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A B S T R A C T

Aims: Coronavirus disease 2019 (COVID-19) has become a recognized worldwide pandemic.

Researchers now know that mortality from COVID-19 can be reduced through early preven-

tion measures. This retrospective, multi-centered study of 293 COVID-19 patients without

diabetes explores the association between fasting blood glucose (FBG) levels and the risk

of COVID-19 disease progression, with the goal of providing clinical evidence for glycemic

targets in patients.

Methods: The multivariate stepwise binary logistic regression analysis was used to test the

dose–response effects of FBG levels on the risk of severe and critical condition in COVID-19

patients.

Results: FBG levels were plotted in quintiles with set at <4.74, 4.74–5.21, 5.21–5.78, 5.78–7.05,

and =7.05 mmol/L. The constituent ratio of severe or critical cases in each FBG quintile was

20.7%, 1.7%, 13.8%, 27.1%, and 67.2%, respectively (P < 0.0001). When the second quintile

was used as the reference, the adjusted odds ratios (AORs) (95%CI) for the risk of severe/-

critical condition in COVID-19 was 25.33 (2.77, 231.64), 1.00 (Reference), 3.13 (0.33, 29.67),

10.59 (1.23, 91.24), 38.93 (4.36, 347.48) per FBG quintile respectively (P < 0.001).

Conclusions: We provide evidence of J-shaped associations between FBG and risk of severe

and critical condition in non-diabetes patients with COVID-19, with nadir at 4.74–

5.78 mmol/L.
� 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) caused

by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is becoming a pandemic worldwide. By the

middle of June 2020, the disease has reached 216 countries,

areas or territories, with over 8.24 million cases of infection

and over 445 thousand confirmed deaths (WHO, https://

www.who.int/emergencies/diseases/novel-coronavirus-2019).

Generally, many patients who had severe infection pro-

gressed rapidly to critical condition including multi-organ

failure and sometimes death [1]. Better early warning signs

of probable rapid progression of COVID-19 could help doctors

anticipate and more rapidly act to prevent escalation in

patients with severe symptoms of COVID-19.

Researchers are beginning to reach a consensus that

COVID-19 patients with hyperglycemia or diabetes are associ-

ated with a higher risk of severely ill and mortality [2–7].

Wang and his colleagues have reported that COVID-19

patients with hyperglycemia or diabetes are more likely to

need ICU care [8]. Wang et al. also demonstrated that fasting

blood glucose (FBG) � 7 mmol/L at admission was an indepen-

dent risk factor for 28-day mortality in COVID-19 patients

without pre-existing diabetes [7]. These studies suggest that

early management of blood glucose levels in COVID-19 may

serve as a useful tool in managing the disease and saving

lives. Interestingly, we noticed that Zhang et al. reported an

appropriately 1% confirmed patients with COVID-19 present-

ing decreased glucose (<3.9 mmol/L) [9] suggesting that hyper-

glycemia may not be the exclusive relationship between

blood glucose and COVID-19. The American Diabetes Associ-

ation (ADA)’s criteria notes that hypoglycemia is generally

defined as a blood glucose level <3.9 mmol/L (70 mg/dL) and

that for nondiabetic individuals <2.8 mmol/L (50 mg/dL) is

threshold for impairment of cognitive function [10,11], levels

associated with a range of adverse clinical outcomes includ-

ing death [10,12]. Studies have supported that both low and
Fig. 1 – Flow diagram presenting inclusion and
high levels of glycemic control have been associated with an

increased mortality risk in diabetes patients [13]. However,

few studies have looked at lower limit of blood glucose con-

trol other than hyperglycemia in COVID-19 patients without

pre-existing diabetes. Current research does not provide suf-

ficient evidence for doctors to judge the potential value of

knowing an optimal glycemic target as a diagnostic tool in

treating severe COVID-19 patients who do not have pre-

existing diabetes.

The purpose of this study was to explore the association

between fasting blood glucose (FBG) levels and risk of

COVID-19 progressing into severe or critical condition in

patients without pre-existing diabetes, thus providing clinical

evidence for determining optimal glycemic targets.

