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ABSTRACT

Motivation: During the past 4 years, whole-exome sequencing has

become a standard tool for finding rare variants causing Mendelian

disorders. In that time, there has also been a proliferation of both

sequencing platforms and approaches to analyse their output. This

requires approaches to assess the performance of different methods.

Traditionally, criteria such as comparison with microarray data or a

number of known polymorphic sites have been used. Here we

expand such approaches, developing a maximum likelihood frame-

work and using it to estimate the sensitivity and specificity of whole-

exome sequencing data.

Results: Using whole-exome sequencing data for a panel of 19

individuals, we show that estimated sensitivity and specificity are simi-

lar to those calculated using microarray data as a reference. We ex-

plore the effect of frequency misspecification arising from using an

inappropriately selected population and find that, although the esti-

mates are affected, the rankings across procedures remain the same.

Availability and implementation: An implementation using Perl and R

can be found at busso.ncl.ac.uk (Username: igm101; Password:

Z1z1nts).
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1 INTRODUCTION

The identification of sequence variants predisposing to diseases

that follow Mendelian inheritance patterns is a common appli-

cation of next-generation sequencing technologies (Ng et al.,

2010a, b, c; Wang et al., 2010). A key step in these approaches

is the identification of variants shared among affected relatives

(Ng et al., 2010a, b, c). Usually a variant is defined as a deviation

from a reference sequence. Next-generation sequencing of mater-

ial enriched for exonic sequences has been successful in many

cases, but has failed to identify the causative variants in others

(Bamshad et al., 2011; Gilissen et al., 2011). Such apparent fail-

ures may have many causes but also focus attention on the

desirability of simple measures to assess the results of the sequen-

cing and analysis pipelines used. In disease-mapping efforts, it is

clearly desirable to have a high probability of identifying a true

variant while the number of falsely identified variants remains

low. This will reduce the amount of work needed for validation

of candidate variants, which is typically undertaken using Sanger

sequencing or genotyping approaches.

Our objective is to develop a simple and flexible approach for

assessing the performance of a whole-exome or -genome sequen-

cing experiment. It should allow assessing the whole process,

from sample preparation to variant calling. The focus is on the

detection of single-base sequence variants as opposed to changes

in copy number or large rearrangements. One approach is to

compare the identified variants with variants known to be

present or absent. For this purpose, variants are commonly com-

pared with the results of genotyping microarrays (e.g. Ng et al.,

2009). This allows for the probability of a specific variant at a

given position in an individual to be considered as either 0 or 1.

The price of this certainty is additional experimental costs.

An alternative is to use variants where the probability of

occurrence in a specific sample can be ascertained, thus allowing

the probability of a variant present at a specific position to

assume values other than 0 or 1. Here we formalize the second

approach using sites known to be polymorphic in the human

population. This approach can be seen as an extension of meth-

ods that rely on quality criteria such as the number of variants

found in sites known to be polymorphic in the human population

(e.g. Challis et al., 2012; Marth et al., 2011). We compare our

results with those obtained using microarray data and use our

method to assess different analysis pipelines and to explore the

importance of analysis parameters and coverage depth. As we

are using known polymorphisms, we also investigate the influ-

ence of the population that was used to characterize the poly-

morphisms on the results.

The use of microarrays to assess the accuracy of variant iden-

tification is likely to lead to biased results, as the polymorphisms

present on microarrays usually exclude variants such as small

insertion/deletions (indels). Such variants also represent a chal-

lenge for variant calling in next-generation sequencing. In the last

paragraph, we therefore explore different analysis pipelines for

indel calling.

The results of such comparisons can be summarized in many

ways. Commonly used metrics include, for example, the number

or proportion of previously reported variants among the detected

deviations from the reference sequence. As our focus is on a*To whom correspondence should be addressed.
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dichotomous outcome, i.e. the presence or absence of a variant at

a particular position, we use here the probabilities of identifying

the variant at a site that carries a variant and of identifying no

variant at a site where only the reference sequence is present. We

refer to these probabilities as sensitivity and specificity.

