carbon, energy, and redox flows from pre-

cursor metabolites to target metabolites and complex metabolic tasks.

Here, we propose a method called Minimal Network Enrichment Analysis (MiNEA) that

compares two conditions using transcriptomics, proteomics, and metabolomics to identify

deregulated minimal networks (MiNs), which are reactions pertaining to various metabolic sub-

systems that can synthesize a target metabolite. The MiNEA algorithm works by formulating

metabolic tasks (MTs) to mimic the various NAFLD phenotypes, such as lipid droplet forma-

tion, lipoapoptosis, liver inflammation, and oxidative stress. These MTs include the known set

of metabolites necessary to form the modeled phenotype. The cell can use different pathways to

form the same metabolites and create the same phenotypes, and the purpose of MiNEA is to

identify deregulated alternative routes for a given MT between two conditions, such as a control

and treatment. Additionally, MiNEA uses these MTs to compute alternative thermodynamically

feasible MiNs applying thermodynamic constraints [12, 13] to a mouse GEM [14].

We used mouse and human liver sample expression data [1, 15] and identified deregulated

metabolic processes in mice and humans that potentially lead to the NAFLD phenotypes.

MiNEA identified an upregulation in the oxidative stress synthesis network in mice, but this

network was found to be downregulated in humans. The cholesterol and triacylglycerol syn-

thesis networks were deregulated in humans only, while the ceramide synthesis network was

only deregulated in mice. We found downregulated reactions in the synthesis network for cho-

lesteryl esters, cholesterol, and alanine in both humans and mice. We further identified down-

regulated reactions in the superoxide anion (SOA) synthesis network in humans, specifically

in NASH as opposed to steatosis, while upregulation was found in the SOA synthesis network

in mice. This perturbation through the SOA synthesis network in NASH suggested an unbal-

anced ceramide synthesis, and studies have shown that the ceramide is a key regulator of apo-

ptosis and promotes fibrosis in the hepatic steatosis model [16, 17].

MiNEA can generate MiNs for any target metabolite, e.g. a metabolite produced under spe-

cific phenotypes or a biomass building block [18] that is needed for cell growth. Additionally,

MiNEA can integrate condition- and context-specific omics data to understand the deregu-

lated phenotypes associated with a set of differentially expressed genes. These characteristics

make MiNEA a versatile tool for exploring and understanding different metabolic phenotypes.

Results and discussions

Experimental details for MiNEA

Nonalcoholic fatty liver disease (NAFLD) has been defined as a metabolic disease associated

with insulin-resistance syndrome [19]. To study the differences seen in NAFLD phenotypes
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between mouse and human manifestations, we collected human expression data from the

three diagnosis groups, normal (N), steatosis (S), and nonalcoholic steatohepatitis (NS), and

mouse expression data from control and DDC-supplemented diet conditions for three geneti-

cally different mouse strains, AJ, B6, and PWD. DDC-supplemented diet reproduces steatosis

and NASH phenotypes (see Materials and Methods for detail). We refer to these data as

human expression data andmouse expression data throughout this section and integrate it into

a mouse model iMM1415 [14] that is constructed based on a human GEM Recon1 [20].

Sigurdsson and colleagues found that the mammalian organism with the highest number of

genes homologous to Recon 1 genes was the mouse (Mus musculus) (1,415 genes, 97%). We

compared iMM1415 and Recon1 and found that the iMM1415 shares 98% of reactions with

Recon1 and in the remaining 2% reactions more than 75% (more than 1.5% of total reactions)

were associated with the extracellular transport mechanism. This suggests that Recon1 and

iMM1415 have a very similar metabolism. Computed minimal networks do not change

between Recon1 and IMM1415 due to less variability between the two models. Thus, we use

iMM1415 as a generic model. If we impose tissue specific constraints or organism specific

external medium, we expect some changes in the minimal networks, mainly in the number of

alternative networks. However, such constraints involve a lot of uncertainty and we chose to

use a generic model and our results here can be viewed as an upper bound on the possible solu-

tions. We analyzed both human and mouse MTs using the generic model (iMM1415) with the

assumption that both types of mammalian cells have a similar metabolism (See S1 Text). In the

following sections, we analyzed the deregulation of minimal networks in core reactions and

enriched minimal networks based on the deregulation (up- or downregulated) genes.

Minimal networks

GEMs represent an entire cellular metabolic network in the form of mathematical constraints

[21]. These network reconstructions have grown rapidly in the last decades, and now many

GEMs for different organisms are available [22]. GEMs and condition-specific experimental

data can be employed to generate and test hypotheses using the Minimal Network Enrichment

Analysis (MiNEA) framework that has been developed in this study. Compared to a method

that optimizes only some part of GEMs to find subnetworks [23], MiNEA optimizes whole

GEMs to find minimal networks.