2. Materials and methods

2.1. Subjects

This retrospective, multi-centered study drew data from five

hospitals in Wenzhou, China. Records from 345 COVID-19

patients were initially included in the study, but 52 were

excluded including children and adolescents, as well as

patients with cancer, cachexia or pre-existing diabetes (see

Fig. 1). This left 293 patients records for the analysis, includ-

ing 217 mild and moderate cases and 76 severe and critical

cases. No one with end-stage chronic kidney disease, hepatic

failure, hepatitis B, pancreatitis, hematological system dis-

eases, cachexia, severe debilitating illness, and schizophrenia

(Fig. 1).

2.2. Ethical statements

The study was approved by the Research Ethics Review Com-

mittee of Tongji University and Department of Infectious Dis-

eases, Wenzhou Central Hospital and Sixth People’s Hospital

of Wenzhou, Wenzhou, Zhejiang, China (No. K2020-01-005
exclusion criteria for subjects in this study.
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(5)). The study was conducted in accordance with the provi-

sions of the Declaration of Helsinki as revised in 2013. Given

the urgency of the COVID-19 pandemic, obtaining the

informed consent forms was waived by the Ethics Boards of

the hospitals participating in this study.

2.3. Data collection

All data used in this study come from patients with confirmed

COVID-19 from Wenzhou, the city outside of Hubei Province

that has been most affected by COVID-19 infections. From

January 10th to 23rd, 2020, approximately 48,800 people trav-

eled from Wuhan to Wenzhou [14] and as of May 3, 2020, the

Municipal Health Commission of Wenzhou reported 504 con-

firmed cases of COVID-19 with one death. The most recent

available numbers of confirmed cases came from five hospi-

tals including:

� Wenzhou Central Hospital

� Wenzhou Sixth People’s Hospital

� The First Affiliated Hospital of Wenzhou Medical

University

� The 2nd Affiliated Hospital of Wenzhou Medical University

� Ruian People’s Hospital (The 3nd Affiliated Hospital of

Wenzhou Medical University)

Patients in this study were admitted to hospital between

Jan 17 to Feb 22, 2020. Demographic, clinical, laboratory, and

outcome data were pulled from the electronic hospital infor-

mation system using a standardized form. Patients’ biochem-

ical indexes obtained from the fasting blood sample at time of

admission were included in analysis to avoid the influence of

medical treatment. All medical data were checked by two

medical doctors (B.Z. and C.H.) and the leader author (S.Q.

and D.C.) adjudicated any different interpretation between

the two medical doctors.

2.4. Diagnostic and classification criteria

The diagnosis and classification criteria for COVID-19 in this

study were based on guidelines from the Diagnosis and Treat-

ment Program of New Coronavirus Pneumonia (seventh trial

version, China) (http://www.nhc.gov.cn/). We confirmed

SARS-CoV-2 infection by RT-PCR of samples taken from upper

nasopharyngeal swabs. Two sets of primers were used for two

target genes according to the protocol issued by the National

Institute for Viral Disease Control and Prevention in China as

previously described. [15]. The classification of severity

included: (1) Mild, with mild symptoms, no pneumonia in

imaging diagnosis, (2) Moderate, with fever, respiratory tract

symptoms, and pneumonia in imaging diagnosis, (3) Severe,

meeting criteria of either anhelation (respiratory rate �30

beats/min), or finger oxygen saturation (�93% at resting, or

arterial blood oxygen partial pressure at (PaO2)/oxygen con-

centration (FiO2) � 300 mmHg (1 mmHg = 0.133 kPa), (4) Criti-

cal, where patients had either respiratory failure requiring

mechanical ventilation, shock, or required ICU care for organ

failure. We classified mild and moderate patients as the
milder category, otherwise severe and critical ill patients as

the severer category.

2.5. Statistical methods

Continuous data were presented as medians (interquartile

ranges, IQR) or means ± standard deviations (SD) based on

the data distribution. Categorical variables were presented

as percentages (%). Student’s t-test or Mann-Whitney U test

were used to compare continuous data between groups based

on the homogeneity of variance test. Chi-squared (v2) tests

were used to compare categorical data between the groups.

