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The Th17/T-regulatory (Treg) cell imbalance is involved in the occurrence and

development of organ inflammation in systemic lupus erythematosus (SLE). Metabolic

pathways can regulate T cell differentiation and function, thus contributing to SLE

inflammation. Increasingly, data have shown metabolism influences and reprograms

the Th17/Treg cell balance, and the metabolic pattern of T cells is different in SLE.

Notably, metabolic characteristics of SLE T cells, such as enhanced glycolysis, lipid

synthesis, glutaminolysis, and highly activated mTOR, all favored Th17 differentiation

and function, which underlie the Th17/Treg cell imbalance in SLE patients. Targeting

metabolic pathways to reverse Th17/Treg imbalance offer a promising method for

SLE therapy.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by tissue
inflammation and profound damage to multiple organs. The pathological mechanisms of SLE
remain unclear; however, it has been reported that the imbalance between T helper 17 (Th17)
and regulatory T cells (Tregs) underlies the pathogenesis of SLE (1–4). Th17 cells have pro-
inflammatory effects, and the proportion of Th17 cells is higher in SLE patients, and the content is
positively correlated with the activity of SLE disease (5). Tregs, however, have immunosuppressive
function and play an important role in the induction and maintenance of self-tolerance. The
reduced content and dysfunction of Tregs are closely related to the occurrence and development
of SLE (6–8). Tregs injected into lupus mice can control the inflammatory response and alleviate
pathological damage (9). Thus, improving the Th17/Treg cells imbalance shows some promise for
the treatment of SLE.

Th17 and Treg cells aremutually antagonistic in function and differentiation.Manymechanisms
regulating Th17/Treg cells balance have been reported. Besides the molecular signaling network,
accumulating evidence has shown that cellular metabolism is also critically involved in Th17
and Treg differentiation (10). These two cell subsets are dictated by distinct metabolic
pathways, and manipulating metabolic pathways can regulate Th17/Treg cells balance. In T-
cells from SLE patients and lupus-prone mice, metabolic abnormalities linked to Th17/Treg
cell imbalances have been reported. Here, we reviewed how cellular metabolism influences
Th17 and Treg cell differentiation, summarized metabolic abnormalities of SLE T cells,
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and we here propose that metabolic abnormalities of SLE T
cells is the mechanism by which the Th17/Treg imbalance
emerges in SLE patients. Manipulating cellular metabolism to
correct aberrant immune responses may be a suitable means of
treating SLE.

METABOLIC CONTROL OF Th17/Treg
BALANCE

T-cell metabolism is highly dynamic. The metabolic pattern
changes during the process of activation, proliferation, and
differentiation. Naive T cells have low energy requirements.
They import a small amount of glucose and generate ATP
mainly through the TCA cycle and OXPHOS. Upon activation,
T cells start to proliferate and differentiate. They need to
reprogram their metabolic pattern to meet their bioenergetic
and biosynthetic requirements. A variety of metabolic substrates
(glucose, amino acids, and fatty acids) and metabolic pathways
(glycolysis, oxidative phosphorylation, the pentose phosphate
pathway, fatty acid synthesis and oxidation, and glutamine
metabolism) are mobilized to adapt to their biological
functions. Glycolysis can rapidly produce ATP to provide
the energy needed to rapidly proliferate, and a large number
of intermediate products of various metabolic pathways allow
biosynthesis (11–14).

