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Abstract

Understanding decision-making in complex and dynamic environments is relevant for

designing strategies targeting safety improvements and error rate reductions. How-

ever, studies evaluating brain dynamics in realistic situations are scarce in the litera-

ture. Given the evidence that specific microstates may be associated with perception

and attention, in this work we explored for the first time the application of the micro-

state model in an ecological, dynamic and complex scenario. More specifically, we

evaluated elite helicopter pilots during engine-failure missions in the vicinity of the

so called “dead man's curve,” which establishes the operational limits for a safe land-

ing after the execution of a recovery maneuver (autorotation). Pilots from the Brazil-

ian Air Force flew a AS-350 helicopter in a certified aerodrome and physiological

sensor data were synchronized with the aircraft's flight test instrumentation. We

assessed these neural correlates during maneuver execution, by comparing their

modulations and source reconstructed activity with baseline epochs before and after

flights. We show that the topographies of our microstate templates with 4, 5, and

6 classes resemble the literature, and that a distinct modulation characterizes

decision-making intervals. Moreover, the source reconstruction result points to a dif-

ferential activity in the medial prefrontal cortex, which is associated to emotional reg-

ulation circuits in the brain. Our results suggest that microstates are promising neural

correlates to evaluate realistic situations, even in a challenging and intrinsically noisy

environment. Furthermore, it strengthens their usage and expands their application

for studying cognition under more realistic conditions.
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1 | INTRODUCTION

Failures, accidents or incidents involving complex systems are not

solely linked to equipment malfunction, but also to human (mis)

behavior or judgmental errors. The increase in equipment complexity

generally requires more training, precision, or even the coordination

of multiple individuals. Therefore, during product development and

interface design, one must account for the operator's cognitive and

psychomotor abilities in an effort to reduce error rates. In this context,

Situational Awareness (SA) consolidated as a major research field

within Human Factors, and explores the pivotal role of the operator in

the overall system performance (Endsley, 2000). According to

Endsley (1995), the concept of SA is more than “merely looking at var-

ious pieces of information,” since it also encompasses the cognitive

processes that attribute meaning to temporal and spatial cues, and

their usage to extrapolate to future scenarios. Thus, SA combines pat-

tern recognition, analysis, narrative composition and metacognitive

processes at different times; and concerns how the individual attri-

butes meaning to the environment (Endsley, 2000). Several

approaches have already been proposed to quantify the SA of the

operator (Charles & Nixon, 2019; Endsley & Garland, 2000), but, so

far, little is known about the cognitive processes and the robustness

of their potential neural correlates outside of controlled environments.

Endsley (2000) differentiates the cognitive process used to obtain

SA, that is, the active process of acquiring information (Situation

Assessment), from the resulting state per se, and a promising field is

to explore whether these processes are also distinct or how they inte-

grate from a physiological point of view. Thus, microstates are inter-

esting neural correlates to characterize SA in critical situations, due to

evidence that attentional and perceptual networks neural correlates

may be distinguishable from one another (Bréchet et al., 2019;

Seitzman et al., 2017), which would enable the assessment of the

dynamics of these network during decision-making processes.

Under this construct, the electroencephalogram (EEG) is repre-

sented as a series of stable and recurring topographic patterns over

time, which result from the synchronized activity of spatially distrib-

uted electrical sources (Khanna, Pascual-Leone, Michel, & Farzan,

2015). These periods of stability or microstates are interpreted as

corresponding to different functional states of the brain and its funda-

mental blocks of information processing (Lehmann, Ozaki, & Pal, 1987).

Thus, according to this model, microstates are electrophysiological cor-

relates of the coordinated activity of different neuronal assemblies, such

that changes in topographies are representative of the overall modifica-

tions in neuronal activity coordination over time (Michel &

Koenig, 2018). Hence, it is possible to study the interaction of the indi-

vidual with the environment, by assessing its internal states on a milli-

second scale (Koenig et al., 2002).

A myriad of evidences reinforce that microstates are emergent

properties of the EEG signal. The recurring topographies display char-

acteristic patterns, already reported in several studies in the literature

(Michel & Koenig, 2018). These patterns are recovered not only on

healthy individuals but also on diverse groups of patients (Rieger,

Hernandez, Baenninger, & Koenig, 2016), and they are preserved

through aging, with modifications in dynamic parameters that are

compatible with the different development stages of an individual

over time (Koenig et al., 2002). Furthermore, the dynamic modulation

of microstates is related to behavior and perception (Britz, Díaz

Hernàndez, Ro, & Michel, 2014; Britz & Michel, 2011; Müller

et al., 2005; Pedroni et al., 2017), may be affected in some diseases

(da Cruz et al., 2020; Dierks et al., 1997; Khanna et al., 2015; Rieger

et al., 2016; Strik et al., 1997), by the use of specific medications

(Khanna et al., 2015; Kinoshita et al., 1995) and in altered states of

consciousness (Bréchet, Brunet, Perogamvros, Tononi, & Michel, 2020;

Katayama et al., 2007; Khanna et al., 2015).