Z-tests (p-value adjusted by a Bonferroni method for multiple

testing) were used to pairwise comparison. Spearman’s

bivariate simple correlation analysis was conducted to

explore the associations between FBG level and variables that

demonstrated significant associations with the COVID-19

severity in the univariate binary logistic regression analysis.

We excluded variables with 10% missing values. The multiple

potential confounders were used as independent variables in

the multivariate step-wise binary logistic regression analysis

to test the combined effect of these factors on the adjusted

odds ratios (AORs) for severe or critical condition in COVID-

19. Each continuous variable was converted into a categorical

variable before entered into models. All statistical analyses

were performed using SPSS 25.0 (SPSS Inc., Chicago, IL, USA)

and Graphpad prism 8.0 software. Results were considered

to be statistically significant at two-tailed P value of <0.05.

3. Results

3.1. Patient characteristics

COVID-19 patients in this study were mostly mid-aged men.

Most patients with mild and moderate symptoms had low

grade fever, while patients classified as severe and critical

had a medium or high body temperature. In comparison to

mild and moderate cases, severe and critical patients had sig-

nificantly higher FBG (5.30, IQR 4.80–5.90 vs. 7.35, IQR 5.60–

9.58 mmol/L, P < 0.0001), BMI, C-reactive protein (CRP), lactate

dehydrogenase (LDH), aspartate aminotransferase (AST),

gamma-glutamyl transpeptidase (GTT), and triglycerides

(TG) levels. Conversely, COVID-19 patients in severe or critical

condition had significantly lower HDL levels (1.15, IQR 0.97–

1.41 vs. 1.02, IQR 0.83–1.25 mmol/L, P < 0.0001) (Table 1).

3.2. The severe and critical rate across FBG quintiles

FBG levels were plotted in quintiles with levels set at less than

4.74 mmol/L, 4.74–5.21 mmol/L, 5.21–5.78 mmol/L, 5.78–

7.05 mmol/L, and greater than or equal to 7.05 mmol/L. The

median value for each quintile was 4.50, 5.02, 5.50, 6.21, and

9.05 mmol/L, respectively. In the v2 tests, the expected fre-

quency in each cell was greater than 5 and the minimum

was 14.8. These results suggest that the sample size and cell

distribution fully met v2 test’s requirements. As shown in

Fig. 2, associations between FBG levels and the risk of severe

and critical condition were non-linear for COVID-19 patients.

The constituent ratio of severe and critical cases in each FBG

http://www.nhc.gov.cn/


Table 1 – Characteristics of COVID-19 patients in this study.

Characteristics ALL (N = 293) Mild and Moderate (N = 217) Severe and Critical (N = 76) P-Value