To examine the data that can be derived from MiNEA in terms of NAFLD, we first wanted

to compute MiNs for given MTs (see Materials and Methods) that were significant phenotypes

in NAFLD. Instead of representing a main linear route between precursors and targets of

MTs, a MiN is composed of many subsystems integrated into subnetworks that must be active,

meaning that reactions of subnetworks carry flux, to fulfill the target MT. The MiNEA algo-

rithm facilitates enumeration of alternative MiNs and provides more flexibility to the analysis

of different metabolic phenotypes and their respective environmental and genetic perturba-

tions. The use of MTs for analysis with MiNEA allows this method to be more easily general-

ized and applied to the study of other metabolic phenotypes and diseases.

A summary of the MiNs calculated for MTs (see Materials and Methods) are shown in

Table 1. The shortest MiNs were for the synthesis of hydrogen peroxide (H2O2) (network

size = 37), and the longest were for the synthesis of cholesteryl ester (network size = 131;

Table 1). We found the greatest number of possible alternatives for the hexadecanoate

(HDCA) synthesis and the least number possible for the phosphatidylserine (PS) synthesis

(Table 1), suggesting that the HDCA synthesis is more flexible and the PS synthesis less flexible

towards alternative formation compared to the rest of the MTs. Reactions that overlapped

between all alternative MiNs were called high-frequency reactions (HFRs), and the percentage

Deregulated metabolic tasks in nonalcoholic fatty liver disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006760 April 19, 2019 4 / 22

https://doi.org/10.1371/journal.pcbi.1006760


of HFRs shows how similar or divergent a MiN is compared to the other MiNs. The percentage

of HFRs was between 62% to 91% across the MTs (Table 1). In the superoxide anion (SOA)

and the hydrogen peroxide (H2O2) synthesis, 62% and 89% of the reactions were HFRs,

respectively, which suggests that the alternative MiNs for the SOA synthesis were more diver-

gent compared to the H2O2 synthesis.

As an expanded example, a MiN from the H2O2 synthesis comprises many reactions from

various metabolic subsystems (Fig 1). Each MiN represents a group of active reactions within

multiple metabolic subsystems/pathways that are required for a MT, while a pathway is a

group of annotated reactions. In the example in Fig 1, most of the active reactions for the

H2O2 synthesis are from the pentose phosphate pathway (PPP) and the glycolysis/gluconeo-

genesis pathway. PEA differs in that it identifies a marked deregulation in a pathway as com-

pared to MiNEA, which identifies deregulation in a MiN that could include multiple

pathways.

We further analyzed the HFRs within each phenotype and found that the most represented

metabolic pathway in the apoptosis and inflammation (AI) phenotype was related to amino

acid metabolism (# phenotypic HFRs = 36; Table 1; Fig 2). Interestingly, while the lipid droplet

(LD) phenotype has many associated MTs, it shares 27 reactions in which 5 reactions are from

the glycolysis/gluconeogenesis pathway (Fig 2). These shared reactions can be constitutive can-

didates for the LD phenotypes. The HFRs forming the subsystems in Fig 2 are potential candi-

dates for the key regulators of the NAFLD phenotypes.

Deregulation in HFRs

The HFRs within each MT create a topology of reaction hubs in metabolic networks that can

be similar to protein hubs in protein-protein interaction networks [24, 25]. The misregulation

of these hubs in disease can explain the origin of disease phenotypes. Therefore, we performed

an analysis of HFR deregulation to study the NAFLD-specific phenotypes. We identified the

up- and downregulated reactions from mouse and human expression data (described in S1

Text) and analyzed the HFRs for which the associated genes were found to be deregulated. In

Table 1. Summary of MiNs found for the target metabolites comprising the various NAFLD phenotypes. Synthesis of a target metabolite represents a MT. For each

MT, we enumerated alternative MiNs. The number of reactions in each MiN represents the size of the MiN. “# Alt” and “# MT HFRs” represent the number of alternatives

and the number of overlapping reactions between all alternatives of a given MT, respectively. The symbol “#Phenotypic HFRs” represents the number of overlapping reac-

tions from all alternatives of a set of MTs that are associated with a given phenotype.

Phenotypes Metabolic Short Min Size # # MT %MT # Phenotypic

Tasks (MTs) Name # rxns Alt HFRs HFRs HFRs

Oxidative Hydrogen peroxide H2O2 37 126 33 89 16

Stress Superoxide anion SOA 42 144 26 62

Apoptosis and Alanine ALA 98 39 84 86 36

Inflammation Ceramide CRM 115 8 105 91

Glutamine GLU 116 34 83 72

Lipid droplet Cholesterol CHOL 121 60 108 89 27

Cholesteryl ester CHOL_ES 131 237 112 85

Diacylglycerol DAG 82 232 67 82

Hexadecanoate HDCA 75 266 61 81

Phosphatidic acid PA 83 245 65 78

Phosphatidylinositol PAIL 94 237 68 72

Phosphatidylethanolamine PE 128 7 103 80

Phosphatidylserine PS 125 6 98 78

https://doi.org/10.1371/journal.pcbi.1006760.t001
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humans, the number of downregulated HFRs was higher compared to upregulated HFRs for

the NS vsN and NS vs S across all phenotypes (Table 2). In mice, however, the NS vsN, NS vs
S, and S vsN comparisons showed a higher number of upregulated HFRs compared to down-

regulated ones for the oxidative stress (OS) phenotype, but for the LD and AI phenotypes, we

observed similar patterns of up- and downregulated HFRs to humans (Table 2).