Previous attempts to assign a functional meaning to microstate

classes have established associations with Resting State Networks

(RSN). The hypothesis is that RSN dynamics is, in fact, much faster

than what is inferred from functional magnetic resonance imaging

(fMRI) studies and that the microstates would be their electrophysio-

logical signature (Britz, Van De Ville, & Michel, 2010; Michel &

Koenig, 2018; Van De Ville, Britz, & Michel, 2010). Despite the body

of evidence suggesting a close relationship between microstates and

specific cognitive functions (Michel & Koenig, 2018), only recently the

dynamic modulations during cognitive tasks, the possible influence of

mental contents (Bréchet et al., 2019; Milz et al., 2016; Pedroni

et al., 2017; Seitzman et al., 2017) and individual expertise (Panda

et al., 2016) have been explored.

In this work, we explore for the first time the application of the

microstate model in an ecological, dynamic and complex scenario to

access neurophysiology and cognition, that is, we investigate if these

neural correlates are recovered in a naturalistic and unconstrained

environment and whether their modulations provide further insights

about the task. More specifically, we evaluated high performance heli-

copter pilots during engine failure missions, performing the Autorota-

tion (AR) maneuver. The AR is defined as a flight state in which the

helicopter rotor no longer moves due to the engine, but due to the

action of air rising towards it. At this point, the pilot must lower the

collective, an action which decouples the engine shaft from the rotor

shaft, and guide the aircraft through a safe landing. The AR maneuver

is part of standard piloting training, since it is an emergency landing

procedure in the event of engine or tail rotor failures (Federal Aviation

Administration, 2016; Jingze, 2011; Johnson, 2012). However, there

is a set of flight conditions in which the execution of the AR maneuver

and landing becomes exceedingly difficult or hazardous, and, there-

fore, the operation of the aircraft is restricted to avoid them. These

conditions are mapped using a height versus speed diagram, and the

curve that limits the operating regions is known as the “dead man's

curve,” height-speed curve or height-speed envelope (Federal Avia-

tion Administration, 2016; Jingze, 2011; Johnson, 2012). Currently,

the curve is theoretically computed as a function of energy dissipation

(potential and kinetic) into the rotor rotation, but in practical terms,

these limits are assessed on several flight tests, and they can be

largely influenced by subjective criteria. However, the large number of

accidents due to improper maneuver execution motivate the explora-

tion of objective and physiological-based methods to help the estab-

lishment of safety parameters: According to reports of the The United
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States Joint Helicopter Safety Analysis Team (2011, 2014a, 2014b),

ARs during practice and emergency were the second top causes of

accidents in the years of 2000, 2001 and 2006 (31.7%) and from

2009 to 2011 (32.8%), accounting for a statistically significant propor-

tion of fatal accidents.

Therefore, the primary goal of this work was to assess the feasi-

bility of the microstate model in a challenging scenario, and to con-

trast the degree of similarity to those of experiments performed

under controlled circumstances. More specifically, our secondary goal

was to explore the microstate modulations during AR maneuvers per-

formed in the vicinity of the dead man's curve. Our hypothesis was

that the parameters of Microstate D (duration, occurrence and cover-

age), associated with the attention and cognitive control networks,

would be higher during the maneuver performance as opposed to the

rest condition.

2 | METHODS

2.1 | Ethics

This work was approved by the ethics committee of the Hospital

Israelita Albert Einstein (CAAE 72744717.7.0000.0071). All volun-

teers agreed to participate and signed an informed consent form. We

emphasize that, although this project involves risks for the partici-

pants, they would already perform this set of maneuvers as part of a

special mission within the scope of their professional activities and

our project involved only the additional sensing and monitoring of

their physiological responses.

2.2 | Experimental description

The flight campaign was performed in S~ao José dos Campos, Brazil,

in a certified aerodrome. The AS-350 helicopter is owned by the

Brazilian Air Force and has capacity for six (6) occupants. The air-

craft was equipped with a flight test instrumentation (FTI), to cap-

ture flight parameters such as altitude, angular speeds and

acceleration. It also encompassed sensing in several systems and

instruments, such as flight controls and the rotor-fuselage proxim-

ity. All information was synchronized and sampled at 64 Hz

(Figure 1).

We collected data from eleven (11) pilots from the Brazilian Air

Force and Army, all males and very experienced in piloting but with

different expertise in AR, as shown in Table 1. Our sample was com-

posed of seven (7) test pilots and four (4) helicopter instructors. All

pilots undergo annual check-ups and were considered healthy at the

time of the study.

The crew encompassed a test pilot that was in command of the air-

craft, a flight instructor in supervision, and a flight test engineer in flight

coordination. Furthermore, a flight safety specialist supervised the cam-

paign planning, an instrumentation specialist managed the aircraft sys-

tems and a specialized maintenance team was on duty. The maneuver

points were pre-selected in order to scan the vicinity of the dead man's

curve, as shown in Figure 2. Since the campaign was based on simu-

lated engine failures, the engine was not completely off but had its

power reduced until the aircraft lost lift. Maneuver abortion was always

available. The engine-failure simulations were always performed on

safe altitudes and, at the end, the engine was rekindled in flight. Pilot

fatigue patterns were constantly assessed. As part of the operational

routine, the crew met before each flight to review the mission planning

(briefing), and at the end (debriefing), to review the execution.

Regarding the physiology, we collected signals from EEG, heart-

beat, breathing, electrodermal activity and from the left triceps (EMG),

given that the left arm is employed to control the aircraft collective.