Age (years) 47.0(37.0, 55.5) 44.0(34.0, 53.0) 54.0(46.5, 66.75) <0.0001
Gender (male%) 151(51.5%) 107(49.3%) 44(57.9%) 0.197
BMI (kg/m2) 23.80 ± 3.39 23.43 ± 3.13 25.11 ± 3.91 0.001
Body temperature (℃) 37.70(37.0, 38.40) 37.60(37.0,38.0) 38.40(37.58, 38.85) <0.0001
FBG (mmol/L) 5.50(4.88, 6.60) 5.30(4.80, 5.90) 7.35(5.60, 9.58) <0.0001
FBG quintile (median) <0.0001
<4.74 (4.50 mmol/L) 58(100%) 46(79.3%) 12(20.7%) a*
4.74–5.21 (5.02 mmol/L) 60(100%) 59(98.3%) 1(1.7%) b
5.21–5.78 (5.50 mmol/L) 58(100%) 50(86.2%) 8(13.8%) a, b
5.78–7.05 (6.21 mmol/L) 59(100%) 43(72.9%) 16(27.1%) a
>7.05 (9.05 mmol/L) 58(100%) 19(32.8%) 39(67.2%) c
C-reactive protein (mg/L) 9.30(2.28, 24.13) 7.90(2.30, 20.68) 24.10(1.25, 44.93) 0.048
Creatine kinase (U/L) 71.00(47.00, 105.0) 71.80(46.50, 105.0) 69.65(55.00, 104.0) 0.746
Lactate dehydrogenase (U/L) 210.5(174.0, 274.0) 198.0(165.50, 241.75) 272.0(208.0, 389.25) <0.0001
Lymphocyte count (�109/L) 1.20(0.90, 1.70) 1.30(0.90, 1.70) 1.0(0.78, 1.50) 0.226
Creatinine (lmol/L) 62.0(55.25, 73.0) 63.0(56.0, 75.0) 62.0(55.0, 71.25) 0.816
Alanine aminotransferase (U/L) 22.0(15.0, 35.0) 22.0(13.0,33.0) 24.0(17.25, 41.75) 0.130
Aspartate aminotransferase (U/L) 25.0(20.0, 35.0) 23.0(18.0, 32.0) 30.0(23.0, 43.0) <0.0001
Alkaline phosphatase (U/L) 55.0(42.25, 68.0) 55.0(45.0, 68.0) 52.0(34.75, 79.0) 0.367
Gamma-glutamyl transpeptidase (U/L) 22.5(15.0, 47.50) 21.0(15.0, 42.0) 43.5(19.25, 91.0) 0.007
Cholesterol (mmol/L) 3.97 ± 0.86 3.95 ± 0.86 4.02 ± 0.87 0.563
Triglycerides (mmol/L) 1.17(0.91, 1.62) 1.11(0.88, 1.58) 1.40(1.01, 1.69) 0.006
High density lipoprotein(mmol/L) 1.10(0.93, 1.33) 1.15(0.97, 1.41) 1.02(0.83, 1.25) 0.012
Low density lipoprotein (mmol/L) 2.17 ± 0.79 2.20 ± 0.82 2.13 ± 0.73 0.534

Continuous data are presented as means ± standard deviations (SD) or medians (interquartile ranges, IQR) based on the data distribution. Categorical variables are presented as percentages (%). *abc:

there is no statistically significant difference between FBG quintiles with the same small letter. BMI, body mass index; FBG, fasting blood glucose.
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Fig. 2 – The constituent ratio of severe and critical cases in confirmed COVID-19 patients across fasting blood glucose (FBG)

quintiles. The constituent ratio of severe and critical cases in each FBG quintile (<4.74, 4.74–5.21, 5.21–5.78, 5.78–7.05, and =
7.05 mmol/L) was 20.7%, 1.7%, 13.8%, 27.1%, and 67.2%, respectively. White bar = cumulatively mild and moderate cases.

Black bar = cumulatively severe and critical cases. ns: no significant difference.
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quintile was 20.7%, 1.7%, 13.8%, 27.1%, and 67.2%, respectively

(P-trend < 0.0001). For pairwise comparison, Z-tests showed

that significant differences of constituent ratio of severe and

critical cases were exhibited between ‘‘4.74–5.21 mmol/L”

quintile and the other quintiles except for ‘‘5.21–5.78 mmol/

L” quintile (Table 1).

3.3. Indicators for the risk of severe and critical condition
in COVID-19 patients

The factors associated with the risk of severe or critical con-

dition in COVID-19 are presented in Supplementary Table 1.

Among those factors, age categories were set at <30, 30–39,

40–49, 50–59, 60–69, 70–79, =80 years old. BMI, body tempera-

ture, CRP, LDH, AST, GTT, TG, and HDL were fitted in quartile

categories. The category boundaries of each variable were

described in the footnote of Supplementary Table 1. The uni-

variate logistic regression analysis demonstrated a signifi-

cantly higher odds ratio (OR) of severe or critical condition

in COVID-19 patients with older age (OR 1.718, 95%CI 1.393–

2.118, P < 0.0001) and elevated BMI (OR 1.570, 95%CI 1.199–

2.056, P = 0.001), body temperature (OR 1.996, 95%CI 1.299–

3.069, P = 0.002), FBG (OR 1.909, 95%CI 1.579–2.309,

P < 0.0001), CRP (OR 1.512, 95%CI 1.019–2.243, P = 0.040), LDH

(OR 2.250, 95%CI 1.671–3.030, P < 0.0001), AST (OR 1.662, 95%

CI 1.291–2.140, P < 0.0001), and GTT (OR 1.640, 95%CI 1.102–

2.441, P = 0.015) levels. Conversely, HDL (OR 0.643, 95%CI

0.497–0.833, P = 0.001) was found to be negatively associated

with the risks of patients progressing into severe or critical

condition.

