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A B S T R A C T

Electrical source imaging (ESI) from interictal scalp EEG is increasingly validated and used as a valuable tool in
the presurgical evaluation of epilepsy as a reflection of the irritative zone. ESI of ictal scalp EEG to localize the
seizure onset zone (SOZ) remains challenging. We investigated the value of an approach for ictal imaging using
ESI and functional connectivity analysis (FC). Ictal scalp EEG from 111 seizures in 27 patients who had Engel
class I outcome at least 1 year following resective surgery was analyzed. For every seizure, an artifact-free epoch
close to the seizure onset was selected and ESI using LORETA was applied. In addition, the reconstructed sources
underwent FC using the spectrum-weighted Adaptive Directed Transfer Function. This resulted in the estimation
of the SOZ in two ways: (i) the source with maximal power after ESI, (ii) the source with the strongest outgoing
connections after combined ESI and FC. Next, we calculated the distance between the estimated SOZ and the
border of the resected zone (RZ) for both approaches and called this the localization error ((i) LEpow and (ii)
LEconn respectively). By comparing LEpow and LEconn, we assessed the added value of FC. The source with
maximal power after ESI was inside the RZ (LEpow = 0 mm) in 31% of the seizures and estimated within 10 mm
from the border of the RZ (LEpow ≤ 10 mm) in 42%. Using ESI and FC, these numbers increased to 72% for
LEconn = 0 mm and 94% for LEconn ≤ 10 mm. FC provided a significant added value to ESI alone (p < 0.001).
ESI combined with subsequent FC is able to localize the SOZ in a non-invasive way with high accuracy. Therefore
it could be a valuable tool in the presurgical evaluation of epilepsy.

1. Introduction

For epilepsy patients who do not respond to anti-epileptic drugs,
surgery is an important treatment option (de Tisi et al., 2011; Wiebe
et al., 2001). To obtain successful outcome following epilepsy surgery,
the delineation of the epileptogenic zone (EZ) is necessary. Un-
fortunately, there is no individual method to localize this EZ. Epi-
leptologists make a deliberate estimation based on the integration of
the results gained through the presurgical evaluation protocol. Mag-
netic Resonance Imaging (MRI) and visual inspection of the interictal
and ictal (video-) electroencephalogram (EEG) with the determination

of the irritative zone (IZ) and seizure onset zone (SOZ), respectively, are
cornerstone investigations in this protocol (Carrette et al., 2011).
However, SOZ estimation based on the visual inspection of the video-
EEG is labor-intensive, time-consuming, to a certain extent subjective,
and sometimes impossible. In some cases, invasive EEG (iEEG) is re-
quired to localize the SOZ, which is associated with potential compli-
cations (Hamer et al., 2002; Lee et al., 2000). Therefore, it would be of
high clinical value to have a method that is able to identify the SOZ in a
non-invasive, objective, and fast way with high accuracy in order to
better target or avoid iEEG.

During the last decades, increased computational power and
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advanced signal processing techniques enabled novel epilepsy research
dedicated to this purpose. Methods based on non-invasive scalp EEG are
preferred, not only because it is cheap, portable and safe, but also be-
cause it corresponds to the most unambiguous biomarker of epileptic
activity. Moreover, non-invasive EEG is routinely performed during
long-term presurgical investigations. Although EEG has a high temporal
resolution in the order of milliseconds, its main challenge is the fact
that the recorded potentials are subject to volume conduction. Neuronal
activity is attenuated and distorted before it reaches the electrodes. EEG
source imaging (ESI) can overcome the volume conductor problem as it
estimates the underlying brain activity generated by the recorded po-
tentials.

ESI of interictal activity is an established technique to determine the
IZ. However, the IZ may designate a (partially) different, possibly larger
region than the SOZ that needs to be resected. ESI of ictal activity is
more challenging, due to the less frequent occurrence of seizures than
interictal spikes and the many artifacts during seizures, but potentially
more informative for surgery guidance as it reflects the SOZ directly
(Elshoff et al., 2013; Jayakar et al., 1991; Rémi et al., 2011).