We further analyzed the deregulation in reaction hubs for each MT to identify the most per-

turbed MTs in NS and S and the differences between NS and S. In humans, the percentage of

downregulated HFRs was higher than upregulated ones for the synthesis of all metabolites in

the NS vsN and NS vs S states, while the percentage of upregulated HFRs was higher than

downregulated ones for the S vsN state (Fig 3). There was a higher percentage of downregu-

lated HFRs for the cholesterol (CHOL) and cholesteryl ester (CHOL_ES) synthesis networks

in NS vs S and for the superoxide anion (SOA) and H2O2 synthesis networks in NS vs S (Fig

3). This means that downregulated HFRs have a higher impact on NASH phenotypes.

Since the mouse strains AJ and PWD show phenotypes NS and S, respectively, and the

mouse strain B6 shows low S and NS phenotypes after feeding with the DDC diet (Materials

Fig 1. A minimal network (MiN) and high-frequency reactions (HFRs). A MiN of H2O2 synthesis is illustrated.

Each box represents a different metabolic subsystem/pathway. The number of total reactions listed in each

box represents the annotated reactions for that subsystem. Active reactions carry non-zero flux, and the number of

these present in each subsystem is shown in green text.

https://doi.org/10.1371/journal.pcbi.1006760.g001
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and Methods), we analyzed B6 separately. For mice, in NS vsN (the comparison associated to

AJ) and B6 DDC vsN comparisons, we found that the percentage of downregulated HFRs in

the SOA and H2O2 synthesis networks was higher than for upregulated ones (Fig 3). This indi-

cates synthesis networks of oxidative stress were found to be perturbed for AJ and B6 mice.

Additionally, for the NS vs S in mice, an elevated percentage of upregulated HFRs was identi-

fied for the synthesis of the triacylglycerol (TAG), phosphatidylinositol (PAIL), diacylglycerol

(DAG), and phosphatidic acid (PA) metabolites; a high percentage of downregulated HFRs

was found for the alanine (ALA) and glutamine (GLU) synthesis networks (Fig 3). This is con-

sistent with the observation of lipid droplet perturbation in NASH and steatosis [26], and it

Fig 2. HFRs for all the phenotypes. The number of HFRs in the various pathways is shown for the oxidative stress, apoptosis and inflammation, and lipid droplets

phenotypes. See Fig 1 caption for a detailed explanation of the chart.

https://doi.org/10.1371/journal.pcbi.1006760.g002
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further suggests that the synthesis of TAG, PAIL, DAG, and PA are important for lipid droplet

formation.

For the synthesis of ROS, such as H2O2, the human NS vsN case presented with a high per-

centage of downregulated HFRs, while the same case in mice presented with a high percentage

of upregulated HFRs (Fig 3). The reactions of the PPP associated with genes TKT1, TKT2,

GND, and TALA were identified as downregulated HFRs in the NS vsN human. However, for

the NS vsN mouse and B6 DDC vsN these reactions were identified as upregulated. PPP is

known as a source of nicotinamide adenine dinucleotide phosphate (NADPH) that prevents

oxidative stress. Thus, the different patterns of regulation observed for these reactions can

unbalance both NADPH concentration and H2O2 synthesis. Interestingly it has been reported

that the unbalance in NADPH production through PPP by either an under or over-production

of NADPH may induce oxidative stress [27, 28]. Interestingly, Mardinoglu and colleagues [29]

found an alteration in the hepatic expression levels of associated enzymes of the de novo gluta-

thione synthesis and reported that redox imbalance is associated to metabolic dysfunction and

the development of NAFLD.

The acetyl CoA C acetyltransferase (ACACT1rm) and phosphoglycerate mutase reactions

of the ceramide synthesis networks were identified as downregulated HFRs for the NS vs S and

NS vsN in humans along with the NS vsN in mice. Thus, perturbation in the genes associated

with these reactions can affect the ceramide level in NASH in both mice and humans. In line

with this finding, a study suggested that deregulated ceramide production promotes liver

injury and the development of NASH through disruption of endoplasmic calcium homeosta-

sis, as well as through the inhibition of autophagy [30]. Furthermore, another study suggests

that the overexpression of acid ceramidase decreases hepatic ceramide levels which is a major

contributor of metabolic disease, such as obesity and hepatic steatosis [31].