All sensors were sampled at 500 Hz (Brain Products, Gilching DE). The

physiological signal acquisition was synchronized by a push button

trigger, pressed by the flight engineer immediately before each

maneuver. In addition, the pilot's eye movement was recorded by an

Eye tracker system (Tobii) and his facial expression was recorded with

high resolution cameras. In this work, we analyze only the EEG data.

The EEG was acquired with the Brain Products LiveAmp 32 active

channel setup, because the amplifier is portable, has integrated accel-

erometers and is already designed for experiments subject to move-

ment. The impedance was kept below 25 kΩ and the electrodes were

positioned following the 10/20 standard.

F IGURE 1 Pictures of the aircraft
and of the flight test instrumentation.
(a) Aircraft AS-350; (b) part of the
data acquisition system in the right
luggage compartment
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We assembled a temporary acquisition lab in a quiet room, annex

to the aircraft hangar. The walking distance from the room to the

landed helicopter was on the order of 5 min. There we collected base-

line data from the participants immediately before and after each

flight. In both cases, the participants were instructed to remain with

eyes open for a minute while gazing at a cross projected on a screen

in front of them, relaxing and trying not to move.

The physiological data acquisition started a few moments before

takeoff and was only resumed after landing. Only segments around

the AR maneuvers were analyzed. These epochs were centered at

time points defined by the combination of the manual flight trigger

with additional data from the FTI system: we selected the first instant

after the trigger that indicated an engine power below 65%. We

requested the pilots to avoid talking during the time windows around

the maneuvers, to reduce EEG contamination.

We recall that there were different test points around the

dead man's curve (Figure 2c), which relate to distinct difficulty

levels. Furthermore, additional test points, premeditated by the

crew, were also introduced without previous awareness of

the pilot. However, in the context of electrophysiology studies,

there were few trial repetitions for each test point, and a low num-

ber of participants. Thus, in order to increase the final statistical

power, the differences between test points were disregarded on

the analyses.

2.3 | EEG preprocessing

For each maneuver execution, we segmented the EEG data in a 1-min

window around the engine failure. Next, the data for ARs and base-

lines were pre-processed in BrainVision Analyzer version 2.1.0.137.

Initially, we performed a semi-automatic inspection of the data, to

exclude discontinuous sections due to movement artifacts from the

volunteer or the wiring.

TABLE 1 Description of the sample:
Age and expertise of each pilot

Total flight hours

ID Age Total Helicopter AS-350 Instructor AS-350 Test pilot

Sub 01 41 4,006:05 2,660:40 1,441:00 Yes Yes

Sub 02 37 2,592:25 2,337:20 1,740:55 Yes Yes

Sub 03 37 3,308:40 1,411:25 178:35 No Yes

Sub 04 38 1,746:45 1,588:30 133:20 No Yes

Sub 05 46 3,500:10 1,988:30 1,479:15 Yes Yes

Sub 06 48 3,730:10 2,580:30 1,725:10 Yes Yes

Sub 07 37 1,755:45 1,755:45 1,430:00 No Yes

Sub 08 37 2,242:40 1,037:10 234:20 No No

Sub 09 35 1,384:00 1,219:20 722:55 No No

Sub 10 41 2,750:35 2,155:00 1,120:50 No No

Sub 11 42 3,650:05 2,350:40 1,130:00 No No

F IGURE 2 Schematic representation of the AR maneuver (a) and the Dead Man's Curve (b). Diagram (b) shows combinations of height and
speed where the operation shall be avoided. In (c), we display the selected maneuver test points used in this campaign, spanning the vicinity of
the flight envelope. Source: Adapted from Federal Aviation Administration (2016). For a video of a maneuver execution, the reader is referred to
the Supplementary Material
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After that, all data sets (around the maneuver or during rest) were

filtered with a Butterworth bandpass filter (0.5–50 Hz), with no phase

lags and with a notch filter at 60 Hz (both of fourth order). Then, we

performed a semi-automatic Independent Component Analysis (ICA).

This method is traditionally used for ocular and muscular artifact

extraction; however, it also efficiently characterized additional noise

signatures during the flight. In order to reduce the amount of dis-

carded components and, consequently, to avoid an excessive data

dimensionality reduction, we further restricted the data epochs. Thus,

the microstate analysis focused on the interval of −2 to 3 s around

the engine failure, since this is the decision-making time-window.

Therefore, although the ICA was computed in 60 s segments, only the

components characterizing noise within −2 to 3 s were disregarded.

Finally, the channels were referenced with respect to their average

value. The pre-processing strategy was depicted in Figure 3.

2.4 | Microstate analysis

In this work, we performed microstate analysis using the plugin

implemented by Thomas König, version 1.2, available at http://www.

thomaskoenig.ch, combined with the EEGLAB toolbox version 14.1.2

(Delorme & Makeig, 2004).

In this framework, characteristic microstate topographies are ini-

tially computed at the level of an individual dataset, corresponding to

centroids of a modified K-means classifier. This classifier is largely

employed in the literature (Michel & Koenig, 2018). However, cluster-

ing algorithms such as the K-means have unstable results when fed

with a small amount of data to discriminate patterns. Thus, in order to

increase the power of the classifier, we concatenated all maneuver

segments from each specific participant, even if they have been

acquired in distinct flights. The same consideration was applied to

F IGURE 3 EEG preprocessing schematics: While the baseline data was used to its full extent, the flight data was pruned around the engine
failure, in order to restrict the artifact influences
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resting data. Thus, characteristic templates on the subject level were

computed based on three concatenated datasets: two related to rest-

ing data before and after flights and one representative of all AR

maneuvers performed by the individual over the entire flight

campaign.

