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Abstract

Recent research shows bidirectional communication between the normal brain and the

peripheral immune system. Glioma is a primary brain tumor characterized by systemic

immunosuppression. To better understand gliomagenesis, we evaluated associations

between 277 prediagnostic serum cytokines and glioma. We used glioma (n = 487) and

matched control (n = 487) specimens from the Janus Serum Bank Cohort in Oslo, Norway.

Conditional logistic regression allowed us to identify those cytokines that were individually

associated with glioma. Next, we used heat maps to compare case to control Pearson corre-

lation matrices of 12 cytokines modeled in an in silico study of the interaction between the

microenvironment and the tumor. We did the same for case-control correlation matrices of

lasso-selected cytokines and all 277 cytokines in the data set. Cytokines related to glioma

risk (P� .05) more than 10 years before diagnosis are sIL10RB, VEGF, beta-Catenin and

CCL22. LIF was associated with decreased glioma risk within five years before glioma diag-

nosis (odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.23, 0.94). After adjustment

for cytokines above, the previously observed interaction between IL4 and sIL4RA persisted

(> 20 years before diagnosis, OR = 1.72, 95% CI = 1.20, 2.47). In addition, during this

period, case correlations among 12 cytokines were weaker than were those among controls.

This pattern was also observed among 30 lasso- selected cytokines and all 277 cytokines.

We identified four cytokines and one interaction term that were independently related to gli-

oma risk. We have documented prediagnostic changes in serum cytokine levels that may

reflect the presence of a preclinical tumor.
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Introduction

Advances in immunology have led to development of promising therapies for treatment of gli-

oma [1, 2]. However, at present, the median survival time from diagnosis of the most common

adult type of glioma, glioblastoma, is only 14 months [3]. This brief survival time may be attrib-

utable to the fact that known preclinical symptoms occur, on average, only three months before

diagnosis[4] and often indicate an advanced tumor. However, glioma development prior to the

appearance of symptoms may be a longer process [5]. It is therefore important that the early

stages of gliomagenesis be identified and examined with the ultimate goal of intervention.

Recent research has established two-way communication between the central nervous sys-

tem and the immune system in the absence of pathology in either [6]. Consistent with these

findings, epidemiological, biological and clinical evidence support the role of the immune sys-

tem in gliomagenesis. For example, elevated levels of prediagnostic total serum IgE are associ-

ated with reduced glioma risk [7], as is a history of varicella zoster infection [8]. The tumor

interacts with microglia in its microenvironment to escape immune surveillance [9, 10]. Fur-

thermore, glioma patients may exhibit severe systemic immune suppression [11]. Thus we

investigated prediagnostic cytokines, indicators of immune function, to determine whether

they were related to subsequent glioma risk or indicate the presence of a preclinical tumor.

Cytokines are multi-functional signaling proteins that, among other roles, regulate immune

responses including tumor immune surveillance, tumor-induced immunosuppression [12]

and also promote neural stem cell renewal and astrocyte differentiation [13]. In the glioma

microenvironment they are eventually appropriated by the tumor and assist in immune sup-

pression and tumor invasion [9, 14]. Because of their obvious relevance to gliomagenesis there

are several studies of the relationship between cytokines and glioma after diagnosis [15–17],

however, our previous study of 12 allergy and glioma related serum cytokines is the only

known examination of prediagnostic serum cytokines and glioma [18]. In that study we found

an interaction between interleukin 4 (IL4), a cytokine active in allergy [19] and normal brain

function [20]), and its soluble receptor, interleukin 4 receptor alpha (sIL4RA). One goal of the

present study was to determine whether we would identify additional associations between

individual prediagnostic serum cytokines and subsequent diagnosis of glioma and, if so,

whether the previously observed interaction between IL4 and sIL4RA [18] would persist in

their presence. A difference between our previous and present study is that, because of small

numbers of glioblastoma cases in the five years before diagnosis (n = 22), we did not analyze

the data separately by this subgroup in the present study.

Cytokines are difficult to study individually because they are pleiotropic, redundant, have par-

adoxical functions and operate in complex non-linear networks where they may activate or

inhibit each other [21]. In our previous study of a subset of 12 allergy-related cytokines [18]

from the present data set, we found that correlations among case but not control cytokines

weaken within the five years prior to glioma diagnosis. To attempt replication of these findings

using different sets of cytokines, we estimated case-control correlations among 12 of 15 cytokines

included in an in silico study of prediagnostic cytokines in the glioma microenvironment [14]. In

this study, Wu et al. found that, as the tumor took control of cytokine production, the previously

strong correlations among cytokines in the microenvironment diminished. Whether we would

see a corresponding cytokine correlation diminution in the peripheral circulation, prior to the

time of diagnosis, was one of the questions that we addressed. In addition to the 12 cytokines

identified by Wu et al, we examined case-control correlations among cytokines selected by the

lasso method of variable selection [22] and all 277 prediagnostic cytokines in the data set.
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Our sample is an individually matched, nested case-control study of 277 cytokines based on

prospectively collected sera from 487 subsequent glioma cases and their 487 matched glioma

controls from the Janus Serum Bank in Oslo, Norway.