Enriched MTs in human and mouse based on deregulated genes. We want to identify

deregulation at network level based on an enrichment analysis with deregulated enzymes or

genes. A Minimal network (MiN) of a metabolic task (MT) contains metabolites, active reac-

tions and their associated enzymes in order to fulfill the MT. To identify deregulated MTs and

their associated MiNs (see Materials and Methods section for definitions) in steatosis and

NASH, we performed Minimal Network Enrichment Analysis (MiNEA) (see Materials and

Methods section) using mouse and human expression data. We identified deregulated genes

Table 2. The deregulated HFRs across all comparisons. Numbers in the table indicate the number of up- and downregulated HFRs. In mice, N represents the control

diet (N�AJ, N�PWD, or N�B6 strain fed the control diet). Under the DDC-supplemented diet, AJ mice tended towards NASH phenotypes and PWD mice tended

towards steatosis phenotypes. Thus, in mice, the symbols NS stand for AJ and S stand for the PWD, all with DDC-supplemented diet (NS�AJ with DDC-supplemented

diet; S�PWD DDC-supplemented diet).

M O U S E

N NS S

up down up down up down

OS 7 2

H N AI 9 3 5 N

U LD 2 3 1 2

M OS 5 3 1

A NS AI 3 5 6 10 NS

N LD 3 5 4 2

OS 1 5

S AI 1 6 S

LD 1 5

N NS S

https://doi.org/10.1371/journal.pcbi.1006760.t002
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Fig 3. Quantification of up- and downregulated HFRs. Symbols ‘h’ and ‘m’ in comparison’s labels represent human and mouse, respectively, and ‘up’ and ‘down’

indicate up- and downregulation, respectively. See the legend of the Table 3 for the association of mouse strains to the symbols N, NS, and S. “B6 up” and “B6 down”

represent the up- and downregulated HFRs for the B6 mouse strain comparing the DDC vs control diet. We quantified the percentage of up- and downregulated HFR

using a colored heat map.

https://doi.org/10.1371/journal.pcbi.1006760.g003
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(S1 Text; S1–S3 Tables), and for each set of deregulated genes, we estimated the p value based

on hypergeometic test.

Applying MiNEA to the NS vsN human case, we identified deregulated MiNs which corre-

sponded to the synthesis of H2O2, PA, and TAG (Table 3; S4 & S5 Tables). We computed the

percentage of significantly enriched MiNs from all generated alternatives of each MT and

scored the deregulated MiNs using the Alternative Minimal Network Frequency (AMiNF),

which represents the percent of MiNs with enrichment in deregulated genes. For the NS vsN

case in humans, H2O2 synthesis had the highest AMiNF (AMiNF = 0.143) compared to all

other deregulated MTs (Table 3), suggesting that the deregulation of H2O2 metabolism and

oxidative stress contributes to NASH. Indeed, a study has shown that a marked alteration of

H2O2 concentration can lead to different types of oxidative stress [27].

When we applied MiNEA to NS vs S in humans, we found the most deregulated MiNs to be

associated with CHOL synthesis (AMiNF = 0.7). Interestingly, TAG synthesis was also deregu-

lated in NS vsN, suggesting that lipid droplet formation can be perturbed in the NASH state

but through different components.

In mice, we did not observe marked deregulation in NS vsN and S vsN, but we observed

significant deregulation in NS vs S for the synthesis of ALA, GLU, ceramide (CRM), PS, and

phosphatidylethanolamine (PE) (Table 3), suggesting that these MTs are subject to different

perturbations between the NASH and steatosis states.

In humans, MiNEA identified deregulation in the CHOL and TAG synthesis network,

which are lipid droplet constituents. Similar deregulations were observed for the lipid droplet

constituents in mice through the PS and PE synthesis networks. Thus, because MiNEA was

applied with information on deregulated genes, we find that in both humans and mice, lipid

droplet formation is perturbed but through different lipid constituents. Interestingly, a study

[32] using flux-based analysis of metabolic network identified significantly increased activity

of the de novo lipogenesis in the patients with high amount of liver fat, indicating an alteration

in lipid droplet formation.

Enriched MTs in humans and mice based on up- and downregulated reactions. To

identify whether a specific up- or downregulated MiN was associated with the NAFLD pheno-

types, we performed MiNEA while enriching for up- and downregulated reactions separately

(S1 Text).

Table 3. The significantly deregulated MTs across all comparisons based on deregulated genes. The numbers in

the table indicate Alternative Minimal Network Frequency (AMiNF). The mouse strains associated with N, NS, and S

are described in the legend of Table 2. For the calculation of AMiNF p< 0.05 was considered statistically significant.

M O U S E

N NS S MT

N N

1 ALA

H 1 GLU

U 1 CRM

M NS 0.833 PS NS

A 0.714 PE

N 0.143 H2O2

0.016 TAG

0.004 PA

S 0.7 CHOL S

N NS S

https://doi.org/10.1371/journal.pcbi.1006760.t003

Deregulated metabolic tasks in nonalcoholic fatty liver disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006760 April 19, 2019 10 / 22

https://doi.org/10.1371/journal.pcbi.1006760.t003
https://doi.org/10.1371/journal.pcbi.1006760


In humans, we identified upregulated MiNs for the synthesis of PS and PE in N vs S

(Table 4; S6 & S7 Tables). For the NS vsN and NS vs S cases, we identified downregulated