Studies have shown that T helper cell subsets have different
metabolic patterns, of which those of Th17 cells and Tregs are
the most distinct. One study evaluated 400 energy metabolites,
metabolism-related genes, and proteins in Th17 and Tregs and
results indicated that Th17 cells contain high levels of pyruvate,
lactic acid, early glycolysis, and pentose phosphate pathway
intermediates, and they express key proteins in glycolysis
pathway, like Glut-1 and HK-2, at high levels. Tregs had
higher C2 and C4-OH carnitine levels and more expression
of fatty acid transporter CPT1A and electron transport chain
component cytochrome c, which suggested that Th17 cells
were mainly powered by glycolysis, and the pentose phosphate
pathway was also active; Tregs, on the other hand, were
found to rely more on fatty acid oxidation and oxidative
phosphorylation to supply energy (15). Glycolysis deprivation
was found to impair Th17 differentiation dramatically, while
defective glycolysis supported the development of Treg cells.
Replacement of glucose with galactose, treatment with 2-DG
(an inhibitor of hexokinase, the first rate-limiting enzyme
of glycolysis), and lack of HIF1α, Cdc42, ICER, and mTOR
(crucial regulators of T cell glycolytic metabolism) all resulted
in diminished Th17 development but enhanced Treg cell
differentiation (16–20). Conversely, inhibition of fatty acid
oxidation results in diminished differentiation to Th17 cells, but
increased development of Tregs (21).

Glutaminolysis is also preferentially increased in Th17 cells.
TCA-cycle intermediates produced after α-ketoglutarate (α-KG)
in Th17 cells were more plentiful than in Tregs. α-kG is also a
metabolite of glutamine (15), suggesting increased glutaminolysis
in Th17 cells. ICER, a transcriptional factor that enhances
glutaminase1 and promotes glutaminolysis, is also expressed

in large quantities in Th17 cells (22). In addition, glutamine
metabolite 2-hydroxyglutarate could hypermethylate Foxp3 gene
locus and inhibit Foxp3 transcription, thus promoting the
differentiation of Th17 cells, which regulates Th17/Treg balance
by an epigenetic mechanism (23).

Th17 cells have considerable fatty acid synthesis activity.
The expression of ACC1, a key enzyme in fatty acid synthesis,
was found to be significantly higher in Th17 cells than in
Tregs. Drug inhibition or T-cell specific knockout of ACC1
could inhibit Th17 differentiation and promote the induction
of Tregs both in vivo and in vitro (24, 25). Cholesterol intake
and synthesis were also significantly higher in Th17 cells
(26), leading to the accumulation of the cholesterol precursor,
desmosterol, which acts as a potent endogenous RORγ agonist
and dictates Th17 differentiation (27). Statins, a class of drugs
that inhibit cholesterol biosynthesis, are reported to target
Th17/Treg imbalance and alleviate Th17-mediated inflammatory
response (28). The distinct metabolic patterns of Th17 and Treg
cells provide a basis for intervention of Th17/Treg imbalance.

METABOLIC ABNORMALITIES IN SLE
T CELLS

Cell metabolism regulates the differentiation and function of T
cells, thereby participating in the occurrence and development of
SLE inflammation. Metabolic abnormalities in T cells from SLE
patients and lupus-prone mice were reported (29, 30). These are
characterized by the following:

(1) Mitochondrial dysfunction: T cells from SLE patients
showed elevated mitochondrial transmembrane potential,
increased ROS production and reduced ATP synthesis (31).

(2) Hyperactivated glucose metabolism: CD4+ T cells from
SLE patients and lupus-prone mice have higher OCR and ECAR
levels (32, 33), suggesting they have elevated levels of both
glycolysis and oxidative phosphorylation. The metabolites of
pentose phosphate pathway, such as R5P and F6P, were also
higher in peripheral blood lymphocytes of SLE patients (34).
These results suggested that three main pathways of glucose
metabolism—aerobic glycolysis, pentose phosphate pathway, and
oxidative phosphorylation—are involved in T cell activation in
SLE patients.

(3) Lipid synthesis enhancement: there was more synthesis
of lipid rafts in CD4+T cells of SLE patients than in normal
controls, and inhibiting the synthesis of lipid rafts could
alleviate the pathological manifestations of lupus inmice (35–37).
Glycosphingolipids and cholesterol are important components of
lipid rafts, and the levels of synthesis were significantly higher in
CD4+T cells in SLE patients than in normal controls (38).