Methods

Study population

The study population has previously been described in detail [18]. Here we briefly note its

salient features. The Janus Serum Bank was established in 1972 to conduct epidemiological

studies of cancer [23, 24]. This biobank is now owned by the Cancer Registry of Norway and

contains serum samples from 166,137 men and 152,491 women. Approximately 90% of the

serum donors were participants in routine cardiovascular health examinations conducted by

the National Health Screening Services. Samples were stored at −25˚C and underwent one

thaw–freeze cycle in preparation for the present study.

The final data set contained no personal identifiers. However, initially, personal identifica-

tion numbers were used to link Janus Serum Bank cohort members to the Cancer Registry of

Norway. We analyzed serum samples from 487 blood donors who were subsequently diag-

nosed with glioma (International Classification of Disease, Oncology, Third Edition [ICD-O-

3] morphology codes 9380–9411, 9420–9480, and 9505) between January 1, 1974 and Decem-

ber 31, 2007.

A control participant for each glioma case was randomly selected, according to an incidence

density sampling scheme, from the same cohort. Controls were individually matched to cases

on date of blood collection (±3 months), date of birth (±1.25 years), county of residence at

blood collection and gender. Matched control participants were required to be alive on the

date of diagnosis of the case to which they were matched and free from any cancer except non-

melanoma skin cancer. In addition, people diagnosed with rare tumors (i.e., all tumors other

than breast, prostate, and colorectal) after the corresponding case’s date of glioma diagnosis

were not included. We analyzed serum samples from 487 control participants.

Ethics statement

The research plan on which the present study is based was approved by the Regional Ethics

Committee of Southern Norway and the Norwegian Data Protection Authority. During the

Janus Serum Bank’s first years, 1973–1992, donors gave broad verbal consent for use of sam-

ples in “cancer research” [25] in accordance with Norwegian law which did not require written

consent at that time. No samples were collected from 1993 to 1996. Samples from 1997 and

later were collected in conjunction with an explicit written informed consent document (Act

Relating to Biobanks, § 12, http://ec.europa.eu/research/biosociety/pdf/norwegian_act_

biobanks.pdf). These signed forms are stored either at the Cancer Registry of Norway or the

Norwegian Institute of Public Health. The Norwegian Data Protection Authority (https://

www.datatilsynet.no/English/) has approved of the use of the Janus data and biological samples

collected during the period 1972–2004, while requiring that blood donors are free to uncondi-

tionally withdraw their consent at any time. Upon withdrawal, their serum samples will be

destroyed and associated data deleted (Act Relating to Biobanks, § 14, http://ec.europa.eu/

research/biosociety/pdf/norwegian_act_biobanks.pdf). As additional participant protection all

research projects using specimens from the Janus repository and data from the Cancer Regis-

try of Norway need approval from a Regional Committee for Medical and Health Research

Ethics. Donors are informed about ongoing research projects through the Cancer Registry

web pages (http://www.kreftregisteret.no/en/Research/About-our-Research/). Analyses of
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these anonymous data were also approved by the Institutional Review Board of Ohio State

University.

Cytokine microarray analysis: RayBio® human cytokine antibody array

kits

Analytic methods are discussed in detail elsewhere [18], here we briefly summarize these

methods. Cytokine array kits, consisting of a combination of two Human Cytokine Antibody

Arrays (G2000, n = 174 and G4000, n = 274) from RayBiotech, Inc. (Norcross, Georgia) were

used to measure 277 serum cytokines, soluble cytokine receptors and transcription factors.

These array kits were mailed to Professor Eivind Hovig’s Laboratory at Oslo University, Nor-

way where serum samples were randomly assigned to print batches. Laboratory personnel did

not know the case status of the study participants from whom the samples were drawn. The

antibody- based microarray assay is analogous to a sandwich ELISA assay using two sets of

anti-cytokine or transcription factor antibodies.