MiNs associated with the synthesis of CHOL_ES, CHOL, ALA, and GLU (Table 5; S8 & S9

Tables), but none were found to be upregulated. This implies that in NASH the synthesis of

cholesterol and the glucogenic amino acids alanine and glutamine are downregulated. Interest-

ingly, in the NS vsN case, only 3% of the cholesterol synthesis alternatives were significantly

downregulated (Table 5). Although it is a relatively small frequency, it can provide important

leads, such as deregulation in metabolic tasks and hypotheses that would have been missed by

the commonly used pathway enrichment methods, such as [3, 5]. In general, these studies sug-

gested that MiNEA can identify deregulated alternative MiNs under different conditions. For

example, previous pathway analysis methods [3, 5] lack an enumeration of alternatives that

would have failed to identify cholesterol synthesis as downregulated in NS vsN (Table 5).

In mice, the MiNs associated with the synthesis of ALA, CRM, PE, PS, CHOL_ES, and

GLU were identified as downregulated in NS vsN (Table 5). Interestingly, in S vsN, only the

GLU synthesis network was upregulated (Table 4). For the NS vs S case, we found major dereg-

ulations. Specifically, we found five upregulated networks (PA, TAG, DAG, PAIL, and PS) and

five downregulated (ALA, GLU, CRM, PS, and PE) synthesis networks. Within the alternative

MiNs that are used for the synthesis of PS, we found some networks that were upregulated and

some that were downregulated. Since there was a higher frequency of downregulated MiNs

(AMiNF = 0.5) compared to upregulated ones (AMiNF = 0.167), we could hypothesize that

the downregulation of PS synthesis is an important molecular mechanism specific to NASH.

Here, pathways enrichment methods [3, 5] lack an enumeration of alternatives that would

have failed to give a higher confidence to downregulation of PS synthesis.

The cholesterol, glutamine, and alanine syntheses were found to be similarly deregulated in

humans and mice for the NS vsN case. In contrast, the PS synthesis was differently deregulated

between the two species (Tables 4 and 5). Despite this opposite response in the regulation of

the PS synthesis between humans and mice, it appears that the level of PS is perturbed in

NASH. Overall, this observation suggests that different regulations in gene expression can

translate to different effects on the production of lipid droplet synthesis. Interestingly, Maldo-

nado and colleagues [33] explored the role of physiological adaptation to lipid overload and

found that increased fatty acid levels mimicked lipid loading in vitro and drove steatotic

response critically. Additionally, a further study suggests high levels of free fatty acids and

other lipid metabolites activate mitochondrial dysfunction and stress mechanisms associated

to endoplasmic reticulum [34].

Table 4. The significantly deregulated MTs across all comparisons based on upregulated reactions. For a detailed

understanding, see the legend of Table 2. Numbers of the table represent AMiNF and for the calculation of AMiNF p
value< 0.005 was used.

M O U S E

N NS S MT

H N 0.029 GLU N

U 1 PA

M 1 TAG

A NS 1 DAG NS

N 0.979 PAIL

0.167 PS

S 0.429 PS S

0.167 PE

N NS S

https://doi.org/10.1371/journal.pcbi.1006760.t004
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Integration of metabolite concentration data into a thermodynamically

feasible metabolic model

The integration of metabolomics can change the size and structure of the MiNs for MTs by

eliminating thermodynamically infeasible reaction directionalities. In mice, there are available

metabolic profiles for the N, NS, and B6 cases [1]. We integrated these profiles into the

iMM1415 [12, 14] and found that, in this case, there are not marked changes in the MiNs and

the result in the HFRs, which means we did not find a marked impact on the synthesis net-

works of NAFLD phenotypes. A further sensitivity analysis can guide future metabolomics

studies to target metabolites that have a marked thermodynamic impact on a metabolic net-

work [35]. Thus, the information content of such metabolite sets can be influential and more

relevant to the phenotypes under study.

Other applications and modification of MiNEA

We identified all possible minimal networks of given MTs separately and enforced at least 80%

of the maximum synthesis rate. However, the "normal physiology", such as activation of nor-

mal liver functions can employ a weighted combination of the networks derived by the alterna-

tives in the set of MTs that are characteristic of the "normal physiology". The exact "weighted

combination" of MTs is rather uncertain for all MTs simultaneously, as it could create more

artifacts. Therefore, we suggest generating minimal networks of given MTs separately. For a

given physiology if the weights of MTs are known, then MiNEA can be modified and extended

as a path forward for capturing the physiology.

Gene protein reaction (GPR) rules should be able to resolve the regulation of reaction’s

rates, but only if the GPR is well curated and validated with experimental data during the

reconstruction process. Based on GPR rules, if a reaction is associated with a mixture of upre-

gulated and downregulated genes, we did not consider the reaction as regulated. Here, we

chose a rather conservative threshold to resolve these uncertainties, and provide an upper

Table 5. The significantly deregulated MTs across all comparisons based on downregulated reactions. For detail understanding see the legend of Table 4. For the

AMiNF calculation p< 0.005 was considered statistically significant.