Previous studies have tried to localize the SOZ based on merely ESI
of ictal EEG with varying results (Assaf and Ebersole, 1997; Boon et al.,
2002; Ebersole, 2000; Habib et al., 2015; Jung et al., 2009; Koessler
et al., 2010; Lantz et al., 1999; Pellegrino et al., 2016; Wang et al.,
2011; Yang et al., 2011). Yet, within the concept of a network disorder,
more sophisticated approaches may be required to correctly identify the
SOZ from scalp EEG recordings. During a seizure, several brain regions
participate in the epileptic network, and the challenge is to isolate the
main driver(s) of the network from the secondarily activated regions,
rather than finding the sources with the highest energy (Richardson,
2012; Spencer, 2002). Functional brain connectivity analysis (FC) can
be used to analyze the relationship between the sources calculated by
ESI (Van de Steen et al., 2016), and may thus provide a more reliable
SOZ localization. In this paper, we adapt a previously published method
by our group (Staljanssens et al., 2017) that combines ESI and FC based
on Granger causality. Whereas in the previous study the focus was on
high-density EEG (hd-EEG), the adapted version of the algorithm allows
for successful analysis of clinical/low-density EEG. We validated the
approach in the clinical scalp ictal EEG recording of 111 seizures from
27 patients (23 with temporal lobe epilepsy) who were rendered sei-
zure-free following resective surgery.

2. Methods

2.1. Patients

27 patients, 18 from Ghent University Hospital and 9 from Geneva
University Hospital, were included based on the following criteria: (1)
drug-resistant epilepsy; (2) availability of EEG recordings of at least one
seizure, recorded with at least 27 electrodes; (3) a single resective
surgery procedure of the supposed epileptogenic zone; (4) surgical
outcome Engel Class I with a minimal post-operative follow-up of
12 months; (5) availability of pre- and post-operative T1-weighted MRI.
Table 1 lists the main patient characteristics. The local ethical com-
mittees approved the study and all patients gave written informed
consent.

2.2. EEG recording

The patients of Ghent University Hospital (PAT1 – PAT18) under-
went long-term video EEG monitoring (Micromed, Treviso, Italy)
lasting 3–8 days. A setup with 27 electrodes was used of which 21 were
placed according to the International 10–20 system. Additionally, 3
electrodes were placed in zygomatic, preauricular, and mastoid regions
on both sides of the head (F9–F10, T9–T10 and Tp9–Tp10 respectively)
(Boon et al., 1997). The sampling frequency was 256 Hz.

For the 9 patients of Geneva University Hospital (PAT19 – PAT27),

ictal EEG recordings, lasting at least 24 h, with 29–32 electrodes placed
according to the international 10–10 system were available with a
sampling rate of either 250 Hz or 256 Hz.

2.3. EEG preprocessing and ictal epoch selection

EEG preprocessing was done in BrainVision Analyzer
(BrainProducts GmbH, Germany). The patient-data was band-pass fil-
tered between 1 and 30 Hz to remove baseline drift and to reduce high-
frequency muscle artifacts. An extra notch filter at 50 Hz was applied to
filter out remaining power line noise. For all recorded seizures, together
with an experienced epileptologist (KV, SV), a (quasi) artifact-free
epoch close to the electrographic onset that was representative for the
seizure was selected. If no clear EEG changes were observed, the clinical
onset was used instead. The epochs were as long as possible, with a
minimum of 1 s and a maximum of 5 s. Additional preprocessing was
performed to increase signal-to-noise ratio: when bad quality channels
were present, they were spatially interpolated using splines instead of
removed, allowing to use the same analysis pipeline for every epoch of
each patient. In case of long lasting muscle artifact, an extra band-pass
filter between 1 and 10 Hz was applied. For eye blink or cardiac artifact
removal, ICA was used (Makeig et al., 1996) using the restricted fast
ICA (Hyvarinen et al., 2001) implementation in BrainVision Analyzer
on the available EEG channels. Only components showing exclusively
clear artifactual activity, namely eye blinks with clear frontal topo-
graphic pattern (in 25 seizures) and cardiac artifact (in 1 seizure), were
removed. The selected epochs were common average referenced and
their fundamental seizure frequency band (Frequency band of interest,
FOI) was determined as the band with maximal global field power using
the Fast Fourier Transform (FFT).