Statistical methods

This article is the second analyzing prediagnostic serum cytokine levels as they affect glioma

risk and are affected by the preclinical tumor. The first manuscript [18] was based on the a-
priori hypothesis of an association between allergy-related cytokines and glioma and was

restricted to 12 of the 277 cytokines in the data set. In the present manuscript we examine

all 277 of these cytokines and two cytokine subsets that differ from those in the previous

study. We stratify our findings by time before diagnosis (� 5 years, > 10 years, >15 years,

>20 years, all times).

We first minimized the potential influence of outliers by transforming serum cytokine val-

ues to a natural logarithmic scale and then standardizing each to a mean of zero and a standard

deviation of one. To estimate odds ratios for each of the 277 cytokines, we used conditional

logistic regression models, conditioned on matched case-control sets and stratified by the pre-

diagnostic time categories. This method yielded seven statistically significant (P� .05) cyto-

kines individually associated with glioma. Cytokine levels are highly correlated with each

other; we therefore used stepwise conditional logistic regression (backward selection) to iden-

tify the cytokines, among those individually related to glioma, which continued to be associ-

ated with glioma when all seven cytokines were included in the same regression model. When

the models for each time category were selected, we included IL4, sIL4RA and their interaction

term in these models to see if these variables, identified in our previous study [18], retained

their significance in the presence of the newly identified cytokines. These three IL4 terms were

retained in the models if the interaction term was statistically significant. Cytokines which lost

their significance in the presence of these IL4 terms were also removed from the models. In

addition, to identify patterns in the relative sizes of the odds ratios by time before diagnosis,

we ordered each of the 277 individual odds ratios by magnitude and time category whether or

not they were statistically significant.

To understand the inter-relationships among cytokines reported in a previous in silico
study of the glioma microenvironment [14], we generated a network that included seven of the

15 cytokines in that study (IPA1, QIAGEN Redwood City, www.qiagen.com/ingenuity).

To compare case to control correlation coefficients of 12 of the 15 in silico cytokines on

which we had data, we used heat maps stratified by time before diagnosis. Next, to identify

additional cytokines that discriminated between cases and controls in our sample, we used the

lasso method of variable selection [22]. We again used heat maps to investigate correlations

among these lasso-selected variables and all 277 cytokines. These heat maps were based on a
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hierarchical clustering method with a distance metric computed from the Pearson correla-

tions. For comparison of the heat maps across time periods, cytokines were aligned in the

same order for each time period.

To further quantify our visual interpretations of the heat maps containing correlations

among 277 cytokines, we created 1000 bootstrap samples (sampled with replacement) strati-

fied by time before diagnosis. We then summed the absolute values of case or control correla-

tion coefficients separately. Next, for each time category, we subtracted the case sums from the

control sums and calculated the mean differences and 95% confidence intervals of the boot-

strap samples. A positive mean value would indicate that, on average, control correlations

were larger than were those of cases. A negative value would indicate the opposite.

To evaluate quality control, for each of the cytokines that were identified by the logistic regres-

sion models above or were included in heat maps based on the in silico study [14], we used the 47

replicate case and 48 replicate control samples to estimate coefficients of variation (CV) for each

cytokine, and then calculated their median values as well as their interquartile ranges (IQR).

All analyses were conducted using SAS statistical software, version 9.3 (SAS Institute Inc,

Cary, NC) or the R language and environment (R Core Team (2013). R: A language and envi-

ronment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

(URL http://www.R-project.org/)).

Results

Characteristics of study population

Cases and controls are balanced with respect to the percentage of men, median age at blood

collection and year of glioma diagnosis (Table 1). However, because age 42 years was the

median age at blood collection, with little variation (IQR = 40, 43), there is a 22 year age differ-

ence between the median age at diagnosis among study participants whose blood was collected

within five years before glioma diagnosis and those whose blood was collected more than 20

years before glioma diagnosis. In the Sl Table, descriptive variables are shown separately for

glioblastoma (grade 4) and other glioma (grades 1–3). Findings are similar to those in Table 1

however, in the S1 Table there are large and consistent differences in the percentage of men

between the two tumor types. Overall, there is a larger percentage of men with glioblastoma,

(median = 72 percent, IQR = 67, 77 percent) than with other types of glioma, (median = 58

percent, IQR = 51, 66 percent).

Case-control cytokine level means and associated odds ratios

Table 2 shows means of case and control standardized logs of cytokine levels by time before

diagnosis and their associated statistically significant (P� .05) odds ratios. The directions of

differences between case and control cytokine level means are consistent the magnitudes of

the related odds ratios. Odds ratios for soluble interleukin 10 receptor beta (sIL10RB) are simi-

lar among people whose blood was drawn more than ten years before diagnosis, while those

for the IL4-sIL4RA interaction increase slightly with the length of time before diagnosis. The

inverse association between leukemia inhibitory factor (LIF) and glioma is restricted to partici-

pants whose blood was drawn five years before glioma diagnosis. Complete results of the anal-

yses of all 277 cytokines by the five time categories are included in the S2 Table.