Spearman’s bivariate simple correlation analysis demon-

strated that FBG levels were positively associated with age

(r = 0.425, P < 0.0001), BMI (r = 0.160, P = 0.007), LDH (r = 0.373,

P < 0.0001), AST (r = 0.324, P < 0.0001) and GTT (r = 0.233,

P = 0.001) levels. Furthermore, FBG levels were significantly
negatively associated with HDL levels (r = �0.214, P = 0.001).

However, the relationship between FBG levels and body tem-

perature (r = 0.040, P = 0.595), and CRP (r = 0.108, P = 0.149)

levels were weak. In addition, we decided to choose the lar-

gest contributing variable of liver function test, AST, to enter

into each model in the multivariate logistic regression analy-

sis. Together, age, gender, BMI, FBG, HDL, LDH, and ASTwere

used as independent variables in the multivariate step-wise

binary logistic regression analysis.

3.4. Dose-response relationship of FBG and risk of severe
and critical condition in COVID-19

In multivariate logistic regression Model 1, which included

FBG quintiles, we observed a significant, J-shaped association

between FBG levels across all FBG quintiles and the risk of

patients progressing into severe or critical condition. The sec-

ond quintile was used as the reference, OR (95%CI) of the risk

of COVID-19 progressing into severe or critical condition was

15.39 (1.93, 122.72), 1.00 (Reference), 9.63 (1.16, 79.70), 21.95

(2.80,171.93), 121.11 (15.57,941.82) in each FBG quintile,

respectively (P-trend < 0.001, Table 2). This association was

also significant in Model 2 with age, gender, and BMI as addi-

tional co-variables (the second quintile was used as the refer-

ence, AOR (95%CI) = 19.96 (2.41,165.36), 1.00 (Ref), 4.89 (0.54,

44.24), 17.49 (2.18, 140.04), 68.11 (8.54, 543.05) per FBG quintile

respectively; P-trend < 0.001). Model 3 were fully adjusted for

age, gender, BMI, FBG quintile, HDL, LDH, and AST. In Model

3, the second quintile was used as the reference, AOR (95%

CI) was 25.33 (2.77, 231.64), 1.00 (Reference), 3.13 (0.33,

29.67), 10.59 (1.23, 91.24), 38.93 (4.36, 347.48) per FBG quintile

respectively (P-trend <0.001). We performed dose–response

curves demonstrating visualized evidence of a J-shaped asso-

ciation between FBG levels and risk of severe and critical state

in COVID-19 (Fig. 3). In addition, Model 3 shown that age (OR



Table 2 – Multivariable-Adjusted Association of FBG Level and Risk of Severe and Critical Condition for COVID-19 Patients (N = 293).

FBG quintile (mmol/L) Median, mmol/L Model 1 Model 2 Model 3
AOR (95% CI) P AOR (95% CI) P AOR (95% CI) P

<4.74 4.50 15.39(1.93,122.72) 0.010 19.96(2.41,165.36) 0.006 25.33(2.77, 231.64) 0.004
4.74–5.21 5.02 1.00 (Ref) ND 1.00 (Ref) ND 1.00 (Ref) ND
5.21–5.78 5.50 9.63(1.16, 79.70) 0.036 4.89(0.54, 44.24) 0.158 3.13(0.33, 29.67) 0.320
5.78–7.05 6.21 21.95(2.80,171.93) 0.003 17.49(2.18, 140.04) 0.007 10.59(1.23, 91.24) 0.032
=7.05 9.05 121.11 (15.57,941.82) <0.0001 68.11(8.54, 543.05) <0.0001 38.93(4.36, 347.48) 0.001