2.4. From ictal epoch to SOZ

We used two methods to localize the SOZ from the selected ictal
EEG epoch. The first method was based solely on ESI, and named “ESI
power”. The second method was based on ESI with subsequent FC and
named “ESI + connectivity”. Both methods have been extensively de-
scribed in previous research (Staljanssens et al., 2017). The main dif-
ference with this research is the segment selection (described above)
and the fact that we calculate the power and connectivity values in a
FOI rather than in the broadband spectrum. We summarize the methods
below and highlight the differences.

After the selection and preprocessing of an ictal epoch as described
in Section 2.3, ESI was applied. For this purpose, realistic finite dif-
ference method (FDM) head models consisting of six different tissues
(air (0 S/m), scalp (0.33 S/m), skull (0.0132 S/m), cerebrospinal fluid
(1.79 S/m), grey matter (0.33 S/m) and white matter (0.14 S/m)) were
constructed based on the individual patient's pre-operative T1-weighted
MR image (Montes-Restrepo et al., 2016; Strobbe et al., 2016). The
solution space was constructed as a uniform grid in the segmented grey
matter, excluding the cerebellum, with a spacing of 4 mm. An in-house
implementation of LORETA was used as inverse solution method
(Pascual-Marqui et al., 1994). LORETA solutions are typically smooth
throughout the brain in which some hotspots of higher activity are
apparent and that might partially overlap. We selected K hotspots as
nodes or sources as possible SOZs for the subsequent analyses with the
following approach. We considered the power distribution in the so-
lution space over the complete duration of the analyzed epoch. For
every solution point, we calculated the sphere power as the mean power
of all solution points in a sphere centered on the considered solution
point. Those solution points that had no neighbors with a higher sphere
power than their own corresponded to local maxima in power and were
selected as possible sources for the SOZ. By varying the radius of the
sphere, more or less sources can be selected. In one extreme case, the
radius is smaller than the grid resolution (here 4 mm), and all sources
will be selected. In the other extreme case, the radius is larger than the
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largest distance between two solution points, and only one source will
be selected, corresponding to the global maximum in power. In this
case, subsequent connectivity analysis is impossible, since there is only
one source. In the former case, subsequent network analysis might be
biased since in a LORETA solution neighboring sources are correlated
and thus spurious connections might be introduced. Therefore,
choosing this radius is a trade-off between not making the search area
unnecessarily large and not excluding possible epileptic network nodes.
For a radius of 15 mm, we found for all seizures an acceptable amount
of network nodes, which ranged between K = 4 and K = 24. Increasing
the radius resulted in the undesirable situation that for some seizures
only one network node was found and decreasing the radius increased
the upper limit of the number of sources, making the search area un-
necessarily large. To continue the analysis, we considered the time
series of the selected sources. No constraints were applied on the or-
ientation of these sources; so every selected source was represented by
three time series, one for each orthogonal spatial dimension. We used
Singular Value Decomposition (SVD) to represent every selected source
by only one time series, namely the time series associated with the
largest singular value of the SVD (Golub and Reinsch, 1970). For the ESI
power method, we selected the source with maximal power in the FOI
as the estimated SOZ.

For the ESI + connectivity method, FC based on Granger causality
was applied on the time series of the selected sources to reveal the
driver of the epileptic network. To this end, the data was modeled by a
time-varying multivariate autoregressive (TVAR) model, of which the
coefficients were estimated using the Kalman filtering algorithm
(Arnold et al., 1998; Schlögl et al., 2000), with a model order of 10, an
update coefficient of 10−4 and a smoothing factor of 100, based on
previous research (Astolfi et al., 2008; Coito et al., 2015; Staljanssens
et al., 2017; van Mierlo et al., 2011, 2013).

From the time-varying transfer matrix H(f, t) of the model, the
spectrum-weighted Adaptive Directed Transfer Function (swADTF)
(van Mierlo et al., 2013) was calculated at every time sample t of the
selected epoch of length T and for the FOI=[f1 f2] with a resolution of
0.1 Hz, as a measure for the information flow between every two of the
Kselected sources:
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Finally, the outdegree of every source j was calculated as the sum of
the swADTF values to every other source:
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in which we defined swADTFjj=0. ESI + connectivity selected the
source with the highest outdegree as presumed SOZ.