Network of previously identified cytokines associated with glioma

Fig 1 shows the known networks among seven of the 15 cytokines included Wu et al’s in silico
study [14]. These cytokines were used in their models to study the prediagnostic interaction
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between the microenvironment and glioma. Rather than studying associations between these

cytokines and glioma one at a time, we compared case and control correlations among them.

Our rationale for this approach was that interrelationships among these cytokines may distort

estimates of effects of individual cytokines on glioma risk.

Table 1. Descriptive characteristics of sample1 by time of blood sample before case diagnosis.

Descriptive variable Glioma Controls2

Total

Number 487 487

Percent men (mean) 67 (63, 71)3 67 (63, 71)

Median age at blood collection 42 (40, 43)4 42 (40, 43)

Median year of blood collection 1986 (1976, 1989) 1986 (1976, 1989)

Median age at glioma diagnosis 57 (51, 63) ——5

Median years from blood collection to diagnosis 15 (9, 21) ——

� 5 years before diagnosis

Number 55 55

Percent men (mean) 58 (45, 72) 58 (45, 72)

Median age at blood collection 42 (41, 46) 42 (41, 47)

Median year of blood collection 1988 (1984, 1989) 1988 (1984, 1989)

Median age at glioma diagnosis 45 (43, 48) ——

Median years from blood collection to diagnosis 3 (1, 4) ——

> 10 years before diagnosis

Number 347 347

Percent men (mean) 67 (62, 72) 67 (62, 72)

Median age at blood collection 42 (41, 46) 42 (41, 46)

Median year of blood collection 1985 (1975, 1989) 1985 (1975, 1989)

Median age at glioma diagnosis 59 (55, 66) ——

Median years from blood collection to diagnosis 17 (14, 24) ——

> 15 years before diagnosis

Number 2286 230

Percent men (mean) 65 (59, 71) 65 (59, 71)

Median age at blood collection 42 (40, 44) 42 (40, 43)

Median year of blood collection 1977 (1975, 1987) 1977 (1975, 1988)

Median age at glioma diagnosis 63 (59, 68) ——

Median years from blood collection to diagnosis 21 (17, 27) ——

> 20 years before diagnosis

Number 126 126

Percent men (mean) 67 (59, 76) 67 (59, 76)

Median age at blood collection 41 (38, 44) 41 (38, 44)

Median year of blood collection 1976 (1973, 1977) 1976 (1973, 1977)

Median age at glioma diagnosis 67 (63, 71) ——

Median years from blood collection to diagnosis 26 (23, 30) ——

1 Glioma study participants were blood donors (1974–2007) to the Janus Serum Bank, Oslo, Norway.

2 Control participants were individually matched to cases on age date of blood collection and sex.

3 95% confidence interval

4 Interquartile range

5 Not applicable

6 Controls are matched to cases within three months of blood collection. Therefore a matched pair may fall

into separate time categories thus accounting for unequal numbers of cases and controls in this category.

https://doi.org/10.1371/journal.pone.0178705.t001
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Table 2. Mean case-control levels of selected1 cytokines2 and their associations with glioma by time before diagnosis.

