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Abstract

T cells acquire a regulatory phenotype when their T cell receptors (TCRs) experience 

an intermediate-to-high affinity interaction with a self-peptide presented via the major 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
*Correspondence to: Soumya Raychaudhuri, Harvard New Research Building, 77 Avenue Louis Pasteur, Suite 250, Boston, 
MA 02115, soumya@broadinstitute.org, Ph: 617-525-4484 Fax: 617-525-4488, Kazuyoshi Ishigaki, Laboratory for human 
immunogenetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, 
Japan, kazuyoshi.ishigaki@riken.jp, Ph: +81-(0)45-503-7072.
Author contributions
K.A. Lagattuta, K. Ishigaki, and S. Raychaudhuri conceived the study. K.A. Lagattuta performed computational analyses with support 
from J.B. Kang and A. Nathan. All authors contributed to data interpretation. K.A. Lagattuta, K.E. Pauken, K. Ishigaki, and S. 
Raychaudhuri contributed to writing the manuscript. All authors reviewed the manuscript. K. Ishigaki and S. Raychaudhuri supervised 
the study.

Competing interests statement
The authors declare no competing interests.

Code availability
Custom analysis scripts are available on GitHub (https://github.com/immunogenomics/TiRP)

HHS Public Access
Author manuscript
Nat Immunol. Author manuscript; available in PMC 2022 August 17.

Published in final edited form as:
Nat Immunol. 2022 March ; 23(3): 446–457. doi:10.1038/s41590-022-01129-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/immunogenomics/TiRP


histocompatibility complex (MHC). Using TCRβ sequences from flow-sorted human cells, we 

identified TCR features that promote regulatory T cell (Treg) fate. From these results, we 

developed a scoring system to quantify TCR-intrinsic regulatory potential (TiRP). When applied 

to the tumor microenvironment, TiRP scoring helped to explain why only some T cell clones 

maintained the Tconv phenotype through expansion. To elucidate drivers of these predictive TCR 

features, we then examined the two elements of the Treg TCR ligand separately: the self-peptide, 

and the human MHC II molecule. These analyses revealed that hydrophobicity in the third 

complementarity determining region (CDR3β) of the TCR promotes reactivity to self-peptides, 

while TCR variable gene (TRBV gene) usage shapes the TCR’s general propensity for human 

MHC II-restricted activation.

INTRODUCTION

During T cell development, regulatory T cells (Tregs) acquire their suppressive phenotype 

when the affinity of their TCR to the peptide-MHC complex (pMHC) is intermediate-to-

high. In most cases, randomly rearranged V, D, and J genes produce a TCR with too low 

an affinity to pMHC, and so most developing T cells do not survive positive selection in 

the thymus (“death by neglect”). On the other hand, TCRs with too strong of an affinity to 

pMHC result in T cell apoptosis and negative selection. For the T cells that survive both 

positive and negative selection, however, a divergence in phenotype emerges: those whose 

TCRs have lower affinity to pMHC tend to become conventional T cells (Tconvs) and those 

whose TCRs have higher affinity tend to gain the Treg phenotype1–8. Following thymic 

selection, a crucial prerequisite for the peripheral induction of Tregs is suprathreshold affinity 

to pMHC, though other factors such as costimulatory signals exert additional influence7,9.

The body of evidence that regulatory versus conventional T cell phenotypes are largely 

driven by TCR signal strength suggests that the developmental fate of CD4+ T cells may be 

influenced by sequence features of the TCR. Indeed, the degree of overlap in TCR sequence 

between Tregs and Tconvs is minimal compared to T cell samples of the same phenotype10. 

The distinguishing features of Treg and Tconv TCRs could shed light on the determinants 

of TCR strength, but the majority of extant work has focused on exact sequence matching 

rather than generalizable TCR sequence features.

To identify all sequence features that influence TCR strength, we examined 5.7×107 TCRβ 
chain sequences from 6 published datasets. Using multiple mixed effects logistic regression 

models, we quantified the effect of each TCR feature on Treg fate, and aggregated these 

results into a TCR-intrinsic regulatory potential (TiRP) score that can be applied to any 

TCR. Our work reveals that the TCR sequence consistently informs T cell fate and function 

across diverse biological contexts, including the fetal thymus and tumor microenvironment.

RESULTS

Study design

We first derived a comprehensive collection of TCR features (Supplementary Table 1) by 

examining the mutual information structure of the TCR amino acid sequence. We then tested 
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each sequence feature for differential abundance between Tregs and Tconvs in two human 

cohorts of TCRβ chains from flow-sorted T cells11,12 (Supplementary Table 2). From these 

results, we developed a Treg-propensity scoring system for the TCR (TiRP) (Figure 1a). 

Upon confirming its accuracy in two datasets of thymic T cells13,14, we applied TiRP to 

tumor-infiltrating T cells, and found that clone plasticity (the presence of induced Tregs 

(iTregs) or exTregs, Figure 1b) corresponded to significantly high TiRP. Finally, to shed light 

on the etiology of the observed TCR sequence biases, we separately examined the two 

elements of the Treg TCR ligand: 1) the self-peptide and 2) the human MHC II molecule. 

For these analyses, we calculated human TiRP for 1) murine Tregs and 2) human memory 

Tconvs, respectively (Figure 1c). These results demonstrated two separable components of 

TiRP: CDR3β hydrophobicity promotes reactivity to self-peptides, while the TRBV gene 

shapes the TCR’s general activatability in the context of human MHC II restriction.

Defining features of the T cell receptor sequence

The TCR is a membrane-anchored heterodimeric protein consisting of an α and a β chain. 

Each of the two chains includes three highly variable peptide loops that protrude toward the 

pMHC complex. The most variable of these loops is the CDR3β region in the β chain, which 

mediates recognition of specific antigens. Because TRBV, TRBD, and TRBJ genes each 

encode regions of CDR3β, we anticipated that the CDR3β sequence would feature blocks 

of strongly correlated residues. To determine the boundaries of these correlated regions, we 

examined the mutual information structure of CDR3β peptides in a previously published 

cohort of targeted TCR sequencing in multiple tissues and PBMCs11 (“discovery cohort”, 

Supplementary Table 2). To assess generalizability of any findings, we held out data from 

six randomly selected donors (Methods).

Mutual information calculations between CDR loop residues revealed three distinct regions 

of the TCR: the V-region (IMGT position 1–107), CDR3β middle region (CDR3βmr, p108–

p112), and J-region (p113–p118) (Figure 2a−b, Extended Data Figure 1a−g). While random 

nucleotide insertions in the highly variable CDR3βmr obscured the identity of the TRBD 
gene, the germline-encoded V- and J- regions demonstrated sequence conservation and 

high inter-residue mutual information (Figure 2a). Mutual information was concentrated 

at the flanking ends of CDR3β such that eight p104-p106 tripeptides (“Vmotifs”) and 42 

p113-p118 pentapeptides (“Jmotifs”) accounted for >90% of observations. Upon observing 

minimal mutual information between the three regions, we elected to undertake a three-

pronged modeling approach, in which we would examine the V-, middle, and J- regions 

independently.

Tregs use specific amino acids in the CDR3β middle region

We first examined the middle region of CDR3β (“CDR3βmr”) of Tregs 

(CD4+CD127−CD25+) and Tconvs (CD4+CD127+) in the discovery cohort. Calculating the 

mean percentage of CDR3βmr residues occupied by each amino acid yielded strikingly 

consistent Treg-Tconv differences across donors: Phenylalanine (F), Leucine (L), Tryptophan 

(W), and Tyrosine (Y) were consistently enriched in Tregs, while Aspartic acid (D) and 

Glutamic acid (E) were consistently enriched in Tconvs (Figure 3a). Categorization of amino 

acids by physicochemical features showed that hydrophobic amino acids were enriched in 
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Tregs, while negatively charged amino acids were enriched in Tconvs (Extended Data Figure 

1h).

To quantify these effects, we used forward selection to build a statistical model that 

increased in complexity (degrees of freedom) with the addition of each TCR feature. We 

observed that 15 amino acid features had an independent effect on Treg fate, each affording 

an incremental gain in variance explained (Figure 3b, middle, Supplementary Table 3). 

At each step, we used nested conditional mixed effect logistic regression, which accounts 

for inter-individual differences such as those driven by HLA genotype and tissue source 

(Methods).

To confirm that these effects were consistent across donors and clinical phenotypes, we 

estimated them in each of the 18 individuals and in the type 1 diabetes (T1D) and healthy 

subsets of the discovery cohort separately. We found consistent effect sizes in all contexts 

(Extended Data Figure 2a−b, Supplementary Table 3, Methods). We compared this model 

to an alternative approach in which CDR3βmr was scored by physicochemical features 

(hydrophobicity, isoelectric point (pI), and volume) rather than percentages of individual 

amino acid residues (Supplementary Table 4, Methods). Physicochemical features did not 

capture as much information as amino acid percentages (Figure 3b, middle); hence, we 

proceeded with an amino acid-based model of the CDR3βmr.

We then ran a separate mixed effects model for each CDR3βmr position (IMGT p108 −112), 

testing whether the amino acid at the given position explained variance in T cell fate beyond 

that accounted for by the CDR3βmr amino acid percentages (Methods). We found that each 

position indeed conveyed additional information regarding the likelihood of Treg fate, but 

these position-specific effects all together did not explain as much variance as the general 

amino acid composition of the CDR3βmr (Fig. 3c and Supplementary Table 5).

CDR3β V and J regions explain variance in T cell state

We then examined the V-region of the TCR. Previous studies have established that genetic 

variation in the MHC locus shapes the frequency with which TR(A/B)V genes are used in 

the repertoire15. MHC polymorphisms explained far more variance in TRAV gene usage 

compared to TRBV15, consistent with protein structure data demonstrating that TRAV 
contacts MHC at polymorphic sites while TRBV contacts MHC at conserved sites16. We 

hypothesized that variation in TRBV-encoded residues may alter TCR affinity to these 

conserved MHC sites, and thereby influence T cell fate.

To test this hypothesis, we extracted sequence features from the V-region and tested their 

association with Treg fate using mixed effects logistic regression (Methods). In consideration 

of multicollinearity, we computed all pairwise correlations between V-region TCR features 

and avoided joint modeling of TCR features with any | r | > 0.7 (Extended Data Figure 3, 

Methods). Through model comparisons, we found that a joint model including TRBV gene 

identity and p107 best represented the region, since the 58 TRBV genes explained far more 

variance than the eight Vmotifs (Figure 3b left, Methods). To account for inter-individual 

variation in TRBV gene selection, we included a thymic selection parameter (V gene 

selection rate, VGSR) for each TRBV gene as a covariate (Supplementary Note, Extended 
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Data Figure 4). Despite adjusting for VGSR, TRBV gene usage continued to explain a 

significant amount of variance in T cell fate, with three TRBV genes reducing the odds 

of Treg fate by more than 30% compared to the reference (most common) gene, TRBV05–
01 (P = 1.3 × 10−804, LRT, Supplementary Table 6). As in the CDR3βmr analysis, we 

confirmed that these associations replicated in models isolated to each individual and to 

both case and control cohort subsets (Extended Data Figure 2c−d, Supplementary Table 6). 

The consistency in TRBV gene effects across individuals suggests that their influence on 

Treg fate indeed occurs through interactions with conserved MHC residues, and is largely 

independent of MHC variability between individuals.