2.5. Validation

2.5.1. Localization errors
Since all patients included in this study were seizure-free for at least

one year after surgery, we assume that the SOZ was located inside the
resected tissue. The final result for each of the methods was one source,
i.e. one point in the grey matter of the patient. Therefore, we defined
the localization error of both methods, ESI power and ESI + con-
nectivity, as the distance between the border of the resected zone (RZ),
segmented from the post-operative MRI, and the SOZ estimated by the
corresponding method. The localization errors were named LEpow and
LEconn, respectively. If the selected source was inside the RZ, the LE was
set to zero.

2.5.2. Seizure level
We calculated LEconn and LEpow for every seizure, and determined

the amount of seizures with LE = 0 mm and LE ≤ 10 mm for both
methods, to account for the spatial resolution of ESI (cm-range), and the
brain shift that can occur after resective surgery.

2.5.3. Patient level
For every patient, we calculated the percentage of seizures that were

estimated inside the RZ and within 10 mm of the border of the RZ.
Furthermore, the percentage of patients for who all of their seizures

were localized within the given limits (0 mm and 10 mm) was de-
termined.

2.5.4. Intra-patient robustness
When at least two analyzed seizures from one patient were avail-

able, the robustness of both methods against intra-patient variability
could be assessed. For every seizure, a final source was selected as the
estimated SOZ. In the ideal case, we would find a source inside the RZ
for all the seizures of a specific patient. In reality, different sources,
both within and outside (i.e. the algorithm performs wrong, or there are
multiple foci) the RZ, can be found.

We quantified the intra-patient spatial dispersion of patient P by
calculating the geometrical centroid and standard distance SD to this
centroid of the finally selected sources:
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in which N is the number of seizures for patient P, (xi,yi,zi) are the
Cartesian coordinates of the estimated SOZ (finally selected source) for
seizure i and (μx,μyμz) are the Cartesian coordinates of the geometrical
centroid, based on all N seizures for that patient P. When the standard
distance remains low, the method is robust and the spatial dispersion
could be informative for the epileptologist to find the SOZ. In contrast, a
large standard distance (e.g. 8 cm) within a single patient may be a
marker for a less reliable result.

2.5.5. Subgroup analysis based on resected volume
We calculated the resected volume in every patient using the convex

hull of the segmented RZ and divided the patient population into a
small RZ subgroup and a large RZ subgroup based on the resected vo-
lume. We determined whether there was a significant difference in
LEpow and LEconn between the two subgroups. To get a more complete
insight in the influence of the resected volume, we repeated this sub-
group analysis based on the distance to the center of the RZ.

2.5.6. Statistical testing
In each of the aforementioned validation steps, the results for ESI

+ connectivity and ESI power were statistically compared using a
Wilcoxon sign-rank test for non-normally distributed data. Statistical
analysis between subgroups was done with Wilcoxon rank-sum tests for
independent samples. All significant p-values (p < 0.05) were re-
ported.

3. Results

3.1. Seizure level

In total, 111 seizures from 27 patients were analyzed (4.1 ± 2.9
seizures per patient). Table A.1 lists the selected epochs, the used fre-
quency band of interest (FOI) and the applied preprocessing. Figs.
A.1–A.3 of the Supplementary material show some examples of selected
epochs. The localization errors for both the ESI power and the ESI
+ connectivity approach are shown for every patient and every seizure
in Table 2. ESI power was able to localize the SOZ inside the RZ in
30.6% (34/111) of the seizures and within 10 mm of the border of the
RZ in 42.3% (47/111) of the seizures. ESI + connectivity was inside or
within 10 mm of the RZ in 72.1% (80/111) or 93.7% (104/111) of the
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seizures, respectively. The distribution of all the localization errors for
ESI power and ESI + connectivity are shown in Fig. 1.A. The median
localization error for ESI power was 15.7 mm in a range of 0–89.4 mm,
for ESI + connectivity this was 0 mm in 0–81.1 mm. The distance to
the border of the RZ was significantly lower for ESI + connectivity than
for ESI power (p= 3.2 × 10−11).