Cytokines Glioma Mean3 (95% CI) Control Mean (95% CI) Odds Ratio4 95% CI5

Total

487 cases/487 controls6

sIL10RB -0.05 (-0.13, 0.04) 0.04 (-0.05, 0.13) 0.69 0.55,0.87

VEGF 0.05 (-0.04, 0.14) -0.05 (-0.14, 0.04) 1.46 1.18,1.82

IL4 0.01 (-0.08, 0.10) -0.01 (-0.10, 0.08) 1.13 0.90,1.43

sIL4RA -0.01 (-0.10, 0.08) 0.03 (-0.06, 0.11) 0.92 0.76,1.12

IL4-sIL4RA -0.05 (-0.15, 0.16) -0.24 (-0.34, -0.15) 1.37 1.16,1.61

� 5 Years before Diagnosis

55 cases/55 controls

LIF -0.23 (-0.52, 0.05) 0.05 (-0.21, 0.30) 0.47 0.23, 0.94

> 10 Years before Diagnosis

347 cases/347 controls

sIL10RB -0.02 (-0.13, 0.08) 0.11 (0.00, 0.22) 0.56 0.42, 0.75

VEGF 0.10 (-0.01, 0.21) -0.03 (-0.13, 0.07) 1.58 1.22,2.05

IL4 0.05 (-0.06, 0.16) 0.01 (-0.10, 0.11) 1.35 1.01, 1.79

sIL4RA -0.09 (-0.20, 0.02) 0.00 (-0.10, 0.10) 0.84 0.67,1.07

IL4-sIL4RA -0.06 (-0.18, 0.07) -0.25 (-0.35, -0.15) 1.42 1.15, 1.74

> 15 Years before Diagnosis

228 cases/2307 controls

sIL10RB 0.06 (-0.07, 0.19) 0.24 (0.10, 0.38) 0.51 0.36, 0.71

beta-Catenin 0.16 (0.02, 0.30) 0.01 (-0.12, 0.13) 1.86 1.28, 2.71

CCL22 0.06 (-0.07, 0.19) -0.11 (-0.25, 0.03) 1.45 1.07, 1.96

IL4 0.13 (-0.01, 0.27) 0.11 (-0.03, 0.24) 1.03 0.71,1.50

sIL4RA -0.15 (-0.29, -0.01) -0.07 (-0.19, 0.05) 0.72 0.54, 0.97

IL4-sIL4RA -0.02 (-0.20, 0.16) -0.26 (-0.40, -0.13) 1.58 1.22,2.04

> 20 Years before Diagnosis

126 cases/126 controls

sIL10RB 0.34 (0.16, 0.52) 0.49 (0.30, 0.68) 0.53 0.33, 0.84

CCL22 0.01(-0.17, 0.20) -0.22 (-0.41, -0.02) 1.538 1.03, 1.26

IL4 0.35 (0.15, 0.55) 0.29 (0.12, 0.47) 1.28 0.69, 2.39

sIL4RA -0.38 (-0.57, -0.19) -0.42 (-0.58, -0.26) 0.83 0.56,1.22

IL4-sIL4RA 0.04 (-0.25, 0.33) -0.37 (-0.58, -0.17) 1.72 1.20, 2.47

1. All 277 cytokines were tested and seven individually statistically significant (P�. 05) cytokines were included in stepwise regression models. Five

cytokines in table retained statistical significance in stepwise models. The IL4 interaction term was added to the models and retained if significant.

2. Abbreviations: sIL10RB, soluble interleukin 10 receptor beta; VEGF, vascular endothelial growth factor; IL4, interleukin 4; sIL4RA, soluble interleukin 4

receptor alpha, IL4-sIL4RA, interaction between IL4 and sIL4RA; LIF, leukemia inhibitory factor; beta-Catenin, Catenin beta-1; CCL22, C-C motif

chemokine 22

3. Mean values are means of standardized natural logarithms of the cytokine levels.

4. Logistic regression conditioned on matched set (age, date of blood collection, sex), adjusted for other cytokines in table

5. 95% confidence interval

6. Controls are assigned the date of diagnosis of the case to which they were matched.

7. Controls are matched to cases within three months of blood collection. Therefore a matched pair may fall into separate time categories thus accounting

for unequal numbers of cases and controls in this category

8. The odds ratio for CCL22 of 1.53 among people whose blood was drawn more than 20 years before glioma diagnosis shows that a one unit increase in

the standardized log of cytokine levels is associated with a 53% increase in the odds of glioma.

https://doi.org/10.1371/journal.pone.0178705.t002
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Correlations among 12 previously identified case and control cytokines

Fig 2 displays case (A) and control (B) cytokine correlation patterns among 12 cytokines of the

15 identified in Wu et al’s in silico study [14]. In this study they found that, as the tumor

entered a rapid growth phase, correlations among cytokines in the microenvironment rapidly

diminished. The heat maps in Fig 2 are based on analysis of data from serum samples collected

more than 15 years before glioma diagnosis. Correlation patterns among cases (A) and con-

trols (B) are similar.

In Fig 3 case (A) and control (B) correlation patterns are based on serum collected within

five years before diagnosis. Case correlation patterns (A) are clearly weaker (closer to the null)

overall than are those among controls (B). This pattern is consistent with that found by Wu

et al [14]. Furthermore, control patterns in Fig 3 are similar to those in Fig 2 suggesting that

case-control differences in Fig 3 are not exclusively attributable to sampling variation resulting

from the relatively small number of observations (n = 55 each for cases and controls).

In the S1 Fig case-control distributions of P-values, based on t-tests of the correlation coeffi-

cients in Fig 3, reveal patterns similar to those in Fig 3. Further stratifying on tumor grade

(glioblastoma and other glioma) again confirms stronger correlations among controls (S2B

andS2D Fig)) than cases (S2A and S2C Fig, although the case-control contrast is stronger for

other glioma (grades 1–3) than for glioblastoma (grade 4).