These concatenated data result in a total of M microstate tem-

plates for each individual. However, their sequence in each individual

and their correspondence is, at first, random. Therefore, the next

step is to create a mean template, also with M maps, but at the group

level. Here they are reordered such as to maximize the common vari-

ance between participants (Koenig et al., 1999). In this way, we cal-

culated three sets of mean templates, with M maps, corresponding

to the experimental conditions of interest: Rest before (RSpre) and

after the flight (RSpos) and during the execution of the maneuvers

(Flight).

After that, the reordering step was repeated, such as to compute

second level templates out of these three conditions, generating a

“Grand Mean” template, also with M topographies. Once again, they

were randomly sorted and, to facilitate comparisons with the litera-

ture, they were reordered based on the normative reference of

Koenig et al. (2002), computed out of data from 496 individuals,

between 6 and 80 years old. The final step was to estimate the micro-

states' dynamic parameters. However, this is largely dependent on the

referential template used for backfitting. The toolbox enables several

template possibilities, ranging from the ones at the individual level,

that is, computed exclusively from the participant data; at group level,

considering all participants; and using a normative reference. We

opted to consider the “Grand Mean,” the average template computed

out of the data ensemble of our participants in all experimental condi-

tions (RSpre, Flight, RSpos). The dynamic parameters were computed

with 4, 5, and 6 classes of microstates, as they present interesting

results in comparison with the literature.

In addition to the dynamic parameters of the microstates (dura-

tion, occurrence and coverage), the toolbox also computes the transi-

tion ratio between different classes. However, since the most

frequent microstates have more transitions, these ratios are skewed

measures, dependent upon the total number of occurrences of each

class. Thus, in the toolbox, the output is corrected to consider the

expected value for the transitions corrected by the occurrences.

Finally, the optimal number of microstate classes was computed

using the predictive residual variance as defined by Pascual-Marqui,

Michel, and Lehmann (1995), through the implementation of Poulsen,

Pedroni, Langer, and Hansen (2018).

2.4.1 | Microstates: Statistics

In this experiment, our data had a hierarchical structure, that is, the

repeated measures were always nested for the participants. Thus, for

the statistical analysis, we employed a linear mixed effect model to

account for both fixed and random effects, as described below, using

the notation of Wilkinson and Rogers (1973), where MSparam corre-

sponds to the value of the microstate parameter, Condition is

associated with the three analyzed moments (RSpre, Flight or RSpos)

and Subject is the weight associated with the participants.

MSparam�1+Condition+ 1jSubjectð Þ ð1Þ

The analysis was performed using the Statistics and Machine Learning

toolbox from Matlab®. The model's parameters estimative employed

the maximum restricted likelihood (REML), in order to avoid variance

biases in the model. The residuals' normality hypothesis was assessed

through a quantile–quantile graph and through the Shapiro–Wilk test.

When the distribution violated normality, we inserted a logarithm

operator in the dependent variable MSparam, in Equation (1).

2.5 | Source reconstruction analysis

The standard Low Resolution Brain Electromagnetic Tomography

(sLORETA) algorithm was adopted for source reconstruction analysis,

using the Key-LORETA software, version 20190617 and available at

http://www.uzh.ch/keyinst/loreta.htm. This implementation uses the

MNI152 template for head modeling (Mazziotta et al., 2001) and

restricts its brain volume to gray matter regions, as advocated by the

Tailarach probabilistic atlas (Lancaster et al., 2000). The volume is fur-

ther divided into 6,239 voxels of 5 mm3. The source reconstruction

algorithm was fed with the cluster maps of each subject referring to

the three moments of interest (rest before and after the flight and

during the maneuver—RSpre, Flight and RSpos). The sLORETA was

applied to the first main component of the EEG momentary topogra-

phies, corresponding to the Global Field Power (GFP) peaks of each

participant. The total power of the data was then subject-wise nor-

malized, through one of the normalization options available at the

software.

Our goal was to highlight areas with greater activity in flight in

comparison to the baseline. Therefore, we computed a paired t test,

contrasting the result of the maneuver (Flight) with baseline before

flight (RSpre) for each class of microstates and used the contrast

between the two resting conditions (RSpos – RSpre) as a control. For

controlling false positives, we employed the Statistical non-Parametric

Mapping feature (Nichols & Holmes, 2002).

3 | RESULTS

3.1 | Feasibility: Artifacts

The main objective of this study was to ensure the EEG feasibility dur-

ing the adverse circumstances of helicopter piloting on AR: in addition

to more prominent artifacts (e.g., sweat and movement), we also had

to deal with the presence of harmonics corresponding to the aircraft's

structural vibration modes and engine-related noise.