(4) Increased glutaminolysis: There is more expression of
ICER, the transcriptional factor that promotes glutaminolysis
and Th17 generation in CD4+T cells from SLE patients than
in healthy controls (39). Glutaminase 1 inhibition improved
autoimmune pathology in MRL/lpr mice, and suppressed Th17
differentiation of T cells from patients with SLE but not in
those from healthy donors (40). Those data suggested increased
glutaminolysis in SLE T cells.

Frontiers in Immunology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 1027

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Shan et al. Targeting T Cell Metabolism in SLE

(5) Highly activated mTOR:mechanistic target of rapamycin
(mTOR) is a hub in the cellular metabolic signal network,
regulating cellular growth and energy utilization. CD4+ T cells
from SLE patients and lupus-prone mice showed increased
mTOR activation (32, 33, 41, 42). The hyperpolarization
of mitochondria and the overactivity of pentose phosphate
pathway led to enhanced mTOR activity (43). In turn,
highly activated mTOR can enhance glycolysis and fatty acid

synthesis, thus promoting Th17 differentiation (44, 45). It
can be seen that high mTOR expression is an important
signaling mechanism leading to abnormal T cell metabolism
and Th17/Treg imbalance in SLE patients. Many clinical trials
in 2018 showed that sirolimus, an mTOR inhibitor, could
alleviate the disease activity of SLE patients (46–48), expand their
Foxp3+ Treg cells, and inhibit the secretion of cytokines such as
IL-17 (46).

FIGURE 1 | Metabolic abnormalities is the underlying mechanism of Th17/Treg imbalance in SLE patients. Th17 and Treg cells have a distinct metabolic pattern:

pentose phosphate pathway, glycolysis, fatty acid synthesis, and glutaminolysis are preferentially increased in Th17 cells, while fatty acid oxidation and oxidative

phosphorylation are active in Treg cells. However, metabolic abnormalities of T cells in SLE patients, including enhanced glycolysis, active lipid synthesis, increased

glutaminolysis, and high mTOR activation, are all conducive to Th17 differentiation and function. For this reason, we speculated that abnormal T cell metabolism was

the mechanism underlying Th17/Treg imbalance in SLE patients. The intervention of metabolic pathways to reprogram T cell metabolic patterns in SLE patients,

reduce their overactivated glycolysis and lipid synthesis levels, and promote the oxidation of fatty acids, is expected to reverse the Treg/Th17 imbalance in patients

and restore their normal immune function.
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DICUSSION

The abovementioned metabolic characteristics of SLE T cells,
such as enhanced glycolysis, lipid synthesis, glutaminolysis, and
highly activated mTOR, all favored Th17 differentiation and
function, which suggest the metabolic abnormalities of SLE T
cells is the underlying mechanism of Th17/Treg imbalance in
SLE patients (Figure 1). Inhibition of glycolysis (32, 33), lipid
synthesis (28, 36–38), and mTOR signaling (46–48) can control
inflammation and alleviate disease activity in lupus mouse
and SLE patients. Manipulating cellular metabolism to correct
aberrant immune responses offers promising method for SLE
therapy. Further studies are still needed to explore the metabolic
abnormalities occurring in T cells of SLE patients and their role
in disease progression, as well as how they response to therapies,
especially those have potential role in intervening Th17/Treg
cell imbalance.

In addition to drugs targeting metabolic pathways, dietary
habits, and nutritional factors can also modulate Th17/Treg
balance by affecting T cell metabolism. Low cholesterol diet

could improve Th17/Treg balance by the activation of LXRs (49),
nuclear receptors that modulate cholesterol metabolism (50).
And high glucose intake was found to exacerbate autoimmunity
by inducing Th17 cells via upregulation of mitochondrial ROS in
T cells (51). The long-chain fatty acids enhanced differentiation
of Th17 cells, while the short-chain fatty acids derived from a
fiber-rich diet expanded Treg cells and reduce IL-17 production
(52–54). Thus, a balanced diet could be helpful in the prevention
and management of SLE (55).
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