3.2. Patient level

The percentage of seizures per patient that was estimated inside the
RZ or within 10 mm of the border of the RZ, is shown in Table 2. For
both limits, ESI + connectivity scored significantly better than ESI
power (p = 1.2 × 10−4 for LE = 0 mm and p= 3.6 × 10−5 for
LE ≤ 10 mm). This can be seen in Fig. 1.B.

ESI power was able to localize all seizures inside the RZ in only
18.5% (5/27) of the patients. This number stayed the same for seizures
within 10 mm of the RZ. ESI + connectivity localized all seizures inside
the RZ in 66.7% (18/27) of the patients and within 10 mm of the RZ in
85.2% (23/27) of the patients (see also Table 2).

3.3. Intra-patient robustness

20 out of 27 patients had more than one seizure during recording
(they had 5.2 ± 2.5 seizures on average). In Fig. 2, we depict the
spatial dispersion obtained with both methods for three illustrative
cases (2 TLE, 1 FLE) by a dot on the geometrical centroid and a circle
with radius equal to the standard distance, centered at the centroid.
This is overlaid on the pre-operative MRI of the patient, in which we

Table 2
Overview of the localization errors of all analyzed seizures. Errors smaller than 10 mm (0 mm≤ LE≤ 10 mm) are colored green, errors larger
than 10 mm (LE > 10 mm) are depicted in red. The percentage of seizures per patient localized inside and within 10 mm of the RZ is
indicated. Percentages ≤50% are shown in red, between 50% and 100% are shown in orange and percentages equal to 100% are colored
green. Pat. = Patient number, Sz. = number of analyzed seizure, RZ = border of resected zone.

ESI power
%
= 0

%
≤ 10

ESI +CONNECTIVITY
%
= 0

%
≤ 10

Sz.
Pat. 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 10 10 10 10 10 38 10 - - - - - 0 86 10 10 10 10 10 10 10 - - - - - 0 100