A large portion of these artifacts could be attenuated by simply

transforming the EEG reference to the mean of all channels, given that

several spurious sources affected the entire head homogeneously.
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This is exemplified in Figure 4a, through the spectral data of one par-

ticipant at flight and at rest. Moreover, the ICA targeting a window of

interest, around the engine failure, was an attempt to compromise

between preserving a data segment large enough to characterize the

cognitive decision-making process, but to avoid discarding a very large

amount of Independent Components (ICs), which could impair the

resulting signal quality. This approach efficiently characterized arti-

facts, as exemplified in Figure 4b,c. This strategy allowed approxi-

mately 95% of the recorded maneuvers (219/232) to proceed to the

later stages of analysis, albeit with reduced dimensionality (in the

worst case it decreased from 32 to 23—Table S1). The main cause of

maneuver data exclusions (13/232) were motion artifacts that could

not be filtered. In addition, other important factors that reduced the

amount of maneuvers were failures in the physiological setup (1 flight),

and aircraft issues that required a premature interruption of the flight

plan or impaired the initial project schedule, such as structural damage

and fire on the battery.

A final piece of evidence that highlights the success of the artifact

removal strategy emerges from the results of the microstate analysis

itself. It is possible to verify that the computed microstate templates

are congruent with the literature, even when we change the number

of classes, as evidenced below.

3.2 | Microstate analysis

After preprocessing, we followed the microstate analysis pipeline,

computing microstate templates corresponding to each of the three

experimental conditions—resting state prior to (RSpre) and after the

flight (RSpos), during the AR maneuver (Flight)—in addition to the

F IGURE 4 EEG and artifacts: (a) Change of reference reduces the aircraft's structural vibration modes in the spectrum, as displayed by raw
signal in the Cz electrode before and at flight. Some illustrative artifacts characterized by ICA are displayed in (b) and (c). We selected 1-min
characteristic segments of the corresponding IC activity. The data was segmented to facilitate visualization. The engine failure occurs around
segment 30. (b) Displays a component associated with the engine, whose activity assumes periodic patterns, that ceases when the engine is off.
(c) Illustrates a component associated with the participant movement, characterized by a short-duration peak
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mean template of these conditions (Grand Mean). Among these sets

of templates, we noticed that topographies with similar labels resem-

bled one another, regardless of the numbers of classes, and conditions

and that these results have similarities with the literature. In Figure 5

we display the results related to six (6) classes, and templates corres-

ponding to five (5) and four (4) classes are provided in the supplemen-

tary material (Figures S1 and S3). It is also noteworthy that the

templates sustain a large correlation between themselves (Table S2).

Data-driven estimates indicated that the optimal number of clus-

ters for the entire data (RSpre, Flight and RSpos) was four (4) classes.

When only the Flight data was considered, the optimal number

decreased to three (3) classes and it increased to five (5) when solely

the baseline data (RSpre, RSpos) was accounted. A complete display

of how the Global Explained Variance (GEV) and the Cross-validation

criterion (CV) change with the number of clusters is attached in the

supplementary material (Figure S6).

The hierarchical structure of our data hinders a proper display of

microstate dynamic features (duration, occurrence, coverage and the

transition matrix). Thus, for illustrative purposes, we simplified the

features display by grouping each participant's datasets within similar

conditions, and computed means and standard errors of the means as

presented in Figure 6 and in the supplementary material (Figures S2

and S4). Nevertheless, we emphasize that for statistics, we used the

linear mixed effects model, as described in Section 2.4.1.

For four classes, as presented in the Figure S2, our results

suggested modulations of Classes 3 and 4 in flight in relation to rest:

All parameters (duration, occurrence and contribution) referring to

Class 3 significantly decreased, while those of Class 4 increased. As

for the five (Figure S4) and six classes (Figure 6), they both presented

a significant decrease in all parameters (duration, occurrence and con-

tribution) in similar topographies when we compared the data in flight

with those obtained at rest (before and after flight). Interestingly, in

our results, the topography associated with significant modulations on

the dynamic features resembled the Microstate D of Seitzman

et al. (2017) and the Microstate F of Custo et al. (2017) and Bréchet

et al. (2019). However, the decrease on the dynamic features

observed in our work for class F was opposed to the increase in class

D reported by both Bréchet et al. (2019) and by Seitzman et al. (2017)

in an attentional task performed in controlled environments.

Regarding the transition matrices, for four classes we noticed a

distinct profile of transitions during flight in relation to data at rest:

there was a greater likelihood that classes would transition to Micro-

state 4; and decreased likelihoods of Classes 1 and 2 transitioning to

Class 3, and of Classes 3 and 4 to Class 1. However, for five and six

microstate classes, we could not observe characteristic global patterns

in the transition matrix.

3.3 | Source analysis

Finally, we performed a source reconstruction in Class F, that had sig-

nificant modulations on the dynamic features. We display the

F IGURE 5 Mean microstate
templates considering a total of six
(6) classes during the three conditions
(baseline before flight, during AR and
baseline after flight), and the “Grand
Mean” of the set. Notice the similarity
with the results from Koenig
et al. (2002) and Bréchet et al. (2019)
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resultant of six classes, due to the resemblance of our templates with

the ones from Bréchet et al. (2019). This work is particularly interest-

ing not only due to the series of cognitive activities performed by the

volunteers, but also due to their source reconstruction, that we used

for comparison purposes. The Flight-RSpre contrast showed a cluster

in the left prefrontal cortex (t(10) > 5.482, p< .05) (Figure 7) after cor-

rection for multiple comparisons, encompassing Broadmann areas

11 and 47, with the peak (X, Y, Z) in the MNI coordinates corres-

ponding to (−30, 30,−10).