We then examined the J-region with the same approach. In contrast to the V-region, 

wherein strong p104-p106 sequence conservation constrained multiple TRBV genes to the 

same Vmotif, variable nucleotide editing at the D/J junction resulted in multiple Jmotifs 

associated with each TRBJ gene. The 42 Jmotifs explained slightly more variance than 

the 13 TRBJ genes (Figure 3b, right), and so we proceeded with a joint model containing 

the Jmotif and p113 residue. Across six CDR3β lengths, the most important TCR features 

for T cell fate determination were the TRBV gene identity and the percent composition 

of amino acids in the CDR3βmr (Figure 3c). Each TCR region played an important role, 

with the greatest variance explained per residue in the CDR3βmr. Relative gains in variance 

explained were proportional to fractional occupancy of the TCR, which was dependent 

on CDR3β length (Figure 3d, Methods). To compare these results to a null model, we 

conducted 1000 permutations of the cell type labels, and confirmed that the observed 

amount of variance explained far exceeded the distribution in the null model (Supplementary 

Table 7, Methods). To assess whether these results were mediated by invariant TCRs such as 

those of invariant Natural Killer T (iNKT) cells, we excluded putative iNKT cell receptors 

from the data and observed minimal changes in TCR feature effect sizes (Supplementary 

Table 8, Methods). Thus, our reported effects are statistically well-calibrated and robust to 

niche or invariant TCRs.

Tregs are enriched for CDR1β charge and CDR3β hydrophobicity

We next aimed to localize physicochemical effects underlying CDR3βmr residue 

enrichments to specific sequence positions. At each CDR(1–3)β loop amino acid position, 

we estimated the effect of hydrophobicity, isoelectric point (pI), and volume on Treg fate 

using a ridge regression model (Supplementary Table 9, Methods). Intriguingly, these results 

provided a physicochemical basis for some of the TRBV gene differences observed. Tregs 

were enriched for positively charged amino acids at p37 of CDR1β (Figure 4a). Seven 

TRBV genes assessed in our models harbor a negatively charged residue at p37; all seven 

of these were significantly depleted for Tregs compared to the reference gene TRBV05–01, 

which has a positively charged Arginine (R) at p37 (Figure 4b). As expected from our earlier 

findings, CDR3βmr featured positive coefficients for hydrophobicity in every position 

(Figure 4a). At each position, a standard deviation increase in hydrophobicity led to a 2.5% 

(L17, p113) – 6.3% (L12, p113) increase in odds of Treg fate (OR = 1.025, 95% CI = 1.011–

1.039, Wald test P = 2.7 × 10−4 for L17-p113; OR = 1.063, 95% CI = 1.051–1.074; Wald 

test P = 5.2 × 10−28 for L12-p113, Extended Data Figure 5, Supplementary Table 9). Though 

highly consistent across samples, this effect is subtle: average CDR3βmr hydrophobicity 
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is 0.08 standard deviations higher in Tregs compared to Tconvs (Figure 4c, OR = 1.08, 

95% CI = 1.076–1.083, Wald test P = 2.3 × 10−523). Sensitivity analyses revealed that p37 

charge and CDR3βmr hydrophobicity effects were relatively robust to the weight of the 

ridge penalty term (Supplementary Table 10). Interestingly, statistical interactions between 

physiochemical values at different TCR residues were largely insignificant except for a few 

relating to bulky adjacent amino acids (Methods, Supplementary Table 11).

To directly visualize the amino acids associated with Treg fate, we generated a sequence 

logo representation of the CDR3βmr based on differential amino acid usage at each position 

(Figure 4d, Methods). Our results are consistent with previous findings suggesting that 

hydrophobicity at p109 and p110 promotes the development of T cells that recognize self-

antigens17. Importantly, we show that this principle extends beyond p109–110 throughout 

the stretch of CDR3βmr residues. Thus, randomly recombined TCR amino acids play a 

parsimonious role in T cell fate acquisition: increasing hydrophobicity raises affinity to 

self-pMHC and thereby promotes Treg development.

Reproducing TCR associations in an independent data set

Having identified TCR features associated with Treg identity, we next sought to validate 

them in a public dataset of TCRβ sequences from sorted Treg (CD4+CD25highCD127low) 

and Tconv (CD4+CD25lowCD27+) cells sampled from the peripheral blood of 16 donors12 

(“replication cohort”, Supplementary Table 2). Despite a different distribution of tissue 

sources in this data set, the CDR3βmr amino acid percentage effects were nearly identical 

(Pearson R = 0.95, P = 4.6 × 10−8, Figure 5a, Supplementary Table 3). Effects for individual 

TRBV genes, Jmotifs, and position-specific amino acid effects were also consistent with 

discovery (Pearson R = 0.56, P = 7.5 × 10−57, Figure 5b, Supplementary Tables 5−6, 

Methods). In the replication cohort, TRB sequences were collected by reverse transcription 

and amplification of RNA rather than direct DNA sequencing. Thus, relative changes in Treg 

likelihood induced by these TCR sequence features are not only robust to different tissue 

sources, but also to technical differences in sorting and sequencing protocols.

Developing TiRP: a Treg propensity score for the TCR

Having replicated the effect of a comprehensive set of TCR features in two independent 

cohorts, we next developed a method to quantify the TCR-intrinsic regulatory potential 

(“TiRP”) of a T cell. Briefly, for a given TCR, TiRP is the sum of Treg association effect 

sizes of independent sequence features in all three TCR regions (Methods). We used meta-

analytic effect size estimates across the two cohorts and included only features with a 

significant effect on T cell fate based on a Bonferroni P value threshold (Methods). As a 

result, TiRP is the weighted sum of 25 TRBV genes, 23 Jmotifs, 4 CDR3β lengths, 14 

CDR3βmr amino acid percentages, and 142 positional amino acids (Supplementary Table 

12).

We then tested our TiRP score on the four discovery cohort donors and two replication 

cohort donors whose repertoire data had been withheld from all former analyses. We 

observed that a one standard deviation increase in TiRP in these held-out data resulted 

in a 23% increase in the odds of Treg status (OR: 1.231, 95% CI: 1.227 – 1.235, LRT P = 2.4 
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× 10−3248, Figure 5c, Supplementary Table 13, Methods). TCRs in the highest-scoring decile 

were more than twice as likely as TCRs in the lowest-scoring decile to belong to a Treg: 1 

in every 3.9 compared to 1 in every 9.1. To ensure that this TCR-T cell state covariation 

was contingent on the biology of surface-expressed TCRs, we repeated this analysis on the 

nonproductive TCRs in the four held-out donors for which out-of-frame reads were available 

(Methods). This indeed abrogated the association between Treg-ness score and Treg fate (OR: 

1.00, 95% CI: 0.97 – 1.04, LRT P =0.96).

To externally validate our scoring system, we calculated TiRP in four published 

datasets13,14,18,19 (Supplementary Table 2). We scored each TCR and assessed whether 

the TiRP explained variance in T cell phenotype, as defined by standard mRNA clustering 

for the three scRNAseq cohorts (Methods, Extended Data Figure 6, Extended Data Figure 

7a−b), and by CD25 and CD127 flow-sorting14. Consistent with our previous observations, 

there was a nearly two-fold increase in Treg likelihood in the top TiRP decile compared to 

the bottom TiRP decile in all cohorts (Figure 5d−f), including the tumor microenvironment 

(Figure 5d, OR: 1.16 per unit increase in TiRP, 95% CI: 1.13–1.19, LRT P = 4.0 × 10−25, 

Supplementary Table 13). TiRP elevation in thymic Tregs
13 confirmed the direct relevance 

of TiRP to the thymus (Figure 5e, OR: 1.09, 95% CI: 1.05 – 1.13, LRT P = 8.8 × 10−7). 

Similar results in TCRs from flow-sorted SP CD4+ thymic T cells14 (Figure 5f, OR: 1.12, 

95% CI: 1.11–1.12, P = 3.1 × 10−177, LRT) pinpointed the stage of thymic development 

in which TiRP promotes Treg fate. Importantly, these SP CD4+ thymocytes include T cells 

observed prior to negative selection. Because the Treg population represents a terminal 

differentiation state in the thymus, young T cells that will negatively selected are more likely 

to be observed in the precursor non-regulatory population. Thus, the blunting in TiRP effect 

size that we observe in thymic data is consistent with high TiRP of T cells that are negatively 

selected for their affinity to self-peptide-MHC. Evidently, our TCR scoring system describes 

Treg TCR features in diverse biological contexts, including thymic selection.

TiRP explains Treg plasticity in the tumor microenvironment

We next asked whether TiRP could help to explain regulatory T cell plasticity. It is 

well-recognized that naive Tconv thymic emigrants can be peripherally induced to adopt 

a regulatory phenotype20,21. Conversely, some Tregs have been observed to lose FOXP3 
expression and adopt a pro-inflammatory phenotype22–25 (“exTregs”, Figure 1b). Expanded 

T cell clones (possessing the same TCR) observed as both Tregs and Tconvs within the same 

donor (hereafter referred to as “mixed clones”) may represent lineages of T cells that have 

undergone such peripheral conversions. We hypothesized that the TiRP of these T cells may 

be intermediate, rendering them most susceptible to peripheral conversion.

Before testing our hypothesis, we used Symphony26 to standardize cell type definitions 

across the two cohorts by mapping cells of expanded clones from both datasets (12,067 

cells) into a common reference atlas27 of T cell states based on joint transcriptional and 

proteomic profiling (Figure 6a−c, Supplementary Table 2, Extended Data Figure 7c−d, 

Extended Data Figure 8a−d, Methods). On average, 19.2% of expanded clones from the 

same donor were observed in both the Treg and Tconv state, including a few large clones with 

a relatively even balance (Figure 6d−e, Supplementary Table 14).
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We next tested whether the TiRP score of mixed clones was in between that of purely Tconv 

and Treg clones (Methods). In the previously held-out bulk sequencing data, the TiRP scores 

of mixed clones were significantly greater than those of expanded Tconv clones and less 

than those of expanded Treg clones (Figure 6f, mixed-Tconv difference = 0.03, P = 2.0 × 

10−40; mixed-Treg difference = −0.29, P = 9.1 × 10−16, LRT, Methods). These single cell 

data confirmed that Tregs of mixed clones indeed exhibited greater FOXP3 expression than 

Tconvs within the same clonal expansion (Extended Data Figure 8e, Methods). As in the 

previously held-out bulk sequencing data, mixed clones in single cell data had intermediate 

TiRP scores which were significantly greater than the scores of expanded, pure Tconv clones 

(Figure 6g, mixed-Tconv mean TiRP difference = 0.182, P = 3.0 × 10−4, LRT, Methods). 

With the limited extent of Treg expansion, we were underpowered to detect significant 

differences between mixed and Treg clones in these data (mixed-Treg mean TiRP difference 

= −0.005, P = 0.57, LRT). When we quantified clone phenotypes by the proportion of Tregs 

and Tconvs within each clone, increasing TiRP corresponded to more Treg-skewed clonal 

expansions (LRT P = 0.003, Figure 6h, Methods). To our knowledge, TiRP is the first metric 

to identify TCR-intrinsic, rather than TCR-extrinsic factors relevant to peripheral phenotypic 

conversion.

Separable drivers of TiRP: self-peptide and human MHC

We next asked whether TiRP captured the major sources of TCR sequence variation 

between sorted T cell samples from diverse individuals. For this, we conducted a principal 

components analysis (PCA) of TCR feature frequencies in the sorted samples of the 

replication dataset, in which all T cell states of interest were available (Methods). We 

observed that the major axes of TCR sequence variation corresponded to T cell state, rather 

than donor HLA genotype or clinical phenotype (Figure 7a, Extended Data Figure 9a−b). 

While our previous supervised modeling was designed to focus on Treg-Tconv differences, 

this approach recovered the importance of T cell state in an unsupervised manner.

PCA delineated two axes of TCR-driven cell states: antigen-experienced (Treg and memory 

Tconv) versus naive (PC1), and regulatory versus conventional (PC2) (Figure 7a−b). The 

axis dividing antigen-experienced from inexperienced samples (PC1) was most reliant on 

TRBV gene frequencies, while the axis dividing regulatory versus conventional samples 

(PC2) was most reliant on mean percent composition of amino acids in CDR3βmr and the 

CDR3βmr-adjacent residue p113 (Figure 7c−d). Since TiRP is a weighted sum of TCR 

features from the V-, J- and middle regions, the score can be divided into three score 

components corresponding to these three regions. TiRP scoring by TCR region revealed that 

V-region-specific TiRP (vTiRP) and CDR3βmr-specific TiRP (mTiRP) indeed captured PC1 

and PC2, respectively (Figure 7e−f, vTiRP – PC1 R = −0.86, P = 1.5 × 10−20, mTiRP – PC2 

R = 0.85, P = 2.6 × 10−20).

We next investigated possible biological drivers for vTiRP and mTiRP. The biological 

structure of the pMHC-TCR complex suggests that different regions of the TCR may 

promote Treg fate via particular affinities: MHC II mostly contacts the V-region of the 

TCR, while the self-peptide is in closest contact with CDR3βmr16,28,29 (Figure 1a). Thus, 

we hypothesized that vTiRP enhanced affinity to human MHC II, while mTiRP facilitated 
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recognition of self antigens. To test this idea, we examined TiRP in two complementary 

datasets: 1) murine Treg TCRs30, which recognize self antigens but are not human MHC 

restricted, and 2) human memory Tconv TCRs12,31, which are human MHC restricted but do 

not recognize self antigens (Figure 8a, Supplementary Table 2).

To apply TiRP to murine data, we first translated murine TRBV genes to their human 

homologs (Methods). We observed that human TiRP was significantly elevated in murine 

Tregs compared to Tconvs (Figure 8b, left; P = 5.0 × 10−136 for Helios+ Tregs, P =0.003 

for Helios− Tregs, LRT, Methods). Thus, TiRP facilitates recognition of self, even in the 

context of an entirely different species’ MHC restriction. A parsimonious explanation for 

this finding, among several, is that TiRP enhances affinity to self-peptides. Consistent with 

this explanation, TiRP is significantly elevated in the 361 CD4+ autoreactive TCRs currently 

documented in McPAS-TCR32 and VDJdb33 (Extended Data Figure 10 P = 1.5 × 10−9, 

Wald test). Across 11 studies, these 361 autoreactive TCRs were identified by their reactivity 

to tetramers or antigen-presenting cells (APCs) presenting peptides known to be targeted 

in four autoimmune diseases (Type 1 Diabetes, Celiac Disease, Multiple Sclerosis, and 

Inflammatory Bowel Disease).

TiRP was dramatically elevated in murine Tregs that expressed Helios, a marker of thymic 

Treg fate acquisition (Figure 8b, left). Consistent with our TCR region hypothesis, the TiRP 

component with the greatest increase between murine Tconvs and Tregs was mTiRP (Figure 

8c, left). CDR3βmr amino acid percentage effect sizes replicated strongly between murine 

and human data (Extended Data Figure 9c, Pearson’s R = 0.85, P = 0.00013) while other 

TCR features did not (Extended Data Figure 9d, Supplementary Table 15, Methods). These 

results strongly suggest that CDR3βmr features such as hydrophobicity promote Treg fate 

via enhanced recognition of self. Interestingly, mTiRP also accounted for the increased TiRP 

of mixed clones of the human tumor microenvironment (Extended Data Figure 9e, P = 2.9 × 

10−4, Wald test). Taken together, these results suggest self-peptide recognition by exTregs in 

the tumor microenvironment, and underline the role of interactions between CDR3βmr and 

the antigenic peptide in Treg fate acquisition.

To understand the role of human MHC, we next compared TiRP in naive and memory 

Tconv TCRs12, which do not strongly recognize self-peptides6 (Figure 8a, Supplementary 

Table 2, Methods). TiRP was significantly elevated in human memory Tconvs compared 

to human naive Tconvs (Figure 8b, right), indicating that affinity to human MHC II also 

contributes to TiRP. Consistent with the hypothesis of V-region-based affinity to human 

MHC II molecules, vTiRP was the only TiRP component to increase in human memory 

Tconvs (Figure 8c, right). As expected, large-effect size TCR features between memory 

Tconvs and naive Tconvs were predominantly TRBV genes (Figure 8d, Extended Data Figure 

9f), and the extent of each gene’s enrichment in memory Tconvs correlated with the extent of 

its enrichment in Tregs (Figure 8d, Pearson’s R = 0.702, P = 4.5 × 10−5 for TRBV genes). 

These effects further replicated in an entirely independent cohort of sorted memory and 

naive T cells from 5 healthy donors31 (Supplementary Table 2, Extended Data Figure 9g, 

Supplementary Table 16). Thus, as structural interactions in the pMHC-TCR complex would 

suggest, V-region features modulate affinity to MHC, thereby shaping the T cell’s general 

disposition for activation.
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DISCUSSION

Because the TCR sequence arises from a random process prior to T cell fate determination, 

associations between the TCR and T cell fate indicate causal effects of the TCR. The 

majority of Treg research to date has focused on TCR-extrinsic determinants of T cell fate, 

such as the effect of costimulatory receptors, antigenic peptides, and cytokines34. Though 

each of these elements certainly play an essential role in T cell fate, the contribution of the 

TCR sequence itself has not yet been comprehensively investigated. TCR-intrinsic factors 

are relevant to nearly all immunological contexts, including the engineering of TCRs for 

immune therapies.

In this work, we leveraged the affinity-based partition of the repertoire into Tregs and 

Tconvs to uncover determinants of TCR avidity toward the self-peptide MHC II complex. 

We identified TCR sequence features that are predictive of Treg cell fate across seven 

independent cohorts, encompassing diverse genetic, clinical and tissue contexts as well as 

sequencing protocols. Donor TCR samples were excluded due to incomplete cell sorting 

in only two of these seven cohorts. Using mixed effects logistic regression, we developed 

a scoring system that captures the TCR-intrinsic regulatory potential (TiRP) of a given 

TCR. We validated this scoring system in three external datasets, including TCRs from 

the human thymus. We observed that TiRP largely reflects centrally-derived Treg TCRs, 

but is also moderately elevated in peripherally-derived Tregs. Excitingly, TiRP helped to 

explain the variable tendency of T cell clones to exhibit a regulatory phenotype in the tumor 

microenvironment. The application of TiRP scoring to murine data demonstrated that these 

TCR differences persist even with limited pathogen exposure. As evidenced by these diverse 

contexts, TiRP quantifies the extent to which a T cell is fated to be a Treg, purely due to its 

TCR.

It is important to recognize several limitations to our approach. First, the amount variance 

in T cell state explained by the TCR is significant but modest considering the full diversity 

of the repertoire. For any given TCR, specific antigenic contacts and costimulatory signals 

are likely the major determinants of T cell phenotype. Our results show, however, that TCR 

features such as hydrophobicity consistently predispose the T cell to adopt a regulatory 

phenotype. Second, our analyses focused on the β chain of the TCR. The β chain is more 

variable than the ⍺ chain and is largely considered to mediate antigen specificity. However, 

the ⍺ chain may also play a role in determining T cell phenotype, which remains to be 

explored. Lastly, though we found preliminary evidence that TiRP is elevated in CD4+ 

autoreactive TCRs, the current data represent only four of many diseases that have been 

described as autoimmune. This finding will need to be reassessed as efforts progress to 

identify a comprehensive set of autoreactive TCRs for these diseases and for others.

The broadest takeaway from our work is the hydrophobic bias of Treg TCRs, present at 

each of the peptide contact residues of CDR3β. This observation extends previous work17,35 

regarding p109 and p110 of Treg TCRs, and demonstrates that the hydrophobic bias is in fact 

specific to these positions. As a group, hydrophobic amino acids are among the strongest-

interacting36. The concept that the strength of amino acid interactions may influence the 

thymic fate of a TCR was first predicted by Kosmrlj et al37. In this computational model 
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of thymic selection, TCRs with “weakly interacting amino acids” (QNSTAG) best evaded 

negative selection. Antigen specificity then followed: for TCRs with only weak amino 

acid interactions, any change in peptide sequence abrogates TCR recognition. If the Treg 

population is thought of as “partially” negatively selected—that is, precisely the TCRs for 

which pMHC recognition in the thymus is higher than average, but not to a fatal extent

— their TCRs should be enriched in strongly-interacting amino acids (IVYWREL). Our 

analyses confirm this enrichment in Tregs, and suggest that the phenomena also applies 

to fully negatively selected TCRs. If strongly-interacting residues make TCR recognition 

relatively robust to changes in peptide sequence, antigen specificity may be reduced in Tregs 

compared to Tconvs. Perhaps, such degenerate “stickiness” allows the Treg to generalize from 

the self-peptide encountered in the thymus to a larger pool of protected self-antigens.

Importantly, however, CDR3βmr hydrophobicity is not the full picture. TRBV gene usage 

explained nearly as much variance in T cell fate, and TRBV gene effects were not related 

to hydrophobicity. Our work suggested instead that the isoelectric point of the CDR1β p37 

encoded by the TRBV gene shapes affinity to conserved sites of MHC II16. While the Treg-

promoting effect of hydrophobic CDR3βmr amino acids did not translate to the development 

of memory Tconvs, memory Tconvs and Tregs exhibited strikingly similar TRBV gene biases 

compared to the naive repertoire. These results suggest that hydrophobic residues in the 

CDR3βmr may only be “sticky” toward self-peptides, while Treg-promoting TRBV genes 

enhance affinity to MHC II and thereby predispose CD4+ T cells to recognize both self and 

non-self.

These phenomena offer a new lens on the T cell immune response: though each TCR 

tends to recognize a specific cognate antigen, all TCRs are subject to common processes 

that shape T cell activation. Due to these common processes, not all TCRs are created 

equal—those with a higher baseline for general reactivity may require a less “perfect” 

cognate antigen for activation. Existing tools provide rough annotations for “TCR strength,” 

but these are based on frequently interacting residues in general protein structures37. TiRP 

sharpens our understanding of high affinity amino acids in the context of the pMHC-TCR 

complex, providing a crucial functional annotation for the T cell receptor.

Methods

Bulk sequencing data

We downloaded the discovery cohort11, replication cohort12, the murine cohort30 and 

memory cohort31 sequencing data from the Adaptive Biotechnologies immuneACCESS site 

(URLs). We downloaded the thymic bulk sequencing cohort14 from GitHub (URLs). For 

all data, we defined CDR3 amino acid sequences with stop codons or frameshifts to be 

non-productive amino acid sequences. We restricted all analyses to CDR3 sequences of a 

length within 12 and 17 amino acids, representing 91.8% of observations in the discovery 

cohort. We aligned CDR3 amino acids to positions defined by IMGT (URLs), wherein 

sequences less than 15 amino acids have mid-region gaps and sequences longer than 15 

amino acids have extra mid-region positions. We examined only one copy of each CDR3β 
sequence within each individual. Unless explicitly noted, we excluded CDR3β reads that 

were observed in both the Treg and Tconv sample of any individual (0.63% of observations in 
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the discovery cohort and 1.9% of observations in the replication cohort). For the discovery 

cohort, we restricted our analysis to the 24 donors with both Treg and Tconv TCRs available. 

For the replication cohort, we restricted our analysis to the 16 donors with both Treg and 

Tconv TCRs available.

Single cell sequencing data

We downloaded scRNAseq tumor microenvironment data18,19 from the GEO through 

accession numbers GSE114727, GSE114724, and GSE123814. For the scRNAseq thymic 

data, we downloaded fastqs from ArrayExpress under accession number E-MTAB-8581 and 

metadata from Zenodo (DOI: 10.5281/zenodo.3711134). For quality control, we included 

only cells for which 1) more than 1000 genes were expressed 2) less than 25% of detected 

UMIs were of mitochondrial origin and 3) exactly one productive TCR beta chain was 

detected. We followed the quality control process of the original authors for the multimodal 

memory T cell dataset27, which is available for download from the GEO through accession 

number GSE158769.

STATISTICAL ANALYSES—All mixed effects models were fit with R package lme4. All 

model comparisons were computed with R package stats. All significance tests on Pearson’s 

r were t-tests with the Fischer transformation. All analyses were done with R version 

>=3.6.1.

Holding out observations for calibration and testing

To leverage both the discovery11 and replication12 cohorts in the development of TiRP, 

we used approximately 70% of the TCR clones from each cohort for training, 10% for 

calibration, and 20% for testing. To preserve the novelty of held-out data, we kept all TCR 

clone observations from the same individual together in this process, holding out entire 

repertoire samples. In the discovery cohort, we held out two individuals for TiRP calibration 

(donor IDs = 6279, 6196, accounting for 8.4% of TCR clones in the discovery cohort) and 

four individuals (donor IDs = 6161, 6193, 6207, 6287, accounting for 20.3% of clones in 

the discovery cohort) for TiRP testing. In the replication cohort, we held out one individual 

for TiRP calibration (T1D3) and three individuals (HD1, HD2, T1D6) for validation. TCR 

sequence feature effect sizes were estimated in a separate mixed effects model for each 

cohort for each independent region of the TCR.

Mutual information structure of the CDR3β sequence

We first calculated the conditional mutual information (MI) for all possible trios of CDR3β 
positions: the normalized MI of positions A and B given position C. For all trios, we 

normalized conditional MI by diving by the mean conditional entropy of positions A and 

B given position C, such that the normalized MI was ultimately equivalent to “symmetric 

uncertainty”38 or the harmonic mean of the uncertainty coefficients. We used R package 

“infotheo” to compute all conditional mutual information and conditional entropy values.

We then calculated the Shannon entropy39 of each CDR3β position and the mutual 

information40 between all pairs of CDR3β positions with the R package DescTools. 
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Again, to normalize mutual information, we divided mutual information for a given pair 

of positions by the mean entropy of those two positions.

Selection of random effects and model comparisons

In the discovery cohort11, T cells were sampled from four tissues: peripheral blood (PBMC), 

spleen, pancreatic lymph node (pLN), and inguinal/irrelevant lymph node (iLN). We 

reasoned that there were three sensible ways to model tissue as a source of variation in 

T cell state:

(1) as a fixed effect:

log p
1 − p = β0 + β1X1 + β2X2 + β3X3 + b0i

where p is the probability that the CD4+ sorted CDR3β sequence belongs to a Treg, β0 is 

an intercept, X1 is an indicator variable set to 1 if the sequence is from a PBMC sample, 

X2 is an indicator variable for spleen origin, X3 is an indicator variable for iLN origin (pLN 

as reference), and b0i is a modification to the intercept fit to each individual i, normally and 

independently distributed (NID) with mean 0 and variance σ0
2.

(2) as a random intercept effect independent from the random intercept effect per individual, 

wherein matched tissues across donors have the same (zero-centered) intercept effect:

log p
1 − p = β0 + b0i + b1j

where b1j is a modification to the intercept fit to each tissue j, NID with mean 0 and variance 

σ1
2, and all other variables maintain previous definitions

and/or (3) as a nested random intercept effect, wherein each tissue-donor pair is modeled 

as a unique batch of correlated observations within the individual-level and tissue-level 

variances:

log p
1 − p = β0 + b0i + b1j + b2i, j

where b2i,j is a modification to the intercept fit to each individual i - tissue j pair, NID 

with mean 0 and variance σ2
2, and all other variables maintain previous definitions. For 

stable numerical results, we included the marginal random effects for donor and tissue in this 

nested random intercept model.

To determine which of these models was most appropriate, we calculated the pseudo R2 

by the conventional McFadden41 approach (range 0–1), and multiplied the result by 100 

(variance explained range: 0 −100). All measures of variance explained in this study were 

computed with this approach. For this analysis, we compared models 1–3 to a baseline 

model that fit the log odds of Treg status only to a random intercept for each individual:
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log p
1 − p = β0 + b0i

These model comparisons revealed that tissue explained 1.90% of variance as a fixed 

effect and 1.15% of variance as a random effect (P = 1.15 × 10−11211 fixed and P = 4.68 

× 10−10229 random, LRT). On the other hand, tissue as a random effect nested within 

individual explained 6.27% of variance (P = 1.32 × 10−55291, LRT). We therefore concluded 

that nesting a random tissue effect within the donor random effect was the most appropriate 

model for the batch structure of these data, and proceeded with three random intercepts for 

each mixed effects model: the nested donor-tissue effect, the marginal donor effect, and the 

marginal tissue effect.

CDR3βmr mixed effects logistic regression

For each amino acid, we calculated the percentage of CDR3βmr positions occupied by 

this residue; a percentage of 0 means that the residue is missing for a given TCR, while a 

percentage of 100 means that the residue is present at every CDR3βmr position. We scaled 

this percentage to have a mean of 0 and variance of 1, and tested the scaled percentage in 

a separate mixed effects logistic regression for each amino acid with random intercepts as 

described above. We controlled for CDR3β sequence length by including it as a categorical 

covariate, reasoning that conformational differences in the HLA-TCR complex may not 

scale linearly with additional residues. To collect the relevant amino acid proportions, we 

did a forward search where we iteratively added to the mixed effects model the amino 

acid proportion that provided the greatest improvement in model fit. On the first round, the 

percentage of CDR3βmr positions occupied by Glutamic acid (E) in each TCR explained the 

most variance, with a 9.7% fall in odds of Treg fate per additional Glu residue for CDR3βs 

of length 15 (pseudo R2 = 0.036%, likelihood ratio test (LRT) P = 8.37 × 10−196, OR = 

0.954, 95% CI = 0.951 – 0.957). Conditioning on this feature revealed that the next amino 

acid with the greatest independent effect was Aspartic acid (D) (pseudo R2 = 0.042%, LRT 

P = 1.01 × 10−225, OR = 0.95, 95% CI = 0.947 – 0.953). We repeated this process until the 

remaining amino acid percentages no longer passed the Bonferroni-corrected significance 

threshold (P = 0.05/20 for 20 amino acids) (Figure 3b, middle). We confirmed that this 

threshold kept the type I error rate below 0.05 by repeating this analysis 1000 times, with 

Tconv and Treg labels for each TCR randomly shuffled within the data for each donor on each 

run.

Position-specific mixed effects logistic regressions

To parse the TRBV-encoded region, we asked if the 5’ flanking CDR3β residues could be 

represented by a handful of motifs. Indeed, the 8 p104-p106 sequences (“Vmotifs”) present 

in each donor with frequency > 0.001 in every donor accounted for 96.2% of TCRs. We 

labeled the remaining 3.8% of TCRs with a Vmotif of “other.”

To avoid multicollinearity in our selection of covariates, we calculated all correlation 

coefficients for each pair of TCR features in the discovery dataset. This computation 

for TRBV gene and Vmotif, for example, yields 57 non-reference TRBV genes x 7 non-
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reference Vmotifs = 399 correlation coefficients. Visualized in Extended Data Figure 3a−c is 

the correlation coefficient with the maximum absolute value for each TCR feature pair. All 

pairs of features derived from the V-region exhibited | r | > 0.7, except for pairings with p107 

(Extended Data 3b).

P107 featured moderate correlation coefficients with other V-region features, suggesting 

two viable models for comparison: 1) joint modeling of the TRBV gene identity with 

the p107 amino acid, and 2) joint modeling of Vmotif with p107. By comparing the 

pseudo-R2 of these two models (Figure 3b, left), we concluded that the V-region was best 

modeled by joint estimation of TRBV gene and p107 residue effect sizes. To account for 

donor-individualized TRBV gene thymic selection, we included VGSR as a fixed covariate 

in this final model (Supplementary Note).

Similarly, to parse the TRBJ-encoded region, we asked if the 3’ flanking CDR3β residues 

could be represented by a handful of motifs. Indeed, the 42 p114-p118 sequences 

(“Jmotifs”) present in each donor with frequency > 0.001 in every donor accounted for 

91.5% of TCRs. Computation of all pairwise correlation coefficients for TCR features in the 

J-region (Extended Data Figure 3c) suggested two possible non-multicollinear models: 1) 

joint modeling of the TRBJ gene identity with the p113 amino acid, and 2) joint modeling 

of Jmotif with p113. In contrast to the V-region, here it appeared that the motif afforded 

a greater pseudo-R2 than the gene (Figure 3b, right), and so we proceeded with joint 

estimation of Jmotif and p113 for the J-region.

To confirm the absence of multicollinearity in these models, we computed the inflations in 

variance for coefficient estimates (VIF), and found that avoiding pairs with any | r | > 0.7 

successfully corrected variance inflation (Extended Data Figure 3d−e). To make the variance 

inflation comparable across multiple degrees of freedom, we used the generalized variance 

inflation factor42 GV IF
1

2*Df , computed with R package “car.”

To protect against numerically unstable estimates, we report only the effect sizes of TCR 

features with a frequency greater than 0.005 in the training data for both the discovery and 

replication cohorts.

Calculating TCR proportions

To approximate the proportion of the TCR occupied by each TCR region in Figure 3d, we 

divided the number of amino acids in a given TCR region by the estimated total number of 

TCR β chain amino acids protruding into the MHC-TCR complex (Figure 2b). To estimate 

the total number of amino acids protruding into the MHC-TCR complex, we added 11 to 

the observed CDR3β length because over 70% of TCR clones in the discovery training data 

express a TRBV gene with exactly 11 amino acids in the CDR1β and CDR2β loops. Thus, 

we estimated the absolute size of the V-region to be 15 amino acids (11 + 4 CDR3β amino 

acids), the size of the J-region to be 6 amino acids, and the size of the CDR3βmr to vary 

with CDR3β length (Figure 2b).
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Null Model Comparisons for Variance Explained by TCR features

To generate a suitable null model for variance explained by TCR features, we conducted 

permutation analyses. Within each donor and tissue sample of the discovery cohort used for 

training, we permuted the cell type labels (Treg versus Tconv) for each TCR 1000 times. On 

each permutation, we fit mixed effects logistic regression models for the CDR3βmr and J 

region as delineated above. (Supplementary Table 7).

Estimating the effects of physicochemical features

To estimate the effects of physicochemical features, we represented each CDRβ loop residue 

as a vector of length 3, corresponding to the amino acid’s hydrophobicity, isoelectric point, 

and volume. For consistency with the closely related work by Stadinksi et al.17, we used the 

whole-residue interfacial hydrophobicity scale43. We used isoelectric point values from the 

CRC Handbook of Chemistry and Physics44 and volume estimates from IMGT’s conversion 

of Zamyatnin’s45 measurements to cubed Angstroms (URLs). Each value was scaled to have 

a mean 0 and variance 1 for regression analysis.

To localize the importance of these physicochemical features within the TCR, we 

represented each residue belonging to a CDRβ loop as a vector of length 3 corresponding to 

the amino acid’s hydrophobicity, isoelectric point, and volume, and modeled Treg fate as an 

outcome of these features using multiple logistic regression. We followed IMGT positioning, 

wherein the human CDR1β loop consists of positions 27, 28, 29, 37, and 38; while the 

human CDR2β loop consists of positions 56, 57, 58, 63, 64, and 65. We used only TCR 

reads with a resolved TRBV gene (78.5% of observations), and imputed CDR loop amino 

acids based on TRBV gene identity using IMGT (URLs). To enable TCR alignment, we 

discarded 3.6% of observations with a resolved TRBV gene for which there were not exactly 

5 CDR1β amino acids and 6 CDR2β amino acids, or for which CDR1–2 amino acids were 

not available via IMGT.

To handle the densely correlated TCR features within the CDR1β and CDR2β loops, 

we applied a ridge penalty to the logistic regression using R package “glmnet.” This 

regularization served as a penalization strategy alternative to random effects, and so we 

included batch (donor and tissue source of the TCR) as a fixed and penalized covariate. As 

in the TRBV gene analysis, we used VGSR as a covariate to partial out genetic variation 

in TRBV-MHC affinity (Supplementary Note). All predictors were scaled to a have mean 

0 and variance 1. We did not assume that position-wise physicochemical effects would 

translate across different CDR3β lengths, and so fit a separate logistic regression for each 

length. For each regression, we tuned the λ penalty by testing the 100 values generated by 

the glmnet package and selecting the one that gave the minimum mean cross-validated error 

across 10 folds of the training data in the discovery cohort. Sensitivity analyses confirmed 

that λ=0.01 was an appropriate choice for the data (Supplementary Table 10).

In a separate analysis isolated to the CDR3βmr, we fit a separate mixed effects logistic 

regression for each length-position combination in the discovery cohort training data 

(Extended Data Figure 5b). We included all three physicochemical features as fixed 

covariates for each position, and modeled donor and tissue sources as random effects as 
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described above. Each physicochemical feature was scaled to have a mean 0 and variance 1 

for each length-position combination.

For the Figure 4d visualization, we included only TCRs with a CDR3β length of 15 amino 

acids in the discovery cohort training data, and fit a separate mixed effects logistic regression 

for each position. Each regression included random intercepts as described above and one 

fixed covariate corresponding to the amino acid identity at the given position. We cast the 

most common amino acid as the reference: Leucine for position 108, and Glycine for all 

other positions.

Assessing TCR residue interactive effects on T cell fate

Since the physicochemical features of hydrophobicity, isoelectric point, and volume 

captured most of the variance explained by the CDR3βmr (Figure 3b), we used these three 

features to test for TCR residue interactions with respect to Treg fate. For each pair of TCR 

positions a and b, we fit nine mixed effects logistic regression models; one for each of the 

nine possible pairs of the three physicochemical features:

1. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X1aX1b + b0i + b1j + b2i, j

2. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X2aX2b + b0i + b1j + b2i, j

3. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X3aX3b + b0i + b1j + b2i, j

4. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X1aX2b + b0i + b1j + b2i, j

5. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X2aX1b + b0i + b1j + b2i, j

6. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X2aX3b + b0i + b1j + b2i, j

7. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X3aX2b + b0i + b1j + b2i, j

8. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X1aX3b + b0i + b1j + b2i, j

9. log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b

+ β4X3aX1b + b0i + b1j + b2i, j

where p is the probability that CDR3β sequence belongs to a Treg, X1a is the hydrophobicity 

of residue a, X2a is the isoelectric point of residue a, and X3a is the volume of residue a 
(with analogous values X1b, X2b, and X3b for the physicochemical features of residue b) and 
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intercept terms β0, b1j, b1j and b2i,j are as defined previously. To test for interactive effects, 

we compared each of these models to a baseline model in which β4 = 0:

log p
1 − p = β0 + β1aX1a + β1bX1b + β2aX2a + β2bX2b + β3aX3a + β3bX3b + b0i + b1j + b2i, j

All model comparisons were computed by the likelihood ratio test. As depicted in Figure 2b, 

the CDR3βmr is of variable length, ranging from 2 amino acids in CDR3βs of length 12 to 

7 amino acids in CDR3βs of length 17. (
2
2) pairs of CDR3βmr residues in length 12 + (

3
2)

pairs of CDR3βmr residues in length 13 + (
4
2) pairs of CDR3βmr residues in length 14 and 

so forth to (
7
2) pairs of CDR3βmr residues in length 17 totals to 56 total pairs of CDR3βmr 

residues. We fit the nine mixed effects logistic regression models enumerated above for each 

of these 56 pairs in both the discovery and replication cohorts and integrated the results via 

meta-analysis as described for other TCR features. With 606 non-interactive TCR features 

(Supplementary Table 1) and 56 × 9 interactive effects, the Bonferroni significance threshold 

for these meta-analytic P values was 0.05/((9 *56) + 606) = 4.5 × 10-5.

Developing the TiRP scoring system

We defined TiRP as the sum of the TCR sequence features present in a given TCR, 

reasoning that the effects of TCR features were additive provided that they were fit jointly or 

derived from independent regions of the TCR. To reach a consensus effect size for each TCR 

feature across the two cohorts, we used inverse-variance weighted meta-analysis. Due to the 

inconsistent effect size directions for the usage of Valine (V) in the CDR3βmr (Figure 5a, 

Extended Data Figure 2b), we included only 14 amino acid percent covariates in our final 

CDR3βmr models (Supplementary Table 1). To exclude potentially unreliable effect size 

estimates from the score computation, we calibrated a meta-P value significance threshold 

above which TCR features were excluded from the score. For this, we used a single mixed 

effects logistic regression for each threshold over a range of thresholds on the pooled 

discovery and replication TCRs held out for calibration (discovery cohort: 6279, 6196, 

replication cohort: T1D3). Each mixed effects logistic regression estimated the fixed effect 

of TiRP on T cell fate, with random intercepts for donor source, tissue source, and each 

donor-tissue source pair (see “selection of random effects and model comparisons”). We 

found that no threshold led to significantly greater variance explained than the Bonferroni-

corrected threshold, 0.05/612 TCR features, resulting in 25 TRBV genes, 23 Jmotifs, 4 

CDR3β lengths, 14 CDR3βmr amino acid percentages, and 142 position-specific features 

relevant to TiRP computation (Supplementary Table 12).

Testing TiRP in held-out donors from bulk sequencing cohorts

To test TiRP in bulk sequencing data, we scored each unique productive TCR in donors held 

out from both TiRP training and calibration (discovery cohort donors 6161, 6193, 6207 and 

6287, and replication cohort donors HD1, HD2, and T1D6). We then tested the association 

between TiRP and T cell state by comparing the additional variance explained by a mixed 
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effects logistic regression model including TiRP as a fixed covariate to a baseline model 

containing only donor ID, tissue source, and donor-tissue interaction as random intercepts 

(likelihood ratio test). We conducted the same process for nonproductive TCRs in held-out 

donors, and restricted this analysis to the discovery cohort, in which TCR gDNA was 

sequenced and therefore out-of-frame reads were available (Supplementary Table 2). To 

ascertain the difference between high-scoring and low-scoring TCRs in these held-out data, 

we collected the top and bottom decile of TCRs per donor, and compared the ratio of Tregs to 

Tconvs between the group of all top decile TCRs and the group of all bottom decile TCRs.

Validating TiRP in single-cell data

In single-cell data analyses, TCR clones were defined by a barcode consisting of their donor 

ID and CDR3β DNA sequence. As in bulk sequencing analyses, CDR3β chains with a 

length shorter than 12 amino acids or longer than 17 amino acids were discarded. Only cells 

with exactly one productive CDR3β detected were included in analyses.

We computed the TiRP score for each clone based on its CDR3β amino acid sequence 

and TRBV gene. So that TiRP scores would be comparable, percent amino acid values 

were scaled by the mean and standard deviations of the TCRs held out for testing from the 

discovery cohort (transformation provided in Supplementary Table 12). TRBV gene usage 

was determined by MixCR alignments for the Azizi et al. cohort and Park et al. cohort and 

by RNA expression in the Yost et al. cohort. To determine TRBV gene usage based on RNA 

expression in the Yost et al. cohort, read counts were log-normalized per cell and then scaled 

so that each TRBV gene had mean 0 and variance 1 within cells that had non-zero read 

counts for the given gene. Each cell was then assigned the TRBV gene with the highest 

normalized and scaled expression. Cells without any TRBV gene expression detected were 

given a TRBV gene value “unresolved.”

To validate the TiRP score in these data, we tested the association between TiRP score and 

regulatory or conventional cell phenotype. For the Yost et al. cohort, cell phenotypes based 

on the original authors’ clustering were available. We labeled all cells in the ‘Tregs” and 

“Treg” cluster as Treg and all cells in the “Tfh”, “Th17”, “CD4_T_cells”, and “Naïve” to 

be CD4+ Tconv. For the Azizi et al. cohort, we applied a standard scRNAseq pipeline to 

infer cell phenotypes: we excluded all cells with read counts from 1000 genes or less or at 

least 25% of read counts from mitochondrial genes and then used R package “Seurat” with 

default parameters to 1) normalize the read counts per cell, 2) take the variance-stabilizing 

transform 3) scale and center gene expression, and 4) compute the first 20 principal 

components based on the 500 most variable genes. We then used Harmony46 to batch-

correct the principal component embeddings by sample (donor_batch ID) and constructed 

a shared-nearest-neighbor (SNN) graph based on these harmonized embeddings with k=30. 

Finally, we conducted Louvain clustering on the SNN graph with resolution 0.8, and ran 

uniform maniform approximation and projection (UMAP) on the first 10 harmonized PCs. 

After aligning fastq reads from the Park et al. cohort to GRCh38–3.0.0 with cellranger 

version 6.1.1, we applied this same pipeline, including only the 29 samples from 11 donors 

(7 pre-natal, 2 pediatric, and 2 adult) with paired TCR sequences available, taking the top 

1000 variable genes per sample, harmonizing over DonorID, Sample, and enzyme used 
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(Collagenase or Liberase), and using k=10 for the SNN graph. After clustering all cells 

with resolution 2.0, we distinguished T cells from other major lineages by expression of 

CD3G, CD3D, NKG7, CD59, MS4A1, CD34, and CD14. We then filtered our analysis to T 

cells, re-transformed expression, re-computed and harmonized PCA, re-constructed the SNN 

graph, and re-clustered the cells at resolution 3.0 to identify Treg thymocytes (Extended Data 

Figure 6).

To create 95% confidence intervals for Treg odds per TiRP decile (Figure 5d−e), we 

conducted bootstrapping with 10,000 iterations via R package “boot.”

Creating a CD4+ memory T cell single cell reference

To construct a reference of cellular phenotypes for CD4+ memory T cells, we used a 

published dataset27of scRNAseq and CITE-seq for 500,000 memory T cells from 259 

donors (Supplementary Table 2). From these quality-controlled data, we used CITE-seq 

values to select 430,270 CD4+ cells (normalized CD4 > 1.5 and normalized CD8 <1, 

consistent with the original authors’ procedure). We followed the method developed by 

Nathan et al. to cluster the cells based on integrated mRNA and protein expression. First, we 

used R package “Seurat” to normalize the read counts per cell, take the variance-stabilizing 

transform and then scale gene expression to have a mean 0 and variance 1. We selected the 

union of the 1500 most variable genes (by mRNA expression) in each donor, resulting in 

4707 variable genes.

To integrate surface protein information, we used CCA. First, we resolved the coefficients 

that maximized the correlation between linear combinations of the 4707 genes and the 31 

manually-curated surface proteins27 in the CITE-seq panel (“cc” function from R package 

“CCA”). We then projected the cells into the 31 canonical dimensions in mRNA space, and 

used Harmony46 with default parameters to harmonize the embeddings of these canonical 

dimensions by donor. For visualization, we used the R package “uwot” to conduct UMAP on 

the first 10 canonical dimensions using the cosine metric, a local neighborhood size of 30, 

and a minimum distance of 0.3 between embeddings. To identify cell types, we constructed 

a SNN graph (k=10) from the harmonized embeddings of the first 10 canonical dimensions, 

and conducted Louvain clustering on the SNN graph with resolution 0.8, revealing one 

cluster (#6) with markedly elevated FOXP3 and CD25 expression and reduced CD127 

expression. We labeled cells belonging to this cluster as Tregs and manually annotated the 

phenotypes of the other clusters based on surface expression of the 31 manually-curated, 

immunologically relevant surface proteins as well as mRNA expression of CCR7, IFNG, 
GZMK, and CTLA4 (Extended Data Figure 7c−d).

Mapping tumor-infiltrating T cells with Symphony

Before ascertaining mixed clones in tumor-infiltrating cells, we standardized Treg and Tconv 

definitions between the two cohorts by projecting cells from both cohorts into the annotated 

low-dimensional space of the reference single cell dataset. To accomplish this projection 

and simultaneously harmonize the tumor-infiltrating cells by cohort, donor and sample, we 

utilized Symphony26. Because the reference dataset consisted of only memory T cells and 

our hypothesis focused on expanded clones, we mapped only the tumor-infiltrating cells for 
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which their paired CDR3β DNA sequence was detected on more than one cell within their 

patient sample (56.1% of cells in the Azizi et al. cohort, 60.6% of cells in the Yost et al. 

BCC cohort, and 73.7% of cells in the Yost et al. SCC cohort). For each cohort separately, 

we used Symphony to map the query cells into the harmonized reference canonical variate 

embedding space while integrating over unwanted sources of technical variation tagged by 

donor and sample in the query. We used the resultant canonical variate embeddings to 1) 

impute cluster membership for query cells via k-nearest-neighbors in the reference cohort (R 

package “class”, k=5), and 2) project the query cells into the reference UMAP embedding. 

To visualize TiRP trends, we colored each cell by the average TiRP of its 100 nearest query 

neighbors in the 31 canonical dimensions (Figure 6c).

Mixed clone analysis with bulk sequencing data

We conducted our mixed clone analysis with bulk sequencing data in the donors from the 

discovery and replication cohort that were held out from the estimation of TCR feature 

effect sizes and TiRP score calibration (Supplementary Table 2). Clones were defined by 

the “barcode” consisting of their CDR3β nucleotide sequence, TRBV gene ID, and donor 

ID. Because clonal expansion is a prerequisite to mixed clone status, we compared mixed 

clone TiRP scores to those of expanded Tconv and Treg clones. For the discovery cohort, 

TRB chains were sequenced from gDNA, and so clonal expansion could be derived from 

the number of “templates” for each clone (number of biological molecules prior to PCR 

amplification, inferred by immunoSEQ via internal bias control). Because TRB chains were 

sequenced from cDNA in the replication cohort, we cannot know whether identical reads 

within the same sample represent TRB transcripts from one or multiple cells. However, we 

can deduce that identical reads across multiple flow-sorted samples from the same individual 

arose from multiple cells and therefore an expanded clone. Therefore, for the replication 

cohort, we collected a sample of the expanded clones from each donor by aggregating all 

CDR3β nucleotide sequences that arose in multiple flow-sorted samples from the same 

individual (Treg, naive Tconv, central memory Tconv, and stem-cell like memory Tconv). 

Because there was only one Treg sorted sample for each individual, we could only detect 

pure Tconv or mixed clones in the replication cohort. We tested the effect of TiRP score on 

clone phenotype with mixed effects models as designed in the single-cell analyses.

Mixed clone analysis with single cell data

To detect mixed clones in single cell data, we aggregated cells into clones based on 

matching clonal “barcodes:” patient ID, TRB DNA sequence, TRBV gene, and TRA 

amino acid sequence. To protect against contamination by doublets (droplets encapsulating 

two cells rather than one), we excluded cells with more than one unique TRB chain 

detected. Since the expression of multiple TRA chains, however, is a common biological 

phenomenon47, we did not exclude multi-TRA chain cells. To assign a clonal barcode TRA 

for these cells, we selected the TRA sequence that was most often expressed by cells with a 

matching TRB DNA sequence in the given patient.

To model the effect of TiRP score on clone phenotype (Tconv, Treg, or mixed), we used 

mixed effects logistic regression with random intercept for the clone’s source patient and 

the clone’s source cohort (BRCA, SCC, or BCC). Since clonal expansion is a prerequisite 
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to mixed clone status, only clones of size > 1 were included. We used the LRT to compare 

the model including TiRP to a baseline model containing only the random covariates. We 

conducted this process twice: first to compare mixed clones to purely Tconv clones, and 

second to compare mixed clones to purely Treg clones.

We then quantified the clone phenotype by taking the natural log transform of the within-

clone Treg/Tconv ratio, with one “hallucinated” Treg and one “hallucinated” Tconv per clone 

to protect against numerically unstable estimates. We tested the effect of TiRP score on this 

quantitative clone phenotype using mixed effects linear regression with random intercepts 

as described above, and found a 0.065 increase in ln(Treg/Tconv ratio) per standard deviation 

increase in TiRP score (Figure 6h, P = 1.6 × 10−4, LRT).

To check that FOXP3 expression was significantly different between Tregs and Tconvs within 

mixed clones, we conducted a Student’s paired t-test and confirmed that this was indeed true 

(Extended Data Figure 8e).

Analysis of murine TCRs

T cell clones were defined by the barcode consisting of CDR3β amino acid sequence, TRBV 
gene identity, and donor ID. Due to ambiguity, clones observed in both Treg and Tconv 

samples from the same donor or in both the Helios+ and Helios- Treg samples from the 

same donor were excluded from the following analyses. Clones with member cells in both 

the naive Tconv and memory Tconv samples from the same donor were labeled with the 

memory Tconv phenotype.

To compute the TRBV gene component of the TiRP score in murine data, we assigned each 

murine TRBV gene the TiRP coefficient of its human homolog according to human-mouse 

TRBV correspondences listed in IMGT (URLs). Murine and human TRBV genes were 

aligned for comparison in Extended Data Figure 9d by this same correspondence scheme. 

Murine TRBV genes with multiple human TRBV gene homologs were assigned the average 

of their human homolog coefficients. Because the reference TRBV gene in human data, 

TRBV05–01, does not have a murine homolog, comparing TRBV gene effect sizes in mouse 

and human required a change to a common reference. We encoded TRBV19–01 as the 

reference for murine mixed effects logistic regression models, and translated human TRBV 
gene effect sizes to those that would be obtained from TRBV19–01 as the reference by 

subtracting the meta-analytic effect size for TRBV19–01 from all TRBV gene effect sizes 

(including TRBV05–01, originally at 0).

TCR feature Principal Components Analysis

To contextualize the amount of T cell phenotypic variation explained by TCR features 

identified in our work, we performed a principal components analysis on the matrix of 

samples by TCR feature means for the replication cohort, in which sorted samples for 

all T cell phenotypes of interest were available (Supplementary Table 2, Figure 7a). For 

categorical TCR features such as TRBV gene or Jmotif, we one-hot-encoded the variable 

into a binary vector equal to the length of possible values, and took the mean of each 

of the positions. As this process rapidly expands the dimensionality of each sample, we 
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summarized the TCR features in the CDR3βmr by percent composition of each amino acid 

only. We used the function “prcomp” from R package “stats” to conduct singular value 

decomposition of the centered and scaled matrix of samples by mean TCR features.

Analyzing the TiRP of Autoreactive TCRs

To survey the TiRP of known autoreactive TCRs, we collected all CD4+ β chain TCRs 

currently documented in McPAS-TCR32 and VDJdb33 with an association to autoimmune 

disease. For TiRP scoring, we included only TCRs with a CDR3β length of 12–17 amino 

acids. For these 375 unique TCRs, we manually inspected their source publications, and 

included only the 361 TCRs whose autoreactivity was confirmed by tetramers or APCs 

pulsed with a known peptide. For reference, we compared these TiRP scores to repertoire 

memory CD4+ Tconv cells from donors held-out from TiRP training and calibration (n=3 

donors). Specifically, we fit a linear model of TiRP score as a function of TCR category 

(Tconv memory or autoimmune), and used the Wald test to assess whether TCR category is 

associated with a significant TiRP difference.

Memory-Naïve TCR comparisons

T cell clones were defined by the barcode consisting of CDR3β amino acid sequence, 

TRBV gene identity, and donor ID. Due to ambiguity, clones observed in both Treg and 

Tconv samples from the same donor were excluded from the following analyses. Clones with 

member cells in both the naive Tconv and memory Tconv samples from the same donor were 

labeled with the memory Tconv phenotype.

For the replication of Tconv memory-naive TRBV effects in the Soto et al. cohort31, two 

additional steps were necessary to accommodate the deeper TCR sequencing within these 

individuals. First, only TCRs with a Cysteine at position 104 and Phenylalanine at position 

118 were included. Though there does exist some minor physiologic variation at these 

conserved sites, such outlier sequences are not relevant to TiRP score computation. Second, 

though the donor source of each TCR was modeled as a random effect in other cohorts, 

we modeled it here as a fixed covariate, reducing computational burden and allowing the 

maximum likelihood estimation to converge.

URLs

ImmuneAccess:

https://clients.adaptivebiotech.com/immuneaccess

Thymic TCR bulk sequencing:

https://github.com/Aleksobrad/Humanized-Mouse-Data

Amino acids encoded by TRBV genes:

http://www.imgt.org/IMGTrepertoire/Proteins/proteinDisplays.php?

species=human&latin=Homo%20sapiens&group=TRBV
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Amino acid volumes:

http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html

Extended Data

Extended Data Fig. 1: Mutual information structure of the TCRβ sequence.
(a) – (e) Heatmap depicting the mutual information structure of the CDR3β amino acid 

sequence for CDR3βs of length 12 (a), 13 (b), 14 (c), 16 (d), and 17(e) in the discovery 

dataset. The lower diagonal features normalized mutual information (NMI) between each 

pair of TCR positions, while the upper diagonal features the maximum mutual information 

achieved by conditioning on any other TCR position. NMI color scale for (a)-(e) is provided 

in (a). (f) Probability of each amino acid in each TCR position depicted by a sequence logo. 

(g) Heatmap as in (a) – (e) for CDR1β and CDR2β loop positions as well as TCR features 

derived from the flanking regions of CDR3β (Methods). (h) Categorization of amino acids 

by isoelectric point and interfacial hydrophobicity (Methods).
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Extended Data Fig. 2: Consistency of TCR feature effects across individuals and clinical 
phenotypes.
(a) Treg odds ratio per standard deviation increase in CDR3βmr occupancy by each of the 14 

relevant amino acids, estimated separately for the T1D cases in the discovery cohort (y axis) 

and the controls (x axis) (b) Treg odds ratio per standard deviation increase in CDR3βmr 

occupancy by each of the 15 relevant amino acids, estimated separately in each donor. (c) 
Treg odds ratio for the usage of each TRBV gene relative to the reference gene TRBV05–01, 

estimated separately for the T1D cases in the discovery cohort (y axis) and the controls (x 

axis) (d) Treg odds ratio for the usage of each TRBV gene relative to the reference gene 

TRBV05–01, estimated separately in each donor. P values in (a) and (c) are calculated by a 

two-sided t-test with Fischer transformation on Pearson’s R.
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Extended Data Fig. 3: Multicollinearity analysis.
(a)-(c) Maximum Pearson’s correlation observed between each pair of TCR features in the 

discovery dataset, for all possible combinations of amino acid-based TCR feature values 

(Methods). Heatmaps are separated by TCR region: (a) CDR3βmr, (b) TRBV-encoded 

(CDR1β loop, CDR2β loop, and the V-region of CDR3β) and, (c) TRBJ-encoded. (d) 
Feature selection for the V-region model based on variance inflation in estimated regression 

coefficients (Methods); each plot represents a candidate mixed effects logistic regression 

model jointly modeling the effects of TCR features on the x-axis. Black arrow denotes 

improvement from the first model to the second model via reduction of the variance inflation 

factor (VIF). Black horizontal line denotes the ideal VIF: zero inflation compared to a model 

with uncorrelated features. (e) Same as (d), for candidate J-region models.
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Extended Data Fig. 4: Thymic selection rates for TRBV and TRBJ genes.
Thymic selection rates for each TRBV and TRBJ gene in each donor in the discovery 

cohort and in a reference cohort of 666 healthy donors, inferred by relative gene usage in 

productive reads versus nonproductive reads (Supplementary Note).
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Extended Data Fig. 5: Estimated effects of physicochemical features at each TCRβ position, 
stratified by CDR3β length.
(a) Estimated log odds ratio for Treg per standard deviation of each physicochemical feature 

at each CDRβ(1–3) loop position in each CDR3β length; features with an estimate > 0 

are positively associated with Treg fate while features with an estimate < 0 are negatively 

associated. For each CDR3β length, all effects were estimated jointly in an L2-regularized 

logistic regression with a penalty weight tuned via 10-fold cross-validation (Methods). (b) 
Treg odds ratio per standard deviation increase in each physicochemical feature at each 

CDR3βmr position for each CDR3 length (Methods, Supplementary Table 9). Error bars 

denote 95% confidence interval for the estimated odds ratio.
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Extended Data Fig. 6: Cell type identification for thymic T cells.
(a) scRNAseq thymic dataset13 cells arranged in a 2-dimensional embedding by UMAP and 

colored by normalized expression level of select transcripts; gray (low) to red (high). (b) 
Transcriptional cluster assignments. (c) Average normalized expression of cell-type-relevant 

transcripts per cluster.
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Extended Data Fig. 7: Cell type identification for tumor microenvironment T cells and reference 
T cells.
(a) Log-normalized CD8A, CD4 and FOXP3 mRNA expression in T cells from breast 

tumor biopsies in Azizi et al. 2018, organized into a 2-dimensional embedding by Uniform 

Maniform Approximation and Projection (UMAP). (b) Louvain clustering of breast tumor 

microenvironment T cells. Broad cell type labels are indicated for each cluster in the 

surrounding legend. (c) Expression levels of key surface proteins measured by CITE-seq in 

the CD4+ reference single cell dataset25 (low = purple, high = light green). Protein levels 

are normalized by the centered log-ratio (CLR) transformation (Methods). (d) LogCP10K-
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normalized expression levels of key mRNA transcripts in the CD4+ reference single cell 

dataset25 (low = purple, high = light green).

Extended Data Fig. 8: Symphony mapping details.
(a) Tumor microenvironment T cells mapped into the reference embedding by Symphony, 

colored by donor to reveal successful integration of donors. (b) same as (a), colored by 

cancer type to reveal successful integration of cohorts. (c) Tumor microenvironment T 

cells mapped into the reference embedding by Symphony, colored by cell types derived 

from internal clustering (by Yost et al. for the SCC and BCC samples, and as depicted 

in Extended Data Figure 7a−b for the BRCA samples) to show the extent of concordance 

with Symphony’s cell type solutions. (d) same as (a), colored by the TiRP score of their 

TCR. TiRP is scaled such that 0 corresponds to the mean score and one unit corresponds 

to one standard deviation of held-out bulk sequencing TCRs (Figure 5c). (e) FOXP3 
expression differences between Tregs and Tconvs within mixed clones of three representative 

donor samples. Each mixed clone is represented by a line connecting the average FOXP3 
expression of Tregs within the clone to the average FOXP3 expression of Tconvs within the 

clone. Each P value is computed by a two-sided paired t-test comparing the mean FOXP3 
expression in Tregs to that in Tconvs within each mixed clone.
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Extended Data Fig. 9: Further analysis of principal components, murine Tregs, and human 
memory Tconv.
(a) 67 samples from the replication cohort colored by donor ID and arranged by principal 

component space according to variation in TCR sequence feature frequencies. (b) Same as 

(a), colored by donor clinical phenotype. (c) Replication of CDR3βmr percent composition 

of amino acid effects in mice. Error bars correspond to 95% confidence intervals for ORs. 

(d) Lack of mouse-human correspondence for position-specific TCR feature effects. TCR 

features are colored by type; error bars denote OR 95% confidence intervals. Murine TRBV 
genes were mapped to their human homologs for comparison, only those with a human 

homolog are shown (Methods). (e) Mean TiRP component scores for CD4+ expanded pure 

Tconv, pure Treg, and mixed clones in the tumor microenvironment15,16. Error bars denote 

standard error of the mean. Tconv mTiRP compared to mixed clone mTiRP two-sided Wald 

test P = 2.9 × 10−4, all other comparisons nonsignificant. (f) Overall lack of correspondence 

between Treg-Tconv OR and memory-naïve OR for CDR3βmr percent composition of 

amino acids. Error bars correspond to 95% confidence intervals, and amino acids are 

colored by the scheme in (c). (g) Replication of memory Tconv – naive Tconv TRBV gene 

odds ratios in an independent dataset of sorted memory and naïve T cells from 4 healthy 

donors31. TRBV genes are colored by their Treg-Tconv odds ratios. For (c), (d), (f), and 

(h), R = Pearson’s correlation coefficient and P values are computed by a two-sided t-test 
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with Fischer transformation. For (e)-(g), human Treg-Tconv OR result from fixed-effect 

meta-analysis across the discovery and replication cohorts.

Extended Data Fig. 10: TiRP scoring of autoreactive T cell receptors.
TiRP scores of McPAS and VDJdb autoimmune TCRs (points) compared to memory Tconvs 

and Tregs from the replication dataset held out for testing (boxplots). Each point in the 

autoimmune category represents one TCR from McPAS or VDJdb. Error bar denotes 

standard error of the mean TiRP for autoreactive TCRs, which is higher than reference 

memory Tconvs (P = 1.5 × 10−9, two-sided Wald test), but not significantly different from 

reference Tregs (P = 0.43, two-sided Wald test). Within each boxplot, the horizontal lines 

reflect the median, the top and bottom of each box reflect the interquartile range (IQR), and 

the whiskers reflect the maximum and minimum values within each grouping no further than 

1.5 × IQR from the hinge.

T1D = Type 1 Diabetes

CD = Celiac Disease

IBD = Inflammatory Bowel Disease

MS = Multiple Sclerosis
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design.
(a) We first examined the structure of the T cell receptor (TCR) sequence to define 1080 

sequence features. Depicted is a T cell receptor (TCR) β chain in complex with antigenic 

peptide (red) and human MHC II molecules (brown). The TCR is colored by region: 

V-region (including CDR1β and CDR2β loops) in green, CDR3β middle region (CDR3βmr) 

in orange, and J-region in pink. We used mutual information analysis and mixed effects 

model comparisons to select 606 nonredundant TCR features that best explained variance 

in T cell state. We fit mixed effects logistic regression models for 70% of the data in the 

discovery and replication cohorts separately, and combined the effect sizes for each TCR 

feature across the two cohorts by meta-analysis. TiRP was calibrated to include only 208 of 

the 606 TCR features that had Bonferroni-significant meta-analytic P values. (b) We then 

applied TiRP to the TCRs to tumor-infiltrating CD4+ cells in order to study mixed clones: 

groups of Tregs and Tconvs with the same TRB and TRA sequences observed in the same 

individual. These mixed clones likely represent lineages of T cells that have undergone a 

peripheral conversion between the regulatory and conventional phenotypes. Such clones may 

include induced or iTregs (Tconv cells that have acquired a regulatory phenotype), exTregs 

(Treg cells that have lost the regulatory phenotype), or both. (c) Finally, we investigated the 

drivers of TiRP by separately examining the two elements of the human Treg TCR ligand: 

the self-peptide and the human MHC II molecule.

Figure created with BioRender.com.
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Figure 2. TCR sequence structure.
(a) Probability of each amino acid in each CDR3β position depicted by a sequence 

logo, with a heatmap of normalized mutual information (NMI) between each pair of 

CDR3β residues for the most frequent CDR3β length, 15 amino acids. Based on this 

mutual information structure, we partitioned the CDR3β sequence into a Vmotif within 

a V-region, a CDR3β middle region (CDR3βmr), and a Jmotif within a J-region. (b) 
Schematic showing TCRs of multiple lengths aligned to the TCR β chain structure. Three 

complementary-determining regions within the TCR β chain protrude as loops into the 

pMHC-TCR complex: CDR1β, CDR2β, and CDR3β. CDR1β and CDR2β are encoded 

by the TRBV gene, while CDR3β spans TRBV-encoded residues, random nucleotide 

insertions (CDR3βmr) and TRBJ-encoded residues. Random nucleotide insertions from 

VDJ recombination occur at the V/D and D/J junctions, creating variation in CDR3βmr 

length. Regions suggested by mutual information structure are not drawn to scale.

NMI: Normalized mutual information
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Figure 3. Broad differences exist between the TCRs of Tregs and Tconvs.
(a) Percentage of select amino acids in the CDR3βmr, plotted as the mean for each donor 

sample in the discovery cohort, separated by cell type and colored by amino acid groups. P 
values are computed by a two-sided Wald test on the coefficient for each amino acid term in 

a mixed effect logistic regression model (Methods). (b) Incremental variance explained by 

the addition of labeled TCR features to the V-region (left), CDR3βmr (middle), and J-region 

(right) mixed effect logistic regression models. The addition of each TCR feature increased 

model complexity by adding one degree of freedom for each quantitative feature and k - 1 
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degrees of freedom for each qualitative feature, where k is equal to the number of possible 

values for the qualitative feature (k = 58 for 58 possible TRBV genes; k = 8 for 8 possible 

Vmotifs). For each region, the primary modeling approach was compared to the alternative 

modeling approach, and the modeling approach that explained greater variance was selected. 

Colored horizontal lines depict the total percent of explained variance attributable to each 

TCR region, summing to 100%. (c) Percent of explained variance by each TCR feature type, 

summing to 100% for each length of CDR3β. (d) Variance explained by each TCR region 

for different CDR3β lengths. As CDR3β length increases, CDR3βmr occupies a greater 

proportion of the TCR (fraction of amino acid residues), at the expense of V and J region 

proportions. Line of best fit is drawn for each TCR region; 95% confidence interval shaded 

in gray, with each point is labeled by CDR3β length. X-axis corresponds to the proportion 

of TCR β chain amino acids derived from the V, J, and middle regions (summing to 100 

for each CDR3β length, Methods), while the Y-axis corresponds to the absolute variance 

explained (scale: 0 −100%).

VGSR = V gene selection rate (Supplementary Note). CDR3βmr %AAs = percent 

composition of amino acids in the CDR3βmr.. VGSR = V gene selection rate 

(Supplementary Note). CDR3βmr %AAs = percent composition of amino acids in the 

CDR3βmr.
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Figure 4. Tregs exhibit position-specific TCR sequence features.
(a) Estimated odds ratio (per standard deviation) for each physicochemical feature at each 

CDRβ(1–3) loop position; features with an estimate > 1 are positively associated with Treg 

fate while features with an estimate < 1 are negatively associated. Odds ratios denote the 

change in Treg odds per standard deviation increase in the given physicochemical feature at 

the given TCR position. Within each CDR3β length, all effects were estimated jointly in an 

L2-regularized logistic regression with a penalty weight tuned via 10-fold cross-validation 

(Methods). Shown are the odds ratio estimates for each position-feature averaged across 

the six CDR3β lengths. Vertical lines denote the boundaries of each CDRβ loop. (b) 
Correspondence between TRBV gene isoelectric point at p37 (apex of CDR1β) and TRBV 
gene odds ratio for Treg fate compared to the reference gene, TRBV05–01. Each TRBV 
gene is labeled with its amino acid residue at p37 and the 95% confidence interval for 

its odds ratio. (c) Distribution of CDR3βmr hydrophobicity in Tconvs compared to Tregs 

in the discovery dataset. Hydrophobicity values are averaged over the CDR3βmr for each 

TCR, and then scaled to have mean 0 and variance 1. Horizontal lines depict mean for 

each population (Treg mean CDR3βmr hydrophobicity = 0.05, Tconv mean hydrophobicity 

= −0.03, Wald test P value = 2.3 × 10−523). (d) Sequence logo depicting the effects of 

amino acids in the highly entropic CDR3βmr residues, sized proportionally to the associated 
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change in Treg odds, with amino acids more frequent in Tregs above the horizontal line and 

amino acids more frequent in Tconvs below.
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Figure 5. Treg TCR sequence biases replicate in independent cohorts.
(a) Correspondence between the discovery and replication cohort odds ratios for CDR3βmr 

compositional amino acids (AAs); OR corresponds to the change in Treg odds associated 

with one standard deviation (SD) increase in CDR3βmr percentage for a given AA. Colors 

for amino acids correspond to Extended Data Figure 1h. (b) Comparison in (a) for all other 

TCR sequence features; OR corresponds to the change in Treg odds associated with the 

presence of the given feature compared to the reference feature (Supplementary Table 1). 

For (a)-(b), R = Pearson’s correlation coefficient and P values are computed by a two-sided 

t-test with Fischer transformation. (c) Validation of the TCR-intrinsic regulatory potential 

(TiRP) score in held-out donors of the discovery and replication datasets (n = 3,277,036 

TCRs). Each SD increase in TiRP was associated with a 23% increase in the odds of 

Treg status (OR: 1.231, 95% CI: 1.227 – 1.235, likelihood ratio test (LRT) P = 2.4 × 

10−3248). Percentile points are colored by Treg:Tconv ratio ranging from blue (lowest) to 

purple (highest). (d) Validation of TiRP in scRNAseq of CD4+ tumor microenvironment T 

cells18,19 (n = 27,721 cells). Each unit increase in TiRP (corresponding to one SD for the 

scores in 5c) was associated with a 16% increase in the odds of Treg status (OR: 1.16, 95% 

CI: 1.13–1.19, LRT P = 4.0 × 10−25). (e) Validation of TiRP in human thymic T cells13 (n 

= 60,424 cells). Among developing thymocytes, each unit increase in TiRP was associated 
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with a 9% increase in the odds of Treg fate (OR: 1.09, 95% CI: 1.05 – 1.13, LRT P = 8.8 

× 10−7). For (d) and (e), error bars outline 95% confidence intervals for Treg/Tconv odds in 

each TiRP score decile, computed by bootstrap resampling (Methods). (f) Validation of TiRP 

in TCR-targeted gDNA sequencing from grafted human thymi of humanized mice14 (n = 

466,551 TCRs). Each unit increase in TiRP was associated with a 12% increase in the odds 

of Treg status (OR: 1.12, 95% CI: 1.11–1.12, LRT P = 3.1 × 10−177).
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Figure 6. TiRP helps to explain clonal plasticity in the tumor microenvironment.
(a) Reference T cell dataset, colored by cell type clusters according to transcriptional 

and surface marker variation depicted in Extended Data Figure 7c−d. (b) Select gene 

expression (FOXP3, GZMB) and surface marker abundance (CD25, CD127) for cells in 

the reference T cell dataset (low = purple, high = light green). (c) Tumor microenvironment 

T cells of expanded clones mapped into the reference embedding by Symphony. Each 

cell is colored by the TiRP score of its paired TRB chain, with KNN smoothing for 

visualization (Methods). TiRP is scaled such that 0 corresponds to the mean score and 

one unit corresponds to one standard deviation of held-out bulk sequencing TCRs (Figure 

5c). (d) Cell members of three example mixed clones are highlighted in color according to 

their cell type classification by Symphony (colors as in (a)). Within a given plot, each cell 

expresses the same CDR3β DNA sequence, the same CDR3α amino acid sequence, and was 

observed within the same donor (CDR3β amino acid sequence listed above CDR3⍺ amino 

acid sequence for each). (e) Same as (c), with each cell colored according to clone type: 
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purple for clones containing only Treg cells, blue for clones containing only Tconv cells, and 

yellow for clones containing both Treg and Tconv cells (“mixed” clones). (f) TiRP scores of 

Tconv, Treg, and ”mixed” expanded clones from held-out bulk sequencing data. P = 2.0 × 

10−40 for mixed-Tconv difference, P = 9.1 × 10−16 for mixed-Treg difference. (g) Scores as 

in (f) for tumor-infiltrating scRNAseq data. P = 3.0 × 10−4 for mixed-Tconv difference, P = 
0.55 for mixed-Treg difference. For (f) and (g), vertical bars denote mean and standard error 

of the mean per clone type. (h) Correspondence between TiRP score and the Treg:Tconv ratio 

for each clone. Best fit line is shown in gray; clones are colored by Treg:Tconv ratio and sized 

proportionally number of constituent cells. β corresponds to the slope of the regression line 

between the log-transform of the Treg:Tconv ratio and TiRP score. For (f)-(h), P values are 

computed by the LRT between mixed effect logistic regression models (Methods).
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Figure 7. Two axes of TCR-driven cell states.
(a) 67 samples from the replication cohort colored by cell type and arranged by principal 

component space according to variation in TCR sequence feature frequencies (Methods). 

(b) Distribution of PC1 embeddings for each cell type; each vertical line corresponds to 

one sample. Naive Tconvs have the highest PC1 embedding in 15 of the 16 donors with all 

three cell types available. P value is computed by the binomial test with n = 16 and k = 

15. (c) Percent contribution of each type of TCR sequence feature to the first two principal 

components. (d) Loadings of each of the TCR sequence features on PC1 and PC2, depicted 

by arrows, separated by TCR region and colored by the same scheme as in (c). (e) Samples 

arranged in PC space as in (a), colored by mean TiRP in the V-region of the TCR (vTiRP). 

(f) Same as in (e), colored by mean TiRP in the CDR3βmr (mTiRP). P values for (e)-(f) are 

calculated by a two-sided t-test with Fischer transformation on Pearson’s R.
jTiRP = TiRP (Treg-intrinsic regulatory potential) of the J-region of the TCR (IMGT 

positions 113–118)

mTiRP = TiRP (Treg-intrinsic regulatory potential) of the middle region of the TCR (IMGT 

positions 108–112)

vTiRP = TiRP (Treg-intrinsic regulatory potential) of the V-region of the TCR (IMGT 

positions 1–107)
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Figure 8. Isolating the drivers of TiRP.
(a) We investigated the drivers of TiRP by separately examining the two elements of the 

human Treg TCR ligand: the self-peptide and the human MHC II molecule. To do so, we 

scored 1) murine Treg TCRs, which share an affinity to mammalian self-peptides but not to 

human MHC II molecules, and 2) human memory Tconv TCRs, which share an affinity to 

human MHC II molecules but not to self-peptides. (b) Left: mean increase in TiRP score 

of Helios-sorted Tregs compared to naive Tconvs in Helios-GFP Foxp3-RFP reporter mice. 

Right: mean increase in TiRP score of memory Tconvs compared to naive Tconvs from held-

out donors of the replication dataset. (c) Left: TiRP score increases in Helios-sorted murine 

Tregs broken down into TiRP score components by TCR region. Right: TiRP score increase 

in human memory Tconvs broken down into TiRP score components by TCR region. (d) 
Correspondence between TCR feature odds ratios for Treg-Tconv odds (x-axis, meta-analytic 

odds between discovery and replication cohort), and memory-naïve odds (y axis, replication 

cohort only) with their 95% confidence intervals. TRBV genes are highlighted in green; 

V06–01 indicates TRBV06–1; V25–01 indicates TRBV25–01. Pearson’s R is calculated 

with respect to TRBV gene odds ratios only. P values in (b)-(c) are calculated by the LRT 

between mixed effects models (Methods); P value in (d) is calculated by a two-sided t-test 

with Fischer transformation on Pearson’s R.

jTiRP = TiRP (Treg-intrinsic regulatory potential) of the J-region of the TCR (IMGT 

positions 113–118)

mTiRP = TiRP (Treg-intrinsic regulatory potential) of the middle region of the TCR (IMGT 

positions 105–112)
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vTiRP = TiRP (Treg-intrinsic regulatory potential) of the V-region of the TCR (IMGT 

positions 1–104)

Figure created with BioRender.com.
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