2 36 36 48 36 48 0 36 - - - - - 14 14 0 0 0 0 0 48 0 - - - - - 86 86

3 5 15 5 5 - - - - - - - - 0 75 5 5 5 5 - - - - - - - - 0 100

4 17 0 0 32 0 - - - - - - - 60 60 0 0 0 0 0 - - - - - - - 100 100

5 0 0 0 0 - - - - - - - - 100 100 0 0 0 0 - - - - - - - - 100 100

6 9 9 9 74 50 50 50 - - - - - 0 43 9 9 9 9 9 9 9 - - - - - 0 100

7 49 67 20 - - - - - - - - - 0 0 0 0 0 - - - - - - - - - 100 100

8 72 0 89 71 72 0 - - - - - - 33 33 0 0 81 35 0 0 - - - - - - 67 67

9 33 - - - - - - - - - - - 0 0 0 - - - - - - - - - - - 100 100

10 49 17 0 17 - - - - - - - - 25 25 0 17 0 17 - - - - - - - - 50 50

11 0 17 17 17 0 0 - - - - - - 50 50 0 0 0 0 0 0 - - - - - - 100 100

12 63 0 13 0 0 0 13 13 - - - - 50 50 0 12 13 0 0 0 0 0 - - - - 75 75

13 78 - - - - - - - - - - - 0 0 0 - - - - - - - - - - - 100 100

14 55 13 13 13 - - - - - - - 0 0 0 0 0 0 - - - - - - - - 100 100

15 20 20 31 - - - - - - - - - 0 0 5 0 0 - - - - - - - - - 100 100

16 0 0 0 0 - - - - - - - - 100 100 0 0 0 0 - - - - - - - - 100 100

17 78 19 73 - - - - - - - - - 0 0 10 0 0 - - - - - - - - - 67 100

18 0 0 16 - - - - - - - - - 67 67 0 0 0 - - - - - - - - - 100 100

19 23 - - - - - - - - - - - 0 0 0 - - - - - - - - - - - 100 100

20 39 39 29 0 39 0 13 29 52 39 75 39 17 17 0 0 0 0 0 0 0 0 0 0 0 0 100 100

21 0 47 - - - - - - - - - - 50 50 0 0 - - - - - - - - - - 100 100

22 0 6 36 36 20 53 20 20 0 - - - 22 33 0 6 6 0 6 6 0 0 6 - - - 44 100

23 0 23 0 - - - - - - - - - 67 67 0 0 0 - - - - - - - - - 100 100

24 0 - - - - - - - - - - - 100 100 0 - - - - - - - - - - - 100 100

25 40 - - - - - - - - - - - 0 0 0 - - - - - - - - - - - 100 100

26 0 - - - - - - - - - - - 100 100 0 - - - - - - - - - - - 100 100

27 0 - - - - - - - - - - - 100 100 0 - - - - - - - - - - - 100 100

% of seizures inside RZ 30.6 72.1

% of seizures within 10 mm of RZ 42.3 93.7

% of patients correct (100% of seiz. = 0 mm) 18.5 66.7

% of patients correct (100% of seiz. ≤ 1 0 mm) 18.5 85.2
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highlight the ultimately resected zone in green. In Supplementary ma-
terial A.2, the figures for all patients can be found. Fig. 3 shows a
boxplot of all standard distances for both methods. ESI power had a
median standard distance of 25.3 mm in a range of 0–44.4 mm, for ESI
+ connectivity this was 0 mm in a range of 0–37.9 mm. ESI power had
a significantly higher standard distance than ESI + connectivity
(p = 2.0 × 10−4).

3.4. Subgroup analysis based on resected volume

The volumes and division into a small and large RZ subgroup can be
seen in Fig. 4.A. Both for small and for large resections, we found that
ESI + connectivity scored significantly better than ESI power (resp.
p = 3.8 × 10−6 and p= 1.8 × 10−6), shown in Fig. 4.B.

ESI power for small resections had a median localization error of
12.81 mm in a range of 0–89.4 mm. For large resections, this was
17 mm in a range of 0–75.3 mm. There was no significant difference
between small and large resections. For ESI + connectivity, we found a
median localization error of 0 mm for both small and large resections.
The range for small resections was 0–81.1 mm and for large resections
0–47.9 mm. A small significant difference was found in favor of large
resections (p = 3.3 × 10−2). Yet, there was no significant difference
for small and large resections in the percentage of correctly localized
seizures per patient. Moreover, when we repeated the analysis with the
distance to the center of the RZ instead of the distance to the border of

the RZ, we found significantly smaller values for small resections, for
both methods, also shown in Fig. 5.

4. Discussion

4.1. Performance

In this paper, we found that ESI with subsequent FC is superior to
localize the SOZ from non-invasive ictal EEG recorded using a clinical
setup (≤32 electrodes), compared to ESI alone. We were able to in-
dicate the SOZ inside the RZ and within 10 mm of the border of the RZ
in 72.1% and 93.7% of the seizures, respectively. In 66.7% of the pa-
tients, all seizures were localized inside the RZ, and in 85.2% of the
patients, all seizures were localized within 10 mm of the RZ. In contrast,
ESI power was concordant in only 30.6% (0 mm error) or 42.3%
(10 mm error) of the seizures. In 18.5% of the patients, all seizures were
localized inside the RZ. This number stayed the same for the 10 mm
tolerance. We were able to show that, in this framework, FC has a
significant added value compared to ESI alone. The results of ESI power
were comparable to Pellegrino et al. (2016), where for ESI a median
localization error of 11 mm in a range of 0–87 mm was found, speci-
fically when looking at small resections.

The superiority of ESI + connectivity over ESI power can be ex-
plained by two reasons. First, ESI power summarizes the time series of
the selected network nodes into a single value, whereas ESI + con-
nectivity investigates the time dynamics of the source signals. As a
consequence, ESI + connectivity is probably better suited to deal with
remaining artifacts and noise than ESI power. Second, ESI + con-
nectivity allows localizing a driver that is more silent (less power) than
the regions it influences.