4 | DISCUSSION

The relevance of studies encompassing individuals in dynamic and

complex environments is to further understand the relationship

between decision-making and performance. In particular, we stress

the importance of more accurately assessing the cognitive strategies

at play during each moment, leading to a better understanding of how

the SA is built and, mainly, how/if this information is useful for the

design of safer and more reliable equipment and procedures

F IGURE 6 Six classes microstate dynamics. Notice significant modulations in the parameters associated to the sixth class, with a topography
resembling the Microstate D of Seitzman et al. (2017), and Microstate F of Custo, van der Ville, Wells, Tomescu, and Michel (2017) and Bréchet
et al. (2019). The (*) indicates that the residuals normality hypothesis was violated in the linear mixed effect model, and the statics was
recalculated with the logarithmic operator in the dependent variable of Equation (1)

3176 DEOLINDO ET AL.



(Endsley, 2000). In this work, we explored the electrophysiology of

decision making in an environment of this category. The results pres-

ented here are, to the best of our knowledge, unprecedented in the

literature, since ecological studies with the EEG are scarce. Our results

indicate that microstates are feasible neural correlates in an intrinsi-

cally noisy environment, strengthening and expanding the technique's

horizon of application for studying cognition in more realistic

conditions.

4.1 | Microstates are feasible neural correlates
even in extreme conditions

One of the major challenges of employing EEG data within a dynamic

and complex environment comes from the high susceptibility of the

signal to artifacts (Islam, Rastegarnia, & Yang, 2016). Nevertheless,

there is evidence demonstrating that enhanced processing and filter-

ing strategies produce a viable signal even in challenging environ-

ments, the main example being the simultaneous EEG and fMRI

acquisitions (Ritter, Becker, Freyer, & Villringer, 2010). Our results add

to this set of evidence by demonstrating the viability of EEG signals

for microstate analyses in an ecological scenario.

However, we emphasize that not all data could be recovered:

many epochs were contaminated by artifacts without a characteristic

spectral signature, which made their removal unfeasible and, conse-

quently, restricted our analyses to smaller windows. Movement arti-

facts were the most common due to the very nature of the piloting

activity, which requires constant communication between the crew

and the command tower. We chose the ICA as a strategy to handle

artifacts due to its wide usability in signal preprocessing (Delorme &

Makeig, 2004; Ritter et al., 2010; Soares et al., 2016), especially in

microstate pipelines (Michel & Koenig, 2018), in addition to its effec-

tiveness in indicating spurious sources (Hyvärinen & Oja, 2000), such

as exemplified in Figure 4. Our environment was intrinsically noisy,

forcing us to exclude a greater number of ICs (Refer to Table S1).

Nevertheless, removing an IC reduces the dimensionality of the data

set likewise the removal of a channel, and the evidence indicating that

the microstate model remains robust to a reduction in the number of

EEG channels (Khanna, Pascual-Leone, & Farzan, 2014), led us to sup-

pose that the pipeline would similarly accommodate a dimensionality

reduction of the input signal.

Furthermore, the microstate analysis assumes that each topogra-

phy is a correlate of the simultaneous activity of a set of networks in

the brain, which functionally interact for a period of time, and that

some characteristic topographies are recurrent over time (Koenig

et al., 2002). This premise motivates the application of clustering algo-

rithms for calculating topography templates, followed by the a

posteriori classification of the data. Consequently, the attribution of

each instant to one of the pre-defined classes disregards momentary

variations, favoring a globally observable pattern. Thus, the microstate

analysis embeds features that increase the robustness to external

noise.

Our results support the effectiveness of the adopted artifact

removal approach, since the template topographies recovered in flight

are similar to those characterized for the same participants at rest in

two distinct moments (Figure 5 and Figures S1 and S3). Moreover,

they resemble other reports in the literature (Bréchet et al., 2019;

Custo et al., 2017; Koenig et al., 2002; Pedroni et al., 2017; Seitzman

et al., 2017). Nevertheless, we emphasize that although they largely

correlate with each other (Table S2) there is a statistically significant

difference from these topographies (even when solely resting state

epochs are evaluated) when they are compared with the traditional

topographic analysis of variance (TANOVA) (Koenig et al., 2011)

(Figure S5).

In addition to that, there are other evidence pointing to the reli-

ability of our data, such as the high internal consistency between two

randomly defined subsets of all maneuvers, as detailed in the supple-

mentary material (Table S3). It is also noteworthy that on a popula-

tional level there was no difference on the microstates' modulations

between the baseline recordings performed before and after the flight

F IGURE 7 Sources recovered through sLORETA for the Flight-RSPre contrast after the application of a paired t test (p< .05), which pointed
to a cluster in the left prefrontal cortex, in yellow, corresponding to greater activity in flight in relation to baseline
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(RSpre and RSpos) (as can be seen in Figure 6, Figures S2 and S4),

which indicates that our recordings remained reliable after the flight.

Although there was likely a difference on the pilots' mental activity on

before and after the flight due to a multitude of factors that could

impact brain dynamics, such as arousal, stress, nervousness, tiredness

among others, they did not influenced microstates' dynamic parameters.

In short, our results suggest that microstates are promising neural

correlates in realistic situations, since they could be successfully

recovered during an overly complex task in a hostile environment.