FBG data were plotted in quintiles. Model 1 included FBG quintile. Model 2 included FBG quintile, age, gender, and BMI. Model 3 was additionally adjusted for HDL, LDH, and AST levels. FBG, fasting

blood glucose; BMI, body mass index; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; AST aspartate aminotransferase; AOR, adjusted odds ratio; ND, not determined; CI, confidence

interval; Ref, reference.
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1.504, 95%CI 1.103–2.052, P = 0.010) and BMI (OR 1.477, 95%CI

1.008–2.163, P = 0.045) were independent indicators for severe

or critical risk in COVID-19, with little evidence of association

between HDL, LDH, and ASTwith severe or critical risk.

4. Discussion

To our knowledge, our study provides the first evidence that

associations between FBG and risk of severe or critical condi-

tion were J-shaped for adult, symptomatic COVID-19 patients

without diabetes, with a nadir at 4.74–5.78 mmol/L, and vary-

ing magnitudes of association. For FBG levels <4.74 mmol/L,

FBG was inversely associated with risk of severe and critical

condition up to 4.74–5.78 mmol/L with positive association

above this point. It is worth noting that there was a substan-

tially higher risk of patients developing severe or critical con-

dition for those with FBG less than 4.74 mmol/L but above the

ADA’s hypoglycemia category (the minimum value of FBG in

this study was 3.47 mmol/L) [10,11]. This suggests that rela-

tively decreased glucose levels in patients should be a cause

for concern. In addition, our AORs for FBG levels

=7.05 mmol/L suggested highest risk of severe or critical case

in this category. This finding aligns with another recent study

that claimed that FBG � 7 mmol/L was an independent risk

factor for 28-day mortality in COVID-19 patients without

pre-existing diabetes [7]. Similarly, other research recom-

mends that urine glucose levels be used to the differentiate

COVID-19 severity [16]. However, studies into the effects of

glucose levels on COVID-19 severity generally found linearity
Fig. 3 – Adjusted dose–response curves by fasting blood

glucose (FBG) quintiles for severe and critical condition of

COVID-19 patients. Odds ratios of severe and critical

condition in COVID-19 patients according to FBG quintiles

(<4.74, 4.74–5.21, 5.21–5.78, 5.78–7.05, and = 7.05 mmol/L)

were estimated using the median value for each quintile

(4.50, 5.02, 5.50, 6.21, and 9.05 mmol/L, respectively). Model

1 (solid black curve) included FBG quintile. Model 2 (black

dashed curve) included FBG quintile, age, gender, and body

mass index (BMI). Model 3 (black dotted curve) was

additionally adjusted for lactate dehydrogenase (LDH),

aspartate aminotransferase (AST), and high-density

lipoprotein (HDL) levels.
[7,16]. It is possible that the relatively small size among

COVID-19 populations who with decreased glucose obscures

the risk of hypoglycemia for COVID-19 patients.

Many studies have demonstrated that hyperglycemia or

diabetes is independent risk factor for the progression and

mortality in patients with many infectious diseases such as

SARS and COVID-19 [2–7,17]. Immune system dysregulation,

rather than actual elevated glucose levels, may be the con-

tributing factor of susceptibility to pathogen infection and

severe conditions in diabetes patients [18]. Hyperglycemia,

especially in patients without diabetes, may have exacerbated

COVID-19 symptoms through separate mechanisms. Early

studies have shown that increased levels of serum proinflam-

matory cytokines are associated with Middle East respiratory

syndrome coronavirus (MERS-CoV) and severe acute respira-

tory syndrome coronavirus-1 (SARS-CoV-1) infection [19 20].

More recent studies have shown that patients with COVID-

19 also had high amounts of IFNc, IL1b, IL6, MCP1, and IP10

[9,21]. In addition, patients requiring ICU admission had

higher concentrations of proinflammatory cytokines than

did those who did not require going to the ICU, suggesting

that the sustained inflammatory response followed by cyto-

kine storm may be associated with COVID-19 severity [21].