Mean serum cytokine levels of 12 previously identified cytokines�5 and

>15 years before glioma diagnosis

Within five years before diagnosis, because there are weaker correlations among case than

among control cytokines (Fig 3), one might expect mean case serum cytokine levels to be

Fig 1. Network includes seven of 15 previously cytokines identified by Wu et al. [14]. Abbreviations:

IL6, interleukin 6; IL10, interleukin 10; IL1B, interleukin 1beta;KITLG, stem cell factor, kit ligand; TGFB1,

transforming growth factor beta1; VEGF, vascular endothelial growth factor; GMCSFR, Granulocyte

macrophage colony stimulating factor receptor.

https://doi.org/10.1371/journal.pone.0178705.g001

Prediagnostic cytokines and glioma

PLOS ONE | https://doi.org/10.1371/journal.pone.0178705 June 8, 2017 8 / 17

https://doi.org/10.1371/journal.pone.0178705.g001
https://doi.org/10.1371/journal.pone.0178705


lower than are those of controls. As shown in the S3 Table, within five years before diagno-

sis, the standardized logs of 10 of 12 case serum cytokine levels are lower than are those of

controls. In the S4 Table, more than 15 years before diagnosis, only eight of the 12 case cyto-

kine levels are lower than are those of controls. In addition, differences between case and

control cytokine levels are smaller in the S4 Table (>15 years) than they are in the S3 Table

(�5 years).

Correlations among 30 lasso selected and all 277 cytokines� 5 and >10

years before glioma diagnosis by case status

Within five years before diagnosis, correlation patterns among the 30 cytokines selected by the

lasso variable selection method (Fig 4) are stronger among controls (B) than among cases (A).

This pattern is repeated when correlations among all 277 cytokines are considered (S3 Fig).

The top two heat maps contain correlations among cases (S3A Fig) and controls (S3B Fig)

whose blood was collected within five years of diagnosis. The bottom two heat maps show that

case (S3C Fig) and control (S3D Fig) correlations more than ten years before diagnosis are

similar to each other.

Fig 2. Correlations among cytokines > 15 years before glioma diagnosis. Color scale: yellow-highest correlations, green = moderate

correlations, blue = lowest correlations; Abbreviations: KITLG, stem cell factor, kit ligand; sGCSFR, soluble granulocyte colony stimulating factor

receptor; sGMCSFR, soluble granulocyte macrophage colony stimulating factor receptor; MIF, macrophage migration inhibitory factor; FGFbasic,

basic fibroblast growth factor; VEGF, vascular endothelial growth factor; EGF, epidermal growth factor; TGFbeta1, transforming growth factor

beta1; TGFalpha1, transforming growth factor alpha1; IL10, interleukin 10; IL6, interleukin 6; IL1beta, interleukin 1 beta.

https://doi.org/10.1371/journal.pone.0178705.g002
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Relative magnitudes of odds ratios� 5 years before diagnosis

These case-control correlation differences are also reflected in the relative magnitudes of the

odds ratios by time category (S2 Table). When the 277 odds ratios in the five time categories

(� 5 years, > 10 years, >15 years, >20 years, all times) are ordered by size, 90 out of the 100

lowest odds ratios in the data set are found among people whose blood was collected within

five years before diagnosis. Only 13 of the 100 highest odds ratios in the data set are found

within the lowest time category.

Confirm visual impressions of heat maps using bootstrap analysis

To further quantify our visual impressions of the heat maps, within the five time categories, we

created 1000 bootstrap samples and calculated the differences between the sums of the absolute

values of case from control correlations by time before diagnosis. We show the mean values of

these differences by time category in Table 3. A positive value for the difference indicates con-

trol correlations are larger than case correlations and a negative value suggests the opposite.

Therefore within five years before diagnosis, control correlations are stronger than are those

among cases (mean difference = 3088.06; 95% CI = -1823.47, 7907.50), although these results

Fig 3. Correlations among cytokines� 5 years before glioma diagnosis. Color scale: yellow-highest correlations, green = moderate

correlations, blue = lowest correlations; Abbreviations: KITLG, stem cell factor, kit ligand; sGCSFR, soluble granulocyte colony stimulating factor

receptor; sGMCSFR, soluble granulocyte macrophage colony stimulating factor receptor; MIF, macrophage migration inhibitory factor; FGFbasic,

basic fibroblast growth factor; VEGF, vascular endothelial growth factor; EGF, epidermal growth factor; TGFbeta1, transforming growth factor

beta1; TGFalpha1, transforming growth factor alpha1; IL10, interleukin 10; IL6, interleukin 6; IL1beta, interleukin 1 beta.

https://doi.org/10.1371/journal.pone.0178705.g003
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are not statistically significant (that is, the 95% confidence interval includes zero). Nonetheless,

the direction of this difference is consistent with our visual impressions of these heat maps.

Quality control: Coefficients of variation

The median coefficients of variation (CVs) and interquartile ranges (IQR) for the 16 cytokines

included in Table 2 or Fig 2 are shown in the S5 Table. Case and control CV medians are each

Fig 4. Correlations among cytokines� 5 years before glioma diagnosis. Color scale: yellow-highest correlations, green = moderate correlations,

blue = lowest correlations. For nomenclature see https://www.raybiotech.com/cytokine-nomenclature.html.

https://doi.org/10.1371/journal.pone.0178705.g004

Table 3. Mean differences between case and control sums of absolute values of correlation coeffi-

cients of 277 cytokines in 1000 bootstrap samples by time before diagnosis.

All study participants, n (cases/controls) 487/487

Mean difference between sums (95% CI1) -488.292 (-2276.27, 1253.00)3

Time from blood collection to tumor diagnosis4

� 5 years before diagnosis, n 55/55

Mean difference between sums (95% CI) 3088.065 (-1823.47, 7907.50)

>10 years before diagnosis, n 347/347

Mean difference between sums (95% CI) -1253.99 (-3436.83, 728.58)

>15 years before diagnosis, n 228/2306

Mean difference between sums (95% CI) -1254.36 (-3963.36, 1391.64)

>20 years before diagnosis, n 126/126

Mean difference between sums (95% CI) -1258.86 (-4589.04, 2001.73)

1 95% confidence interval

2 Negative differences mean that, on average, control correlations coefficients are larger than are those of

cases.

3 If the 95% confidence interval includes zero then its corresponding P-value is not statistically significant (P

< .05)

4 Controls were assigned the date of diagnosis of the case to which they were matched

5 Positive difference means that, on average, case correlation coefficients are larger than are those of

controls.

6 Controls are matched to cases within three months of the time of blood collection. Therefore a matched

pair may fall into separate time categories thus accounting for unequal numbers in this time category.

https://doi.org/10.1371/journal.pone.0178705.t003
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0.07. All coefficients of variation are less than 0.11 except for those for vascular endothelial

growth factor (VEGF) and beta-Catenin. In a previous study of 12 allergy-related cytokines

using this data set [18], we found that batches were evenly distributed among cases and con-

trols, as are rescanned samples.

Discussion

We found three positive (VEGF, beta-Catenin and C-C motif chemokine 22 (CCL22)) and

two negative (LIF, sIL10RB) associations between five prediagnostic serum cytokines and the

subsequent risk of glioma. The previously noted interaction between IL4 and sIL4RA [18] con-

tinued to be associated with glioma in the presence of our univariate findings. We also con-

firmed earlier findings [18] of weaker correlations among case than among control cytokines

within five years before glioma diagnosis. We observed this pattern among 12 cytokines inde-

pendently identified in the previous literature [14], 30 cytokines selected by the lasso method

of variable selection [22] and all 277 cytokines in the data set.

Our results indicating that VEGF, beta-Catenin and CCL22 levels increase glioma risk are

consistent with previous post diagnostic and experimental literature [10, 16, 17, 26–28]. The

association between VEGF, an angiogenic growth factor, and glioma is well-documented [16,

17, 26]. Beta-Catenin facilitates growth of brain tumor initiating cells [28] and CCL22, secreted

by the tumor, recruits immunosuppressive regulatory T cells [10, 27]. Given these functions,

positive associations with glioma risk are not unexpected.

Our observation of decreased glioma risk with higher levels of LIF was unexpected because

this cytokine is a mediator of glioblastoma stem cell renewal [29] and a post- diagnostic case-

control study of serum cytokines found higher levels of this cytokine among glioma cases than

among controls [17]. However, LIF is a pleiotropic cytokine that also promotes glial cell differ-

entiation [30, 31] and, under certain conditions, inhibits astrocyte proliferation [31]. These lat-

ter functions are consistent with our findings.

Similarly, we observed that elevated sIL10RB levels appear to reduce glioma risk. Previous

literature characterizes IL10 as immunosuppressive [16] and finds only positive associations

between serum IL10 [17] or genetic expression of IL10RB [15] and glioma. However, IL10

may also stimulate the immune system thereby playing a role in tumor immune surveillance

[32]. IL10 knockout mice showed weakened tumor immune surveillance [33]. In addition, a

soluble cytokine receptor (a receptor found in the serum rather than on the cell surface, e.g.

sIL10RB) may act either as an antagonist or agonist [34].