Finally, we emphasize that there are many approaches for artifact

handling and validating this step is of extreme importance, especially

under unusual experimental conditions, due to the particularities and

nonlinearities of the EEG. We believe that, whenever possible, the

usage of pre-established guidelines and pipelines for signal processing

should be encouraged, as it allows the comparison with previous

works.

4.2 | Microstate modulation in an ecological
experiment: A comparison with controlled conditions

In this work, we explored the synergy between functional networks

during a decision-making task, through the dynamic features of micro-

states. The usage of this type of analysis in cognitive tasks and esta-

blishing a relationship between these neural correlates with mental

contents is still a recent field in the literature and our goal is to expand

the horizons of applications to realistic scenarios.

The microstate dynamics is heavily dependent on the set of tem-

plates used for data backfitting. There is a compromise between maxi-

mizing the total variance that a set of topographies explains

(specificity) and its generality at the group level (Michel & Koenig, 2018;

Murray, Brunet, & Michel, 2008). Thus, templates at the individual level,

that is, calculated exclusively from the participant data; at group level,

considering all participants; and using a normative reference gradually

increase generality and decrease specificity. As we aimed to characterize

a peculiar population in an unusual condition, we opted for a balance

between these options, computing templates at group level, employing

data from our participants and using as few topographies as possible.

This approach went against our initial expectation of recovering the four

canonical topographies, for purposes of greater comparison with the lit-

erature, as can be seen in Figure S1. The dissimilarity from the canonical

templates are likely due to the striking differences in the experimental

conditions. The canonical microstates were usually computed with par-

ticipants at rest and with their eyes closed. Nevertheless, our results

were remarkably similar to the topographies of Pedroni et al. (2017)

(Figure S1).

Pedroni et al. (2017) evaluated microstate dynamics during a gam-

bling task, which enabled us to establish relations between risk taking

in a controlled experiment versus a real scenario. The authors associ-

ated risk taking with the modulation of two microstates: the mean

duration of Microstate 1 increased after the participant lost the bet

and was associated with risk mitigation in the next trial. By contrast,

the mean duration of Microstate 4 increased after successful bets,

being further related to greater risk acceptance. We also observed an

antagonistic modulation of two microstates when we compared flight

and baseline dynamics (Figure S1). However, these differences

emerged between Classes 3 and 4. Therefore, our results corrobo-

rated with Pedroni et al., 2017 regarding the modulation of Microstate

4, reinforcing the association of this class with the preparation for a

risky activity, in spite of the distinctive experimental conditions. We

were not expecting a modulation in Microstate 1, likewise the

reported by the authors given that, for our participants, risk aversion

was not an option. However, the modulation in Microstate 3 was

unexpected.

Given the lack of consensus in the total number of microstate

classes, especially due to ambiguities when labeling canonical micro-

states C and D (Michel & Koenig, 2018), we further explored the vari-

ability of our results, using 5 and 6 classes. Increasing the number of

classes led to templates resembling the normative reference of Koenig

et al. (2002) and the work of Bréchet et al. (2019), as shown in

Figure S3 and Figure 5, hence recovering the four canonical topogra-

phies (A–D), known in the literature. Our initial hypothesis was that

decision making during the execution of the AR maneuver was medi-

ated by attention and cognitive control networks, since pilots report a

perceived workload increase during maneuver execution. Thus, we

expected a significant modulation of parameters associated with the

Microstate D, which was not observed in our work.

In our experiment, when contrasting flight with rest modulations

for four (Figure S2), five (Figure S4) and six classes (Figure 6), we

noticed a decrease in all dynamic parameters for the topography

resembling the Microstate F of Custo et al. (2017) and of Bréchet

et al. (2019). Furthermore, the topography is also similar to the micro-

state in which Seitzmanet al. (2017) reported modulations during a

mental subtraction task (in this article, classified as Microstate D).

However, the authors reported an increase in class D parameters and

a decrease in class C, while our results point to a decrease solely in

Microstate F. Despite the differences in topography templates, the

results of Bréchet et al. (2019) support Seitzman et al. (2017) regard-

ing modulations in Classes C and D for the same mental subtraction

task. Bréchet et al. (2019) further contrasted microstate modulations

during mental computation not only with a baseline, but also with a

memory recall task and matched EEG source reconstruction locations

with high resolution fMRI records. However, it is noteworthy that in

none of the three experimental conditions the authors reported mod-

ulation associated with topography F, as verified in our result.

The results of Custo et al. (2017) indicated that microstate classes

have sources in common, and that if the number of classes is reduced

there is a tendency for additional topographies to merge. From their

data, 7 classes were computed, labeled from A to G, and the authors

explored how grouping them into 4 classes justify some topography

distortions in the canonical templates. According to them, there are

also nuances regarding microstate labeling when more classes are

considered: They reported that canonical class C (i.e., when only

4 classes are considered) is a combination of Classes C and F and that,

in the literature, topographies classified as C may resemble either their

topographies labeled as C or as F. Thus, their results suggest that, in
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general, two topographies (C and F) are considered as representations

of the same state and network when the number of classes decreases.

Seitzman et al. (2017) reported a decrease in dynamic parameters

associated with class C and argued that unlike the proposal of Britz

et al. (2010), which associated this topography with the salience net-

work, it should instead be related with the Default Mode Network

(DMN) since this is the only task-negative network reported in the

fMRI literature. In addition to that, Seitzman et al. (2017) also associ-

ated Microstate D with the dorsolateral attention network, which

would corroborate with the increase they observed in dynamic param-

eters, since this network is task-positive. The findings of Bréchet

et al. (2019) reinforce a functional association of class C with DMN

and class D with networks in the prefrontal cortex.