M O U S E

N NS S MT

1 ALA

1 CRM

N 0.857 PE N

H 0.833 PS

U 0.62 CHOL_ES

M 0.588 GLU

A 0.034 CHOL_ES

N 1 ALA

NS 1 GLU NS

1 CRM

0.5 PS

0.429 PE

1 CHOL_ES

S 1 CHOL S

0.128 ALA

0.004 GLU

N NS S

https://doi.org/10.1371/journal.pcbi.1006760.t005
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bound with reduced noise due to uncertainty. However, the MiNEA is flexible and can include

such improved GPR associations.

We should acknowledge that gene regulation based on mRNA levels is not sufficient to

determine reaction rates (fluxes) because post-translational modifications, protein translation

alone, and kinetics of the enzymes are really important in determining the mapping between

mRNA levels and reaction rates. Depending on the availability of proteomics (and phospho-

proteomics) data, and even kinetics (such V_max), they can be integrated within the MiNEA

method.

We applied MiNEA for the study of deregulated metabolic processes rather signaling and

regulatory processes because metabolism is better characterized, as is shown with the increased

availability of GEMS for many organisms [36]. Despite the challenges in reconstructing con-

straint-based signaling networks, recently such reconstructions have started to become avail-

able. Signaling networks for the toll-like receptor (TLR) and epidermal growth factor receptor

(EGFR) are now available, and MiNEA can be extended to include these networks [37, 38],

meaning that MiNEA could easily be applied to the study of deregulation in signaling

networks.

Conclusions. In contrast to graph-based methods (GBM) and pathway enrichment

analysis (PEA), the methodology introduced here (MiNEA) expands the notion of pathway

into a set of mass balanced subnetworks that can be used to understand the carbon, energy,

and redox flows from precursor metabolites to target metabolites and complex metabolic

tasks. One of the main advantages of MiNEA compared to PEA is that MiNEA attempts an

enumeration of alternative minimal networks for each metabolic task (MT), which helps us

understand and study the MT flexibility. Although a large number of alternative enumera-

tions for a complex metabolic network can be time-consuming, once the enumeration is

completed, MiNEA applies a statistical analysis that is fast and extracts additional informa-

tion, such as the deregulation of MTs or the deregulation in reaction hubs. As an example of

the utility of MiNEA, we identified deregulation in key metabolic network of the ceramide

and hydrogen peroxide synthesis for NASH in both humans and mice. We also identified

similar deregulation in NASH for the cholesterol synthesis networks in humans and mice,

and we found opposite deregulation for the phosphatidylserine synthesis network between

humans and mice. It has been reported that significant differences between mouse and

human metabolism exist mainly in genes for cytochrome P450 based metabolic reactions,

which are key reactions in lipid and cholesterol metabolism [14]. Therefore, in order to gen-

eralize these results to human the next step is to account for the differences in cholesterol

metabolism. MiNEA is highly applicable for the study of context- or condition-specific

metabolism because using this one can identify synthesis networks for any given target

metabolite and further can employ condition-specific transcriptomics, proteomics, and

metabolomics data.

Materials and methods

Microarray gene expression analysis of human liver samples

The microarray gene expression data pertaining to the three diagnostic groups (normal [N],

Steatosis [S], and NASH [NS]) were collected from the ArrayExpress public repository for

microarray data under the accession number E-MEXP-3291 [15]. We performed an analysis

of the differentially expressed genes (DEGS) and a pairwise comparison between diagnostic

groups. To control the false discovery rate at level of 0.05, multiple hypothesis testing was used

[39].
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Mice phenotypes after feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine

(DDC)-supplemented diet

NASH phenotypes can be reproduced in mouse models by treatment of chronic intoxication

of with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-supplemented diet [1]. Three

genetically different mouse strains AJ, B6, and PWD were fed with a DDC-supplemented diet.

Under DDC-supplemented diet, the steatosis and NASH phenotypes were the most obvious in

the PWD and AJ strains, respectively, while for the B6 strain, low levels of the steatosis and

NASH phenotypes were observed [1]. The B6 mouse strain showed less induction of the

NASH phenotype than the AJ strain [1].

Association of mouse strains with human diagnoses groups

The normal (N) feeding group is associated with mice fed the control diet. All mice strains, AJ,

B6 and PWD, were fed this diet and are labeled as N�AJ, N�PWD or N�B6 to indicate the

control diet and mouse strain. After feeding the DDC-supplemented diet, AJ and PWD

showed high NASH phenotypes and high steatosis phenotypes, respectively [1]. Thus, under

the DDC-supplemented diet, the symbol for steatosis (S) is associated with the PWD mouse

strain and the symbol for NASH (NS) is associated the AJ mouse strain (with DDC-supple-

mented diet: NS�AJ, S�PWD). Thus, NS vsN represents the AJ mouse strain treated with the

DDC diet vs the AJ mouse strain fed the control diet, S vsN represents the PWD mouse strain

treated with the DDC diet vs the PWD mouse strain fed the control diet, and NS vs S repre-

sents the AJ mouse strain treated with the DDC diet vs the PWD mouse strain fed the DDC

diet.