2 METHODS

Parameter estimation: We designate with M the presence of a variant

allele and with D the detection of a variant allele. Correspondingly, M

and D represent the absence of a mutant allele and the non-detection of a

mutant allele. For an autosomal locus we have:

PðDiÞ=pðDijMiMiÞpðMiMiÞ+pðDijMiMiÞpðMiMiÞ

+pðDijMiMiÞpðMiMiÞ
ð1Þ

PðDiÞ=pðDijMiMiÞpðDijMiMiÞ+pðDijMiMiÞpðMiMiÞ

+pðDijMiMiÞpðMiMiÞ
ð2Þ

Assuming Hardy–Weinberg equilibrium, we obtain for the genotype

frequencies pðMiMiÞ=f2; pðMiMiÞ=2fi91� fi and pðMiMiÞ=ð1� fiÞ
2

where fi designates the frequency of the variant allele. We further

designate with s the sensitivity s=pðDjMÞ and with u the specificity u=

pðDjMÞ and obtain for the remaining terms: pðDijMiMiÞ=sð2� sÞ

pðDijMiMiÞ=s+ ð1� sÞð1� uÞ; pðDijMiMiÞ=1� u2; pðDijMiMiÞ=

ð1� sÞ2; pðDijMiMiÞ= ð1� sÞu and pðDijMiMiÞ=u2.

We treat all sites as independent and assume that the detection prob-

ability for one site is independent from that for another, and thus, for an

individual, the likelihood is lðs; uÞ=
Q

i�SD
PðDiÞ

Q
j�S

D
PðDjÞ, where SD

represents the set of sites where a variant was detected and SD represents

the sites where only the reference was observed. The estimates of s and u

are the values that maximize this likelihood. Owing to the linkage disequi-

librium, we cannot assume that the occurrence of variants at neighbouring

sites is independent. Therefore, we perform the calculation by choosing

random sets of sites where the sites in the same set are either separated by

at least 500kb or on different chromosomes. Here we perform the calcu-

lations over 1000 of such sets. This leads to a series of estimates for s and u,

allowing us to compute the median of these estimates.

When several individuals are analysed and we could assume that their

genotypes are independent, the likelihood for a group of K individuals

can be described as lðs; uÞ=
QK

k=1 lkðs; uÞ.

Here we analyse each individual separately and report the median, as

well as the 95% confidence interval, determined by bootstrapping.

Sequence data: Targeted whole-exome sequencing was carried out for

31 (12+19) samples using an Illumina Genome Analyser IIx. Agilent

38Mb target (hg18) positions were obtained from Agilent, and the se-

quences corresponding to these positions were obtained using the Galaxy

website. Build 36.1 of the human genome (hg18) was used as a reference

sequence (https://genome.ucsc.edu/).

Genotyping arrays: Genotype chip data were available for 19 of the 31

samples, composing of 557 124 SNPs on the Illumina 660 genotype chip.

In all, 10 762 of these SNPs were located within the target regions.

Comparison of array and sequencing data: As described in Section 1,

our analysis focuses on the ability to detect variants, and therefore, we

assess at any position whether a variant was detected. The sensitivity is

defined as the number of sites in which both sequencing and microarrays

detected a deviation from the reference sequence divided by the number

of sites where a variant was detected by using the microarrays.

Correspondingly, the number of sites where both methods detected no

deviation from the reference sequence divided by the number of sites

where the microarray detected only the reference residue was used as

an estimate of the specificity.

Selection of polymorphisms: The HapMap database contained

4 083713 SNPs (CEU population, build 36, downloaded October 28,

2010). Of these, 10 165 overlapped with the on-target genotype chip

SNPs. Allele frequency data were obtained for each of these SNPs

from the HapMap database. All 10 165 available SNPs were used in

the analysis.

Sequence analysis: Unless specified otherwise, reads were aligned to the

whole human genome (hg18) using the following aligners: Bowtie 0.12.8

(Langmead et al., 2009), BWA 0.6.2 (Li and Durbin, 2009), GSNAP

20120720 (Wu and Nacu, 2010), NovoAlign 2.07.13 (http://www.novo

craft.com), SOAP2 2.21 (Li et al., 2009b) and SSAHA2 2.5.5 (Ning

et al., 2001). Variants were identified using either Varscan 2.3.1

(Koboldt et al., 2009) or Samtools 0.1.8 (Li et al., 2009a). Unless specified

otherwise, the default parameters were used for each program. Coverage

was assessed from the pileup files. Coverage depth was varied by sam-

pling with replacement from the SAM files.

Indel calling: Twelve of the samples were used for the indel analysis.

Reads were aligned to the human genome reference (hg19) sequence using

Bowtie2 (Langmead and Salzberg, 2012), BWA and NovoAlign. