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From multi‑omics integration 
towards novel genomic interaction 
networks to identify key cancer cell 
line characteristics
T. J. M. Kuijpers*, J. C. S. Kleinjans & D. G. J. Jennen

Cancer is a complex disease where cancer cells express epigenetic and transcriptomic mechanisms 
to promote tumor initiation, progression, and survival. To extract relevant features from the 2019 
Cancer Cell Line Encyclopedia (CCLE), a multi‑layer nonnegative matrix factorization approach is 
used. We used relevant feature genes and DNA promoter regions to construct genomic interaction 
network to study gene–gene and gene—DNA promoter methylation relationships. Here, we identified 
a set of gene transcripts and methylated DNA promoter regions for different clusters, including one 
homogeneous lymphoid neoplasms cluster. In this cluster, we found different methylated transcription 
factors that affect transcriptional activation of EGFR and downstream interactions. Furthermore, the 
hippo‑signaling pathway might not function properly because of DNA hypermethylation and low gene 
expression of both LATS2 and YAP1. Finally, we could identify a potential dysregulation of the CD28‑
CD86‑CTLA4 axis. Characterizing the interaction of the epigenome and the transcriptome is vital for 
our understanding of cancer cell line behavior, not only for deepening insights into cancer‑related 
processes but also for future disease treatment and drug development. Here we have identified 
potential candidates that characterize cancer cell lines, which give insight into the development and 
progression of cancers.

Different hallmarks of cancer have been identified that contribute to the development and propagation of  tumors1. 
These hallmarks include sustaining proliferative signaling, evading growth suppressors, resisting cell death, and 
activating invasion and metastasis. Evading growth suppressors is achieved by the inhibition of the expression 
of certain genes, called tumor suppressor  genes1. Tumor suppressor genes regulate important processes such as 
preventing unrestrained cellular growth, DNA repair promotion, and cell cycle checkpoint  activation2. Besides 
tumor suppressor genes, oncogenes play a crucial role in regulating cellular growth, division, and  survival2. 
Tumorigenesis is likely to be driven by events that result in the gain of an oncogene or the loss of the suppres-
sor gene, and tumor maintenance often depends on continued oncogene  activity3. However, the order in which 
both events happen differ per tumor type. Most hematopoietic cancers and soft-tissue sarcomas are initiated by 
oncogene activation, followed by alterations in tumor-suppressor genes and other  oncogenes4. Whereas some 
carcinomas are initiated by first, a loss of function of a tumor-suppressor gene, and second, alterations in onco-
genes and additional tumor-suppressor  genes4. Although mutations in tumor suppressor genes are important, 
it is not the only mechanism responsible for alternated gene  expression5. Genomic instability plays a major part 
in the activation of oncogenes and subsequently, the inhibition of tumor suppressor genes, thus suggesting a 
role for epigenomics. For example, inactivation of BRCA1 in sporadic breast cancer is not due to a mutation but 
promoter  hypermethylation6.

Almost all cancer cells show genomic  instability7. In healthy cells, chromatin and associated epigenetic mecha-
nisms ensure stable gene expression and cellular states. Cancer cells show important alterations in these epige-
netic mechanisms, which represent one of the fundamental characteristics of nearly all human  cancers8. A large 
number of cancer cells show an increase in methylation of normally unmethylated CpG islands and promoter 
regions of tumor suppressors and DNA repair  genes9. It has been shown that the increase in DNA methylation 
increases genomic instability by causing genetic mutations in the DNA  sequence10.

DNA methylation alterations are also associated with drug treatment sensitivity, for example, hypermeth-
ylation of DAPK in colon and breast  cancer11. These findings suggest that aberrations DNA methylation might 

OPEN

Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 
P.O. Box 616, 6200 MD Maastricht, the Netherlands. *email: tim.kuijpers@maastrichtuniversity.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90047-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10542  | https://doi.org/10.1038/s41598-021-90047-3

www.nature.com/scientificreports/

affect certain pathways that prevent cancer cells from advancing towards apoptosis or other cell death-related 
mechanisms, as well as towards the development of drug resistance.

Although we know that epigenetic and transcriptional mechanisms play an important role in tumor develop-
ment, there are still gaps in our current knowledge. DNA hypermethylation is specifically and locally augmented 
at CpG islands of tumor suppressor genes but its role in tumorigenesis is  controversial12. DNA hypermethylation 
of tumor suppressor genes or genes involved in cell cycle processes are more frequent than their mutation in 
cancer cells. Consequently, we observe hundreds of methylated DNA regions in cancer cell lines, whereas we 
only find a few mutated genes that drive tumor onset. Different genes and DNA methylation regions play a role 
in different types of cancers, and therefore it is even harder to get a clear view of the interplay between DNA 
methylation and gene expression in carcinogenesis. Identifying key characteristic profiles of DNA methylated 
regions and alterations in gene expression in cancer cell lines is therefore of major relevance for understanding 
epigenome/transcriptome interactions in human tumors.

In the present study, to better understand the interplay between the epigenome and the transcriptome, we 
propose a systems biology framework that allows us to i) classify samples of cancer cell lines based on their 
epigenetic and transcriptomic signature, and ii) extract relevant features from these clusters to construct a 
cross-omics interaction network.

Therefore, we apply a multi-layer Nonnegative Matrix Factorization (multi-layer NMF) to obtain a set of 
transcriptome/epigenome clusters with their corresponding biological features. Nonnegative matrix factoriza-
tion has already been successfully applied to distinguish between different types of cancers by extracting relevant 
genomic features and has been applied to investigate the relationship between omics  data13. Expanding the 
workflow with the construction of the genomic interaction networks allows us, to not only study the effect of 
DNA methylation on one gene but could be used to study how one alternation in that specific gene can influence 
other genes. This could potentially give new insight into the interplay between epigenetic and transcriptomic 
alterations in cancer cells.

Results
To estimate the number of clusters in the data set, multiple simulations with different cluster sizes k have been 
performed to get the silhouette score for every proposed multi-NMF solution. Here, we picked values for k in 
the range of 6 to 11 due to the fact that earlier research suggested at least 6  clusters14. Our method predicts the 
most optimal solution for 8 clusters in our data (Fig. 1A). The solution for k = 8 is above the threshold of 0.7 for 
a cluster to be regarded stable, but more important, visual inspection of the consensus map of shows multiple 
stable clusters, as well as a few clusters that contain some noisy samples (Fig. 1C). We observe some clusters that 
express a strong signal and appear stable across all simulations, while some samples tend to occasionally shift 
between clusters.

For each of these clusters, we have identified the number of samples (Fig. 1B), as well as the cancer types of 
each sample in that particular cluster (Fig. 2A). From Fig. 2A, it becomes clear that we have been able to identify 
genomic profiles, by the combination of DNA promotor site methylation and gene expression, which results 
in two homogenous and six heterogeneous clusters. Three clusters (clusters 3, 5, and 8) show a high diversity 
of cancer types, including carcinomas, sarcomas, and blastomas. However, there are two clusters (cluster 1 and 
cluster 7) that are very homogenous and consist of carcinomas (cluster 1) and lymphoid neoplasms (cluster 7). 
These two clusters can be of interest for further investigation, to analyze whether these cancer cell lines consist 
of a generic DNA promoter methylation and gene expression profile.

For each of the clusters, we extracted unique feature genes and DNA promoter regions that explain the 
observed clustering (Fig. 2B). Between the clusters, there exists a different weight of the importance of DNA 
promoter region features versus gene features driving the classification. In clusters 3, 4 and 6 there are no DNA 
promoter regions found that explained the classification and the cluster is only defined by a set of transcripts. 
On the contrary, the formation of cluster 7 can be explained by evaluating the combination of the different DNA 
promoter regions and genes. Here, we have applied two scoring functions: a method by Kim et al.15 as intro-
duced in the method section and a more stringent cutoff for features that score > 0.95 for the transcriptome layer 
and > 0.80 for epigenome layer regions (threshold determined based on the distribution of the scoring functions).

To further investigate the observed heterogeneity within particular clusters, we have looked into various fac-
tors that may explain the clustering, including tissue type, TP53 mutation, Race, and Sex (Supplementary File 
1). Here, it can be seen that there is a different distribution of tissues over the clusters. Cluster 7 again shows a 
homogenous distribution of only lymphoid tissue (lymphoid neoplasms), whereas other tissues are distributed 
across multiple clusters. This may indicate that for those tissue types different genomic profiles are driving the 
clustering.

To further investigate why cancer cell lines are separated into different clusters, we have analyzed the features 
for cluster 5 and 8. Both clusters are selected because of the overlap of the tissue types in cluster 5 in cluster 8 
(Fig. 3). This enabled the identification of genomic features that are different between the tissue types (Fig. 4).

A major difference between clusters 5 and 8 is the DNA promoter region methylation of ZEB1 and VAV3 
(Fig. 4B). A strong difference in methylation patterns across all cell lines is observed between the clusters. Within 
the transcriptome, a different expression pattern of a set of genes is visible between clusters 5 and 8. For some 
genes, there is no expression in cluster 5 whereas these are expressed in cluster 8 and vice versa (Fig. 4A, median 
 Log2(TPM + 1) value). This includes FN1, CALD1, THBS1, TAGLN, AXL, HEXB, REG4, and LGALS4.

Cluster 7 appears to contain a large number of features from both the transcriptome and epigenome plat-
forms. Interestingly, this may point towards a genomic profile that is overlapping between cancer cell lines even 
though they are histologically different. Therefore, we select this cluster for further investigating the underlying 
genomic profile.
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The features of cluster 7 are mapped against the PantherDB to extract the gene ontology biological processes. 
Several expressed genes are related to immune response, including the adaptive immune response (p-value 
1.28E−09), innate immune response (p-value 2.66E−04) complement activation (p-value 1.44E−02), and immu-
noglobulin-mediated response (p-value 3.76E−03). For each of the DNA promoter regions, the corresponding 
gene ID is mapped to identify the biological processes. Here, we found signaling processes such as regulation of 
signaling (p-value 8.97E−09), negative regulation of signaling (p-value 2.26E−09), regulation of signal transduc-
tion (p-value 5.16E−09), regulation of cell communication (p-value 6.97E−08) and Hippo signaling pathway 
(p-value 1.02E−02).

To identify which genes are specific for blood and lymphoid tissue, we have mapped feature genes to the 
Human Protein Atlas (HPA)  Database16, a database that can be used to categorize genes based on expression 
level and tissue distribution. We have identified 19 enriched genes for blood and lymphoid tissue, as well as genes 
disease- or cancer-associated genes. For each DNA promoter region, we mapped the associated gene against 
HPA. Although there are no known lymphoid tissue-enriched genes in the DNA promoter region feature list, 
there are some known cancer-related genes (see Table 1).

Finally, we used the DNA promoter regions and expressed genes to construct genomic interactions, to study 
interactions between and within the transcriptome and epigenome. Here, we focused on the genomic interaction 
network, because this cluster gave a strong homogeneous signal for lymphoid neoplasms. From the total genomic 
interaction network (Supplementary Fig. S1), we have identified potential interesting network neighborhoods 
based on genes that have a high degree, genes that are transcription factors or genes mentioned in Table 1. Fig-
ure 5A shows the subnetwork of genes that are located around the epidermal growth factor (EGFR), a gene with 
a high inner and outer degree. EGFR can be transcriptionally activated by two feature methylated genes KLF5 
and CREBPD. Furthermore, EGFR shares protein–protein interactions with the oncogene FGR and PTK2 and 
therefore this subnetwork can be important to study in more detail.

The second cluster of genes of interest is located in the neighborhood of LATS2 and YAP1 (Fig. 5B). These 
two genes play a role in the Hippo signaling pathway, a pathway believed to play a pivotal role in  cancer17. Finally, 
we have identified a third subnetwork centralized around the lymphoid tissue enriched genes CD28 and CD86, 
which form the CD28-CD86 pathway (Fig. 5C). The two subnetworks are of interest because of their role in the 
signaling pathways.
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Figure 1.  (A) Silhouette score for cluster sizes 6 to 11. (B) Number of samples in each cluster. (C) Consensus 
plot for cluster size 8.
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For each of the genes in the three subnetworks, we compared the gene expression and methylation values 
for the different feature genes and DNA promoter regions. Here we can see that hypermethylation of the DNA 
promoter region (Supplementary Fig. S2, plot A–H) corresponds with low gene expression for EGFR, CEBPD, 
KLF5, YAP1, LATS2, NFIB, LRCC49, and ARHCAP29 (Supplementary Fig. S3: plots A-H).

Discussion
Cancer is one of the most complex diseases and the same types of tumors can exhibit different genomic traits. 
The challenge here is to discern whether similar aberrations in different histologies (cross-cancer similarity) have 
a comparable biological significance. There are five histology classes of cancer: carcinoma, sarcoma, myeloma, 
leukemia, and lymphoma. Each class has different subclasses according to the origin of the cancer cell. However, 
there is a shift in the importance of histology as a marker for cancer types. More and more cancers are found to 
share a set of genetic features, even if they do not belong to the same subclass. It is more important to identify key 
genomic similarities shared by subgroups of cancer since they present an opportunity to design tumor treatment 
strategies among tumors regardless of the tissue of  origin18. Our genomic interaction networks as reported in 
this study for lymphoid neoplasms could help to identify and further investigate the key genomic characteristics.
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Upon having integrated epigenomics and transcriptomics data across a wide range of cancer cell lines, our 
results demonstrate clusters that contain a mixture of different cancer cell line samples, therefore also a mixture 
of cancer types. When we look into the genomic features of a given cluster, a set of transcripts and DNA promoter 
regions is identified that may explain the separation of the same cancer tissues. In cluster 5, which contains the 
same type of cancer tissues as cluster 8, a different methylation profile is observed in the DNA promoter regions 
of some key genes. This is of great interest since this might point towards the fact that the same cancer tissues 
have different epigenetic and transcriptomic alterations.

There are different transcripts and methylated DNA promoter regions that explain the clustering of the differ-
ent cancer tissues in cluster 5 or 8. One major difference is the role of certain DNA promoter regions in cluster 
5, whereas there is no methylation effect predicted to play a role in cluster 8 (Results in Fig. 4B). If we take into 
account only the DNA promoter regions with a high probability of explaining cluster 5, it is appears that ZEB1, 
ZEB1-AS, and VAV3 are the most important genes that are hypermethylated. Highly expressed ZEB1 is associated 
with malignancy of various cancers, and it plays an important role in cancer  transformation19. VAV3 is involved in 
cell signaling and  tumorigenesis20 and is a prognostic factor of poor prognosis in breast cancer  patients21 as well 
as an important driver of prostate  cancer22. The hypermethylation of both ZEB1 and VAV3 might indicate that 
those genes do not play a role in the development and progression of the different cancer cell lines in cluster 5.

Besides the different methylation features, several gene transcripts explain the differences between clusters 
5 and 8. In cluster 5, a member of the regenerating gene (REG) family members, REG4, is predicted to be dis-
criminative transcriptomic features. The REG family members are small secreted lectin-like proteins involved in 
hepatic, pancreatic, gastric, and intestinal cell proliferation and  differentiation23. Aberrant expression of REG4 is 
associated with tumor growth, survival, adhesion but also resistance to  apoptosis23. Elevated expression of FN1 
cluster 8 is of interest, because FN1 is an important gene involved in the development of various cancer types 
driving  proliferation24,25. AXL expression is associated with various processes in cancer, including proliferation, 
survival, metastasis and resistance to cancer  therapy26. Due to the role of AXL it has been proposed as target for 
cancer  therapy26,27. Due to absent expression of AXL in cluster 5, it might not be an effective strategy for those 
cancer cell lines. LGALS4 is a protein-coding gene for the protein galectin 4. Galectins are associated with vari-
ous diseases including cancer and regulate tumor cell adhesion and  migration28. Moreover, galectin 4 serves as 
a strong prediction for metastatic potential of  adenocarcinomas29, a type of carcinoma.

Although heterogeneity seems to play an important role in the clustering of the cancer cell lines, there is 
one cluster that shows homogeneity towards a class of cancers. Cluster 7 shows a strong intensity for lymphoid 
neoplasms. This cluster could give us more insight into the underlying epigenetic and transcriptomic changes 
in lymphoid neoplasms.

The samples in cluster 7 are from a group of disorders that originate from the neoplastic transformation 
of lymphocytes. Normally, lymphoid stem cells develop into lymphoid blasts that differentiate towards B or 
T lymphocytes. Recent research has shown that chronic lymphocytic leukemia and multiple myeloma have a 
shared biological  basis30. Furthermore, follicular lymphomas and diffuse large B cell lymphomas show shared 
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Figure 3.  Distribution of the cancer tissues in cluster 5 and cluster 8. All cancer tissues in cluster 5 are also 
present in cluster 8 but cluster 8 also contains some cancer tissues that are not a member of cluster 5.
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Table 1.  List of genes and DNA promoter region-associated genes that are either tissue-specific, cancer-related 
or disease-related.

Blood and lymphoid tissue enriched Cancer or disease-related Cancer or disease-related genes

SASH3,CD48 CREB1,FGR ACVR2A,SPRY2

FGR,SEPT1 TNFSF13B,CD79A SMAD1,WDFY3

CD86,IGLL5 CD79A,CD19 ITGA2,CRY1

LY9,TNFSF13B CCR7,CTLA4 PTPRL,LRIG3

CD79A,CD19 TNFSF13,FCRL3 PTK2,BCL2L2

LAX1,VPREB1 NFIB,MYO1E

TNFSF13,IGJ NRP1,TGIF1

CD28,CCR7

FCRL3,IGLL1

FCRL1
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gene expression patterns associated with immune escape  mechanisms31. These current insights show that B and 
T cell lymphomas potentially share genomic alterations. Lymphoma and leukemia originate from white blood 
cells, thus potentially share the same genomic alterations leading to the development of normal white blood cells 
towards cancer cells. Therefore it is of interest to deeper investigate this genomic interaction network.

It is of no surprise that pathways analysis of the nodes in the genomic interaction network shows several 
genes involved in immune response regulation. It is known that lymphoid neoplasms is a disease associated with 
immunological ignorance and immune  evasion32.

In the genomic interaction network for cluster 7, various nodes can be identified that are of potential interest. 
Here we have made a selection based on methylation status, gene expression, and the role of a specific gene in 
the established genomic interaction network (Supplementary Fig. S1). Methylated promotor regions of NFIB, 
ARHGAP29, and LRRC49 are predicted to be a feature of cluster 7 meaning that there are drivers of cluster forma-
tion. For most samples in cluster 7, the promoter region of NFIB, ARGHAP29, and LRRC49 is hypermethylated. 
In these samples, the genes NFIB and LRRC49 both have low expression values, whereas ARHGAP29 is not 
expressed at all. ARHGAP29 is one of the protein-coding genes for Rap1 that regulates Rho GTPase signal-
ing. Dysregulation of Rap1 activation is responsible for the development of  malignancy33. Furthermore, RAP1 
interacts with many members of the DNA damage response pathway but RAP1-depleted cells show reduced 
interaction between DNA ligase IV and DNA-pk and are impaired in DNA ligase IV recruitment to enable 
efficient repair of damaged  chromatin34.

NFIB, with an increased DNA promoter methylation in cluster 7 cell lines, is a transcription factor regulat-
ing the maturation of megakaryocytes, a platelet  precursor35. Megakaryopoiesis is the developmental process 
of bone marrow progenitor cells into mature megakaryocytes and is required for normal hemostasis. From 
the genomic interaction network, we can identify possible interactions between NFIB and other genes. NFIB 
shares genetic interactions with FGR and CD28. FGR is a proto-oncogene of the Src family of tyrosine kinases 
expressed in immune  cells36. Src family kinases are most of all best known for their role in tumor development 
and  progression37. FGR is not only connected to NFIB, but FGR also shares a protein–protein interaction with 
IGLL5 and a gene–gene interaction with FCRL1. FCRL1 expressed in a majority of chronic lymphocytic leukemia, 
follicular lymphoma, hairy cell leukemia, and mantle cell  lymphoma38 and might play an important role in the 
onset of these malignancies. It is therefore of interest to investigate whether the hypermethylation of NFIB can 
be reversed and whether NFIB is capable of downregulating FCRL1 via genetic interactions with FGR.

One of the central nodes in the network is EGFR, a gene responsible for controlling cellular proliferation, 
apoptosis, angiogenesis, and metastatic spread in a variety of cell types and  tissues39. In cluster 7, it is evident 
that EGFR is hypermethylated and consequently is not expressed (expression level of 0 TPM). Because of the 
hypermethylation of the promoter region, the transcription factors CEBPD and KLF5 cannot transcriptionally 
activate EGFR expression (Fig. 5A). Even if the DNA promoter region of EGFR would be hypomethylated, 
transcription activation of EGFR might not occur, since both CEBPD and KLF5 are not expressed in the cancer 
cell lines of cluster 7. The combination of hypermethylation of EGFR and the inactivity of CEBPD and KLF5 is 
interesting since EGFR shares different gene–gene and protein–protein interactions with FGR, CD3D, CD3G, 
BCAR, PTK2, and PTPN3. The inactivity of EGFR could be of importance since this may alter the interactions 
with FGR and PTK2 and potentially disrupt the functioning of these oncogenes. EGFR expression is still a subject 
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of debate in  leukemia40 but in lymphomas, it has been demonstrated to increase drug  resistance41. Our results 
show low expression of EGFR which could potentially mean that EGFR cannot contribute to drug resistance and 
highlight the mechanism of low EGFR expression in these cancer cell lines.

A second local neighborhood of interest is defined around YAP1, a gene believed to be involved in the 
regulation of the hematopoietic  system42. The role of YAP is important, since in solid tumors it emerges as an 
oncogene, whereas YAP seems to exert a tumor-suppressive function in multiple myeloma and  leukemia42. In our 
network, YAP1 can regulate the transcription of JAG1 and might interact with LATS2, TEAD4, and SMAD1 via 
protein–protein and gene–gene interactions (Fig. 5B). These possible interactions and transcriptional activation 
might be altered because of the methylation status of YAP1, which shows a trend towards a higher methylated 
DNA promoter region, and as a possible effect, there is no YAP1 expression observed in the cancer cell lines 
in cluster 7. This result is in agreement with previous research, where downregulation or deletion of YAP1 in 
multiple myeloma and leukemia is  reported43. Due to the inactivity of YAP1, it will be of interest to determine 
whether JAG1 and TEAD4 are expressed. TEAD4 is low expressed in the cell lines of cluster 7, which could be 
favorable since TEAD4 expression is associated with tumor onset and  progression44. JAG1 is involved in the 
NOTCH signaling pathway and downregulation of JAG1 has been proposed as a target for treatment, since JAG1 
can function as an oncogene in the different lymphoid  neoplasms45. Similar to TEAD4, JAG1 is lowly expressed 
in cluster 7, which could be because YAP1 is not expressed and therefore cannot activate JAG1 transcription. 
Although YAP1 is proposed as a potential tumor suppressor  gene42, increasing YAP1 expression might lead to 
transcriptional activation of the oncogene JAG1 (Fig. 5B). In our genomic interaction network, there is also an 
interaction between LATS2 and YAP1. This interaction is actually of interest since LATS2 and YAP1 are two 
genes involved in the hippo signaling  pathway17. As mentioned before, YAP1 has a low gene expression due to 
DNA hypermethylation and therefore we believe that this protein–protein interaction is affected. Furthermore, 
LATS2 is low expressed in cluster 7 in comparison with the other clusters, which could be a consequence of the 
increased methylation of the DNA promoter region of LATS2. This could indicate that in cluster 7 the hippo-
signaling pathway might not function properly because of DNA hypermethylation and low gene expression of 
both LATS2 and YAP1.

A third region of interest emerged while studying the local neighborhood of the genes CD28, CD86, CD80, 
ITGA2, and CTLA4. CD28 and CD86 are both lymphoid tissue enriched  genes16. The two genes form a co-stimu-
latory pair and upon CD86-activation, CD28 can carry out different functions involved in the Th1 differentiation 
 pathway46, cytokine production, and downstream signaling events of the B cell receptor through the activation 
of NFkB47. In the gene interaction network with CD28 and CD86, the dotted interactions around the seeding 
node CTLA4 are of relevance (Fig. 5C). As a seeding node, CTLA4 does not belong to the features for cluster 7 
but its absence is of interest. It becomes clear that CTLA4 is not expressed in any of the cancer cell lines, whereas 
CD28 and CD86 are expressed only in cluster 7 (Supplementary Fig. S3: plot I–K). CTLA4 is an inhibitor of the 
CD28–CD86 activation pathway and humans that carry any CTLA4 mutations are found to suffer from profound 
 autoimmunity48. CD86 shows elevated expression in cluster 7 in comparison to the other clusters, which could 
not only indicate that CD86 is specific for lymphoid neoplasms, but also that the signaling pathway of CD86-
CD28 is perturbed leading to CD28 stimulation. The inactivity of CTLA4 might result in a loss of the inhibition 
of the signaling pathway of CD86-CD28 which impacts the differentiation of blood cells (Th1 and B cells) but 
more interesting, the association of CTLA4 with autoimmunity might point towards a hypothesis that lymphoid 
neoplasms might share the same alterations as autoimmune  diseases49. The absence of CTLA4 might have other 
implications, due to the protein–protein interactions with ITGB8 and ITGA2. Dysregulation of the CD28–CD86 
pathway could propagate to EGFR and FGR expression via the different CD3 genes as shown in the network.

The previously discussed features are of interest because their changes in expression do not occur for all 
lymphoid neoplasms. The lymphoid neoplasm samples in clusters 3 and 6 do not have an increased expression 
of both CD28 and CD86 (Supplementary Fig. S3). Cluster 6 shows increased LRRC49 expression whereas this 
gene is low expressed in all lymphoid neoplasms samples in cluster 7. Furthermore, the hypermethylated DNA 
regions in cluster 7 are hypomethylated in cluster 3 and cluster 6 (Supplementary Fig. S2). The combination 
of the epigenetic and transcriptomic changes stratify the lymphoid neoplasms in different clusters and might 
therefore be of relevance.

By integration of the omics layers employing Multi-layer Nonnegative Matrix Factorization, we are capable of 
separating clusters based on their DNA methylation and gene expression profiles across a wide range of cell lines 
derived from multiple human cancer types. The combination of these profiles leads to heterogeneous clusters of 
sarcomas and carcinomas, but also more homogeneous clusters of lymphoid neoplasms. Although our method 
can extract signals that characterize different cancer types, there is still room for improvement. Heterogeneity 
remains a problem, which will be difficult to solve. One way to overcome this is by performing omics integra-
tion on one class of cancer cell lines. We expect that this would improve the integration and would select more 
subtype-specific signals. However, our findings from the complete 2019 CCLE clarify that our method is indeed 
capable of identifying possible important characteristics. We can identify different methylated DNA promoter 
regions in the same cancer tissues, but we are also able to construct a genomic interaction network for lymphoid 
neoplasms based on specific genomic features for that cancer type. This genomic interaction network helps us to 
identify the possible relationship between methylated genes and other genes in the network. We have identified 
different methylated DNA promoter regions that affect transcriptional activation of EGFR, which might impact 
on the protein–protein interactions with the oncogenes FGR and PTK2. The DNA hypermethylation of EGFR 
could be of interest since this gene contributes to drug resistance. We showed that hypermethylation of YAP1 
leads to low gene expression and as a consequence no transcriptional activation of JAG1. Although YAP1 has 
tumor-suppressive characteristics, it is relevant to take into account that this may lead to transcriptional acti-
vation of the oncogene JAG1. Finally, through the genomic interaction network, we could identify a potential 
dysregulation of the CD28-CD86-CTLA4 axis in the different lymphoid neoplasms cancer cell lines.
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Conclusion
Characterizing the epigenome and transcriptome is vital for our understanding of cancer cell line behavior, not 
only for better understanding the cancer-related processes but also for future treatment and anti-cancer drug 
developments. Here, we have identified potential candidate genes that characterize cancer cell lines of the type 
for lymphoid neoplasms. Our current insights show that, although assumed different, B and T cell lymphomas 
potentially share similar genomic alterations. These key alterations are important to study and further understand 
the development and progression of lymphoid neoplasms.