Hyperglycemia has been demonstrated to increase inflamma-

tory cytokine levels, oxidative stress and potentially alters the

balance between inflammatory and anti-inflammatory

cytokines [22]. In addition, innate immune responses to infec-

tion have been demonstrated to be altered by acute hyper-

glycemia, which may in part explain the poor outcomes in

COVID-19 patients who develop hyperglycemia [23,24]. Fur-

thermore, elevated glucose concentrations in airway epithe-

lial secretion may damage the defensive capacity of airway

epithelia [25].

Unfortunately, we had no data about pancreas islet func-

tion in this study, otherwise we could have further explored

the mechanisms underlying hyperglycemia. Previous studies

reported that acute viral respiratory infection has been

related to transiently decreased insulin sensitivity [26]. More-

over, angiotensin-converting enzyme-2 (ACE-2) receptors are

expressed in pancreatic islets. It has been reported that indi-

viduals infection with SARS-CoV-1 developed hyperglycemia

[27]. Further studies with large patient cohorts will be

required to properly evaluate pancreas islet function in

patients with COVID-19.

Hypoglycemia can cause acute harm to patients and in

severe cases can lead to loss of consciousness, seizure, coma,

or death [10,12]. It has been demonstrated that the replication

of SARS-CoV-2 viruses consumes substantial amount of ATP

in the body [28] so is logical to imagine that patients with

decreased blood glucose may have fewer energetic resources

to provide for the energy needed at cellular level work to fight

acute levels of viral infection. In addition, glucose can be oxi-

dized through a pentose phosphate pathway, yielding nicoti-

namide adenine dinucleotide phosphate (NADPH), thus

maintaining the reducing state of glutathione (GSH). Reduced

glutathione works for the anti-oxidant defense system and

works with the immune system to fight invasive pathogenic

microorganisms [28,29]. On the cellular level, blood glucose

is largely required for activated immune cells to mount a

robust response [29]. These processes together indicate that
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comparatively low blood glucose levels result in enhanced

oxidative stress and impaired immune responses. Collec-

tively, until it is proven not to be causal, it is prudent to avoid

hypoglycemia regardless of the cause of the condition in

COVID-19 patients. Collectively, it is prudent to avoid hypo-

glycemia regardless of its cause in COVID-19 patients.

Various studies agreed with our finding patients increased

levels of CRP, and LDH were associated with the severity of

COVID-19 patients, particular in middle-aged men

[8,9,14,21,30]. In addition, we found that BMI had an inverse

effect on severe and critical condition in COVID-19 patients.

Indeed, obesity has been demonstrated as a risk factor for

increasing severity of SARS-CoV-2-related illness [31]. Here,

we demonstrated for the first time that HDL can be used as

a protective factor for preventing COVID-19 exacerbation.

Consistent with this finding, there are studies supporting

the anti-inflammatory effects of HDL [32].

We acknowledge that our sample size limited the glycemic

target research for COVID-19 patients with diabetes. More

solid estimates of optimal glycemic target of COVID-19 will

be determined through analyses of larger sample size cohorts

and related quality data. Indeed, Li et al. provided clinical evi-

dence for glycemic target within 3.9–10.0 mmol/L for COVID-

19 patients with diabetes [33]. However, our study did show

a relevant effect of appropriate glycemic target on the risk

of confirmed severity and criticality of COVID-19 in non-

diabetes patients supporting the need to continue this area

of study to provide more robust guidance for managing the

COVID-19 pandemic. Ideally, continuous glucose monitoring

(CGM) should be used to identify characteristics of glycaemia

that are associated with severity of COVID-19. However, we

had insufficient data about CGM in this study due to the dif-

ferent management plan in multiple hospitals. In addition,

the research design could have resulted in selection bias as

all subjects were Han Chinese and enrolled from one city,

which weakens the generalizability of the results to other

races. Furthermore, being a cross-sectional study, cause–

causality relationships and mechanisms underlying the asso-

ciation between FBG and risk of COVID-19 exacerbation is dif-

ficult to elucidate.

In conclusion, the associations between FBG and risk of

severe and critical condition were J-shaped for non-diabetes

adult patients with COVID-19, with nadir at 4.74–5.78 mmol/L.
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