Metabolite concentration and RNA-seq gene expression data from mouse

liver samples

Metabolite concentration data and RNA-seq gene expression data from mouse liver samples of

the three mouse strains (AJ, B6, and PWD) measured under the control and DDC-supple-

mented diet conditions were collected from the work of Pandey et al. [1]. The R-package

“edgeR” [40] was used to identify the differentially expressed genes (DEGs) using three biolog-

ical replicates of each mouse strain for both the control and the DDC-treated conditions.

Strain-wise identification of the DEGs between the DDC-treated and control states was per-

formed separately for each mouse strain. We used the Benjamini-Hochberg procedure imple-

mented in edgeR to control the false discovery rate to a level of 0.05 [39].

Formulation of metabolic tasks (MTs) based on steatosis and

steatohepatitis (NASH) phenotypes

Steatosis can occur due to the accumulation of lipid droplets in the liver, which can subse-

quently lead to NASH upon liver inflammation [41]. Lipid droplets are composed of many

lipid metabolites [42, 43], which are summarized in Table 6. Reactive oxygen species (ROS),

such as the superoxide anion, can also damage hepatic membranes and play an important role

in the development of NASH [44]. To study these various phenotypes and their role in the var-

ious forms of liver disease, the metabolites associated with their various phenotypes were

examined. Table 6 summarizes the key metabolites associated with the major liver disease phe-

notypes: lipid droplets, liver inflammation, apoptosis, and oxidative stress. We investigate the

synthesis networks of these metabolites using MiNEA, where we called the synthesis of a

metabolite as a metabolic task (MT).
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Minimal network enrichment analysis (MiNEA) algorithm

The cell can use various different pathways depending on the current state and conditions of

the environment to fulfill its immediate metabolic needs. In order for MiNEA to identify

deregulated alternative routes for a given MT between two conditions (Fig 4), the inputs

required are a metabolic model, a list of MTs, and gene or protein expression data. In this

work, we used a mouse GEM (iMM1415) reconstructed by Sigurdsson and colleagues [14], a

list of MTs which are the synthesis of the metabolites shown in Table 6, and gene expression

data of mouse and human liver samples [1, 15].

The MiNEA calculations begin by applying thermodynamic constraints to the model as

described previously [12] to eliminate thermodynamically infeasible reactions, meaning that

reactions from the metabolic network can carry fluxes only if thermodynamics allows [13] (Fig

4; step 1). Then, it enumerates all the thermodynamically feasible minimal-size networks

(MiNs) that are active for the given list of provided MTs (Fig 4; step 2), and all of these MiNs

are composed of reactions that carry non-zero flux. For this step, the following mixed-integer

linear programming (MILP) problem is applied with the objective of minimizing the number

of reactions that carry flux or maximizing the number of reactions that cannot carry flux,

while enforcing that the network should be able to synthesize the metabolites listed in Table 1:

Maximize
XRGEM

i¼1

zrxn;i

S:v ¼ 0

0 � vi � vmax;i � Zrxn;i

vMT � c � VMT;max

RGEM is the number of reactions in a GEM and zrxn,i is a binary variable associated with

reaction i. Reversible reactions were split into two forward reactions. VMT,max is the maximum

yield to produce a metabolite associated with a MT. The parameter c is generates MiNs that

allow for flexibility on the yield from the MT. We chose c = 0.8 to allow for a yield of at least

80% of the maximum yield for the associated MT.

All alternative MiNs that are the minimum size (msize) for the synthesis of the metabolites

in Table 1 are enumerated as described by Figueiredo and colleagues [48] (Fig 4; step 3). One

can enumerate many alternative networks larger than msize, such as msize+1 and msize+2.

Each MiN is a subnetwork comprising a set of reactions, metabolites, and reaction-associated

genes through gene-protein-reaction (GPR) association. In step 4, the deregulated genes and

proteins that differ between the two conditions under study are identified (Fig 4). Finally, a

hypergeometric test is performed on the sets of deregulated genes or deregulated reactions to

identify the deregulated MiNs (Fig 4; Step 5).
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Table 6. Metabolites associated with NAFLD phenotypes. This provides a summary of key metabolites associated with the four phenotypes and their corresponding ref-

erences. Metabolites are taken from the mouse metabolic model of Sigurdsson and colleagues [14]. Production of each of these metabolites represents a metabolic task

(MT).