Method
Gene expression and DNA methylation data. For this study, normalized gene expression data and 
DNA promoter methylation data have been downloaded from the Cancer Dependency Portal (DepMap). Gene 
expression data is downloaded as  Log2(TPM + 1) expression values. Gene expression levels have been measured 
through RNA-sequencing on the Illumina HiSeq 2000 or HiSeq 2500 instruments with sequence coverage of no 
less than 100 million paired 101 nucleotides-long reads per sample. RNA-seq reads were aligned to the GrCH37 
using STAR 2.414.

DNA methylation is measured by Reduced Representation Bisulfite Sequencing (RRBS) analysis to assess 
promoter methylation. RBBS utilized the MspI cutting pattern to digest DNA to enrich for CpG  dinucleotides50. 
The fragments are sequenced on an Illumina HiSeq 2000 and aligned to the hg19 genome using  MAQ50. A fixed 
window size of 1000 bp upstream of the transcription starting site for each gene is used to calculate a coverage-
weighted average of CpG methylation. RRBS yielded robust coverage of 17,182 gene promoter regions with 
average coverage greater than 5 reads for the 843 cell lines.

Multi‑layer nonnegative matrix factorization. The original data matrix Xi is estimated by the product 
HWi for each data layer (Eq. 1). To find a local optimal solution, matrices Wi and H are updated by their update 
rules (Eqs. 2 and 3 respectively) and minimizing the Kullback–Leibler divergence (Eq. 4). For H we take into 
account the effect of the different omics layers via Xi and Wi whereas for Wi we take into the effect the omics 
layers via Xi and the sample clustering via H. In the end, n matrices W are obtained that store the latent features 
and one coefficient matrix H that stores the clustering coefficients.

Feature extraction from NMF results. To analyze the difference in methylation and gene expression 
profile of each cluster, each matrix  Wi is scored by using the method proposed by Kim et al.15. For each cluster, 
the entities are selected as features, if those entities that have a high probability of explaining a cluster.

Genomic interaction networks. The biological features obtained for each cluster are used to create a 
genomic interaction network. These networks consist of DNA promoter region–Gene interactions, to study the 
relationship between DNA methylation and gene expression, to identify transcription factor–target interactions, 
Gene–Gene interactions, and protein–protein interactions as well as to gather information about cell line-spe-
cific genes related to cancer. In the genomic interaction network, we allow connections if both genes are in the 
feature list or if expressed genes from the feature list are connected by one seeding node.

Gene–Gene interactions have been downloaded from  OmniPathDb51 for each in the extracted feature list. 
Transcription factor–target interactions are added to the network from a transcription factor library built by 
Souza et al.52, while protein–protein interactions have been downloaded from  StringDB53.

Tissue or cancer specific genes and CpG regions. The Human Protein Atlas (HPA) database is used to 
download information on tissue specificity for lymphoid tissue. From the HPA data we have selected those genes 
classified as enriched. Genes are categorized enriched when their normalized expression levels are four times 
higher in a tissue of interest compared to all other tissues. Cancer or disease specific genes are identified if there 
is evidence that their protein form is disease or cancer related.
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Data availability
The data that support the findings of this study are openly available in the Dependency Map portal at https:// 
depmap. org/ portal , reference  number14.
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