Early SOZ localization studies mainly showed the feasibility of ictal
ESI (Assaf and Ebersole, 1997; Jung et al., 2009; Lantz et al., 1999) and
indicated the potential added value in the presurgical evaluation of
epilepsy (Boon et al., 2002). However, in these studies, validation was
performed in a more qualitative way, by assessing congruency between
epilepsy diagnosis/surgery and localized SOZ on the lobar or sublobar
level. During the last decade, with the emergence of more powerful
forward modeling and inverse solution techniques, the quality and re-
solution of the solutions has increased to a degree that more quanti-
tative, rigorous validation of ictal imaging methods is possible in terms
of distance, correlation, spatial dispersion etc. To our knowledge, the
first study reporting quantitative measures of SOZ localization quality
dates from 2007 (Ding et al., 2007), reporting a localization error
smaller than 15 mm in 85% of the seizures undergoing 31 electrode
EEG recordings. We found a localization error smaller than 10 mm
in> 90% of the patients. Other SOZ imaging studies reporting quan-
titative results made use of setups with at least 38 electrodes (Elshoff
et al., 2013; Lu et al., 2012; Pellegrino et al., 2016; Staljanssens et al.,
2017; Yang et al., 2011). Several methodological differences between
these studies can be found, such as the used forward model and inverse
solution for ESI, the possible application of FC and the FC measures, the
frequency band of interest, etc. Although all of them show promising
results, Lu et al. (2012) and Staljanssens et al. (2017) reported a drop in
performance when fewer electrodes are used. We were able to increase
the performance when using a lower density EEG setup by manually
selecting and preprocessing adequate EEG epochs and limiting the
analysis to the frequency band of interest of the seizure. However
clinically highly recommended, most clinics unfortunately still lack the
equipment to do (long-term) EEG monitoring with> 32 electrodes.
This study is, to our knowledge, the first to achieve good performance
based on low-density recordings, quantitatively validated in a more
extensive patient population group than those that were used before,
paving the way for a clinical use of the technique.

Fig. 1. A) Boxplot of the localization errors of all analyzed seizures, B) percentage of
correct localized seizures per patient, for both methods and both limits (LE = 0 mm and
LE ≤ 10 mm).
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4.2. Intra-patient robustness

The standard distance to the centroid of the localized seizures was
significantly smaller for ESI + connectivity than for ESI power which
points out that FC enhances the robustness against intra-patient varia-
bility of ictal imaging. The measure was also lower than compared to a
previous study that assessed spatial dispersion (Pellegrino et al., 2016),
both for ESI + connectivity and ESI power.

Although spatial dispersion is a good measure for intra-patient ro-
bustness, the example of PAT 8 showed that the useful information
obtained by the spatial dispersion could be limited due to possible
outliers in the data. Using this technique prospectively, we would not
be able to discriminate true outliers from seizures that could possibly
have originated elsewhere. Therefore, careful interpretation of the in-
dividual seizure results is required.

4.3. Subgroup analysis based on resected volume

Although we found that the ESI + connectivity method scored

significantly better for large than for small resections, the median dis-
tance for small resections is, like for large resections, 0 mm, indicating
that the method also performs well for small resections. Both the fact
that no significant difference between the percentages of correctly lo-
calized seizures per patient was found and the fact that the distance to
the center of the RZ was smaller for small resections, confirms that
there is no actual difference in performance for small and large resec-
tions.

4.4. Considerations and limitations

A method for SOZ localization should preferably be non-invasive,
objective, fast, and accurate. First, since only scalp EEG and an MR
image of the patient's head (to generate the individual head model) are
needed, this method is non-invasive. Second, the pipeline is not com-
pletely objective yet, since the initial epoch and FOI selection require
interaction with a human expert. It should be further investigated how
this influences the results and how this can be made user-independent
(see also Supplementary material A.3). After this initial input, though,