Metabolites Phenotype Reference

Diacylglycerol, phosphatidylethanolamine, cholesteryl esters, triacylglycerol, hexadecanoate, cholesterol, phosphatidic acid,

phosphatidylinositol, phosphatidylserine

Lipid droplets [42, 43,

45]

Ceramide Inflammation [30, 45,

46]

Alanine, glutamine, ceramide Apoptosis [47]

Superoxide anion, hydrogen peroxide Oxidative

stress

[44]

https://doi.org/10.1371/journal.pcbi.1006760.t006

Fig 4. Minimal network enrichment analysis (MiNEA) overview. For each metabolic task (MT), MiNEA computationally enumerates MiNs that comprise active

reactions for the MT. The inputs required for the MiNEA analysis are a genome-scale metabolic network (GEM), a given list of metabolic tasks (MTs), and

transcriptomics data. Using this, alternative minimal networks (MiNs) are enumerated for MTs using a GEM. (steps 1–3). Transcriptomics data are used to identify

differentially regulated genes between two conditions (step 4). To identify deregulated MTs and their associated MiNs, a hypergeometric test is performed with a set of

deregulated genes (step 5).

https://doi.org/10.1371/journal.pcbi.1006760.g004
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Minimal network significance based on gene set and reaction set (Step 5)

The significance of the MiN based on the deregulated genes was calculated using the hypergeo-

metric probability density function (P),

P k;N;K; nð Þ ¼

K

k

 !
N � K

n � k

 !

N

n

 ! ; ð1Þ

where k and K are the numbers of deregulated genes and the number of total genes in a given

MiN, respectively, and n and N are the total number of deregulated genes and the total number

of genes of a metabolic network, respectively. In this context, the term “deregulated genes” is

used for both up- or downregulated genes.

A reaction can have three states: upregulated, downregulated, or unregulated. The regula-

tion of a reaction was determined based on its associated differentially expressed genes.

According to this metric, a reaction was identified as upregulated or downregulated if the cor-

responding genes are only upregulated or only downregulated, respectively. A reaction that is

associated with a mixture of up- and downregulated genes is not characterized as regulated

due to the inconsistency of gene expression. Up- and downregulated MiNs, which could con-

tain various combination of up- or downregulated reactions, were identified in Step 4 of

MiNEA (Fig 1) based on the total number of up- or downregulated reactions, respectively. As

expected, up- and downregulated MiNs comprise markedly high numbers of up- and downre-

gulated reactions, respectively.

The significance of a MiN based on upregulated or downregulated reactions was calculated

using multivariate Fisher’s hypergeometric distribution. This method has been previously

used for the selection of tissue-specific elementary modes using gene expression data [6]. To

identify significantly upregulated MiNs in a given set of MiNs, we selected those MiNs that

contained an elevated number of upregulated reactions and as few as possible downregulated

ones, while for the identification of significantly downregulated MiNs, we selected MiNs with

an elevated number of downregulated reactions and as few as possible upregulated ones.

Assume R and T are the total numbers of reactions in a GEM and a MiN, respectively,

which can be decomposed as follows:

R ¼ RupþRdownþRno

T ¼ TupþTdownþTno

ð2Þ

Rup, Rdown, and Rno represent the number of upregulated, downregulated, and unregulated

reactions in a GEM, respectively. In the context of a MiN, T is the total number of reactions,

and Tup, Tdown, and Tno are the number of upregulated, downregulated, and unregulated reac-

tions, respectively.

To consider a MiN as upregulated, we need to ensure that the pair (Tup, Tdown) in the MiN

of T reactions cannot arise by chance in the context of the whole network. To obtain a better

upregulation by chance, the p value was computed using Eq (3). Note that an equal or better

outcome than the pair (Tup, Tdown) satisfies two conditions: (i) the number of downregulated

reactions is smaller than or equal to Tdown, and (ii) the number of upregulated reactions is
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greater than or equal to Tup, whereas the number of reactions in the MiN remains unchanged.

pvalue ¼
XminðRup;TÞ

i¼Tup

XSdown

j¼0

Rup

i

� �
Rdown

j

 !
Rno

S � i � j

 !

R
T

� �

iþ j � T

ð3Þ

We can compute the p value for downregulated reactions the same way as for the upregu-

lated reaction simply by changing up with down and down with up in the above equation.

Deregulated percentage (DRP)

We calculated the deregulated percentage (DRP) for each MiN, which indicates the percentage

of up- or downregulated genes in a MiN. For example, if a given MiN comprises 20 genes, and

5 genes of the MiN are deregulated, the then DRP is equal to 0.4. Since the active reactions in a

MiN were classified as either up- or downregulated, we calculated both upregulated percentage

(UPR) and downregulated percentage (DnRP) for each MiN.

Alternative minimal network frequency (AMiNF)

To extend the degree of confidence of the results from MiNEA, we introduced the alternative

minimal network frequency (AMiNF) metric that determines the significantly deregulated

percentage of MiNs for a given MT. If all the alternative MiNs for a MT are significantly dereg-

ulated, AMiNF takes the value 1. The AMiNF is 0 when none of the MiNs for a MT are signifi-

cantly deregulated.

MiNEA implementation

MiNEA was implemented using Matlab r2016a (The Mathworks, Natick, MA, USA), and

MILP problems were solved using CPLEX solver (ILOG, Sunnyvale, CA, USA). The MILP

gaps for all problems were converged to less than 0.05% in less than 2,400 s. We also plan to

make the MiNEA algorithm available as a tool for distribution to the community.
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