Expression of IL4, an immunomodulatory cytokine [35], is increased in a glioblastoma cell

line [16] where it is thought to be a component of tumor-induced immunosuppression [10].

However, the soluble receptor, sIL4RA, modulates IL4 [35] so the mechanism by which this

interaction would increase glioma risk more than 20 years before diagnosis is not apparent.

Regardless of the consistency of our individual statistically significant findings with the post

diagnostic literature, we suggest caution in their interpretation. We identified the five univari-

ate cytokine associations by conducting 1,385 tests of statistical significance (277 multiplied by

five time categories). Overall, only seven odds ratios were significantly associated with glioma

(0.5%). (Two cytokines were eliminated using stepwise regression). This percentage is well

within the false positive range (5%) and therefore, in addition to their consistency with previ-

ous literature, as noted above, these odds ratios findings must be replicated in another data set

to achieve credibility. Furthermore, as we noted in the introduction, cytokines are signaling

proteins that interact with each other so that individual serum cytokine levels may not be bio-

logically meaningful [14]. Therefore, we suggest that our cytokine interaction term and corre-

lation results better represent the known biological interactions among cytokines.
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Wu et al. [14] attributed weakening of cytokine correlations in the glioma microenviron-

ment to a transformation from a microenvironment controlled regulatory mechanism to a

tumor controlled mechanism. Whether this transformation is reflected in the diminution of

peripheral cytokine signaling in future glioma patients is unknown. In a study using a mouse

model, Kennedy et al. [36] found that the immunomodulatory effects of the tumor on the

periphery preceded those in the central nervous system. Therefore, the weakening of cytokine

correlations that we observed may reflect changes in immune function characteristic of the

prediagnostic periphery rather than those in the tumor microenvironment.

After glioma diagnosis, previous literature indicates that circulating cytokine levels and

tumor cytokine expression are comparable [17]. For example, in glioblastoma patients, levels

of the immunosuppressive cytokines IL4 and IL10 were elevated in both their peripheral lym-

phocytes and cell cultures from their tumors [37]. Studies of the 12 cytokines shown in the

heat maps in Figs 2 and 3 find that glioma patients have higher levels of these cytokines than

do their controls [16, 17]. Thus, for these 12 cytokines, only our results for VEGF are consis-

tent with the post diagnostic literature [16, 17, 26]. Differences between our prediagnostic

results and post diagnostic findings may be attributed, in part, to progressive tumor growth

accompanied by increases in tumor-induced immunomodulation [10] or the effects of medi-

cation [38] and treatment [39]. Immunomodulation associated with tumor growth is complex

and involves many levels of interaction [10]. Thus the primary contribution of the present

work is that it further describes previously unknown prediagnostic cytokine changes. (For

additional references on circulating cytokines in glioma patients see the S6 Table).

The primary limitation of the present study is that we do not have serial values for each

study participant so that we cannot determine the within-person effects of time to diagnosis

on peripheral cytokine levels and correlations. However, except for those within five years of

diagnosis, control correlation matrices are similar, within levels of time before diagnosis, sug-

gesting that our findings are not attributable to differences among study participants over

time. Another potential limitation is that the sample in which we observe the weakening of

correlations is relatively small (n = 55 cases, 55 controls). Again, we suggest that the similarity

of control correlation patterns within five years before diagnosis to those further from the time

of diagnosis indicates that our results may not be exclusively attributable to sampling variation.

In addition, the preponderance of odds ratios less than one in this time category suggests that

patterns observed in the heat maps within five years before diagnosis suggesting diminished

cytokine signaling.

Our correlation findings should be interpreted in the context of the increased understand-

ing of the two-way interaction between the central nervous system and the peripheral immune

system [6, 40]. Specifically, the recent discovery of a lymphatic system in the meninges which

is able to transport immune cells to the cervical lymph nodes provides further evidence of

communication between the brain and the peripheral nervous system [41]. Although our find-

ings can be placed in the context of brain- peripheral immune system communication, the spe-

cific details of this process, as they relate to gliomagenesis, are yet to be determined.

We have identified five serum cytokines and a cytokine-soluble receptor interaction each

associated with changes in the preclinical risk of glioma. In addition, our findings of weaken-

ing case cytokine correlations within five years before diagnosis are consistent with those in

our previous study of allergy-related cytokines [1818]. Further studies are needed to attempt

replication of our results in different populations. Assuming they can be replicated, preclinical

studies of additional immune function biomarkers, including immune function cells, should

be conducted with the ultimate goal of identifying signs of gliomagenesis in its earliest stages.
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