Fig. 2. Three examples of the spatial dis-
persion of the estimated SOZs for ESI
+ connectivity (blue circle) and ESI power
(red circle). The dot represents the centroid,
whereas the circle represents the standard
distance. The resected zone is highlighted in
green. Both ESI + connectivity and ESI
power gave a good indication of the SOZ in
PAT 17, respectively 100% and 67% of the
seizures were localized correctly. The spatial
dispersion of ESI + connectivity points di-
rectly to the RZ with a standard distance
equal to zero. However, the spatial disper-
sion of ESI power also gives a good indica-
tion where to look for the true SOZ, but less
precise. In PAT 12, the standard distance for
ESI + connectivity larger than zero, but the
spatial dispersion is still informative, re-
maining mainly in the temporal lobe. The
spatial dispersion based on ESI power,
however, crosses lobe and even hemisphere
borders and could be more difficult to in-
terpret. For PAT 8, the spatial dispersion
based on ESI + connectivity contains the
RZ, whereas the spatial dispersion based on
ESI power does not. Although, ESI + con-
nectivity correctly localized 67% of the sei-
zures, the standard distance is very high due
to two completely wrong localizations, ren-
dering the spatial dispersion less in-
formative. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the web version of this
article.)
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there are no subjective parameters left. Third, we did not report results
on the speed of the algorithm. However, it would be possible to build a
completely automated pipeline, running calculations in the background
(taking approximately 1 h for a new patient and less than a minute for a
new seizure of this patient). This way, only a few minutes of the epi-
leptologist's time are needed for initial epoch and FOI selection. Lastly,
we have found that the accuracy of ESI + connectivity is high. All these
factors point out that the method could be a useful aid in the presurgical
evaluation of epilepsy.

There are also some limitations to our study. We compared the se-
lected SOZ and the resected area in the brain of the patient to test
whether the method worked correctly. However, using the RZ as gold
standard provides a suboptimal validation. First, it is often an over-
estimation of the real ground truth. If a patient is seizure-free, we can
assume that the SOZ was somewhere inside the RZ, but we do not know
exactly where. Second, the patient being seizure-free does not prove

that a specific analyzed seizure truly originated in the RZ. Finally, error
estimation using Euclidean distance does not take brain anatomy into
account. It could be that e.g. for a small LE larger than 0 mm, an im-
portant fissure is crossed, possibly making the estimation unin-
formative. Therefore, LE, defined as the Euclidean distance to the
border of the RZ, is not a perfect measure for validation. Fortunately,
most of the SOZ estimations in this study (for ESI + connectivity) were
inside the RZ, making this limitation less of a problem. In future re-
search, validation results could be correlated to brain anatomy and to
findings of intracranial EEG (iEEG) recordings, which can provide a
more precise truth. It needs to be evaluated whether both methods
point to the same brain region, provided that the (iEEG) samples the
SOZ.

In this study, we only included patients that had Engel Class I out-
come at least 1 year after surgery. This allowed for assessing the per-
centage of SOZs that are estimated inside or close to the RZ in seizure-
free patients. However, we did not estimate the SOZ and compare this
to the RZ in patients that were not rendered seizure-free (Engel Classes
II–IV). It is important, and part of future research, to investigate whe-
ther in these patients a SOZ differing from the RZ is found or not.

Although most included patients suffered from temporal lobe epi-
lepsy, there were 3 patients with extratemporal epilepsy (PAT1, PAT8,
PAT20). Also in these patients, the presented method performed gen-
erally well (LE ≤ 10 mm in 7/7 seizures for PAT 1; LE = 0 mm in 4/6
seizures for PAT 8 and LE = 0 mm in 12/12 seizures for PAT 20). Albeit
not perfect, this indicates that the application domain of the approach
lies beyond temporal lobe epilepsy. Actually, we did not find any ap-
parent relationship between performance of the ESI + connectivity
algorithm and patient characteristics, ictal patterns or EEG quality.
More validation in a larger, more heterogeneous population group is
required to confirm this, but this finding already points out the possibly
wide application area of the method.

Other methodological considerations concerning the MVAR model
order, the inverse solution technique and the spatial extent of the SOZ
can be found in the Supplementary material A.3.

5. Conclusion

We showed that it is possible to estimate the SOZ from clinical or
low-density scalp EEG with high accuracy using ESI and subsequent
functional connectivity analysis. Moreover, the proposed method is

Fig. 3. Distribution of the standard distance to the geometrical centroid within the pa-
tients who had more than one seizure during recording.

Fig. 4. A) The resected volumes for every
patient, sorted from small to large and B)
boxplot of the localization errors corre-
sponding to small and large resected vo-
lumes, for both methods.
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non-invasive and requires, after initial epoch and frequency selection,
minimal user-dependent input. Altogether, the method could serve as a
useful tool for SOZ localization in the presurgical evaluation of epi-
lepsy. Larger studies are warranted, notably with more extratemporal
epilepsies and localization correlation with a range of different out-
comes.
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