The F topography of Custo et al. (2017) was associated to the

anterior dorsal cortex (anterior cingulate cortex and the Broadman

area 32), to bilateral areas in the frontal gyrus and in the insula. These

results were corroborated and extended by Bréchet et al. (2019), that

associated this class with the medical prefrontal cortex (mPFC) (bilat-

eral). Our results point to congruence with these works, since the

source reconstruction indicated a cluster of greater activity in the left

prefrontal cortex during flight (Figure 7). The fact that our results are

aligned with the literature becomes even more interesting when we

consider the limitations of our setup: there is a significant decline in

the source reconstruction quality when datasets have fewer elec-

trodes (less than 32 channels) and that use a template for the head

(Brodbeck et al., 2011). In addition, we had a relatively small number

of participants.

Custo et al. (2017) stated that the mPFC is an area engaged in

most classes of microstates and the authors interpret this region as a

major hub in the integration of large-scale networks. In addition to

that, the mPFC, and in particular its ventral part, is an important ele-

ment in the emotional regulation circuit, in association with the

amygdala (Buchanan et al., 2010; Etkin, Egner, & Kalisch, 2011;

Marek, Strobel, Bredy, & Sah, 2013). Both regions have an influence

on the hypothalamic–pituitary–adrenal axis, which, among other

functions, are involved in stress reactions (Urry et al., 2006). The

mPFC has a top-down modulation in the amygdala, that is, an

increased activity in the mPFC leads to inhibitions in the amygdala

activity and thus, it quickly attenuates the emotional response linked

to negative events (Urry et al., 2006). This is in agreement with our

results, that points to an increased activity in the mPFC during the

maneuver (Figure 7) in comparison with the baseline. Nevertheless,

notice that this microstate class has a significantly lower presence

(duration, occurrence and contribution) in the decision-making

epochs in relation to the baseline level. Therefore, our results indicate

that when present, this microstate class has a higher activity on the

mPFC, which modulates the limbic circuit. It is troublesome to make

inferences about the overall effect on emotion-regulation circuits,

but it may be indicative that decision making, in this case, is more

associated with limbic responses, which might explain paralysis

behaviors experienced by some pilots even after extensive training to

refine their SA.

Nevertheless, given the exploratory nature of our study, we advise

that such functional interpretations must be considered with caution.

First, because we have not standardized pilot behavior immediately

before/after maneuver execution, and, therefore, we lack in-flight

baseline datasets that would allow us to characterize brain dynamics

outside of the decision-making intervals. Thus, we are unable to guar-

antee that the modulation in Microstate F is due to the AR maneuver

on itself and not a byproduct of other piloting activity. In addition to

that, the microstate model considers cognition as a sequence of a finite

number of brain states, and at any given moment only one of the net-

works is active. In practice, this is a simplification due to the overlap

between some networks, and it is also worth mentioning that a portion

of the signal variance is not covered by the model (Bréchet

et al., 2019). Moreover, the microstate model has some open points

that are relevant if one wants to employ this technique to further char-

acterize SA, such as elucidating which systems are responsible for the

dominance of a given class of microstate over the others and under-

standing the abrupt transition from one class to the next (Michel &

Koenig, 2018). Finally, our results also reinforce that there may be

more than four canonical microstates and corroborate reports that the

cognitive manipulation of microstates is possible. Moreover, this work

extends the horizon of experiments to more realistic and challenging

conditions, since microstates seem to be robust neural correlates.

4.3 | Limitations and future work

Although the number of pilots in this work is significant compared to

the number of experts at a global level (there is a small number of

instructor training centers in the world [Wikipedia, 2019]), we still

have few subjects to overcome the intrinsic variability of physiological

measures. Therefore, we are still unable to establish direct and statis-

tically representative relationships between microstate dynamics and

each maneuver outcome or the participant expertise. Although in the

aeronautical context the total number of maneuvers per participant is

representative given the cost of a flight-test hour in a fully

instrumented aircraft, this number of trials is still lower than what is

usually performed in controlled physiology experiments. Balancing the

constraints of these two distinct scenarios is one of the main chal-

lenges in processing data from realistic situations.

As new simulation and virtual reality technologies evolve, a new

window of opportunity opens up for the study of SA, where some of

the realism is compromised in favor of a cheaper study, which encom-

passes a larger number of participants and in a wider range of situa-

tions. For future studies, it would be interesting to evaluate pilots in

flight simulators during different training stages—a longitudinal study.

Finally, we also emphasize the impact of noise. First, because the

noise intrinsic to an experiment in these conditions is a risk, and the

artifact-handling strategies may not result in viable EEG signals in all

experimental contexts. Thus, it is important that every study in a new

and challenging environment is preceded by feasibility analyses. In

addition to that, noise characterization in unconstrained experimental
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conditions is essential in order to allow the disentanglement of true

neurophysiological effects from external contamination. In our experi-

ment, had we previously recorded in-flight baselines, we would be

able to further explore how residual noise influenced microstates'

modulation. Therefore, we encourage that these epochs are included

in other realistic experiments.
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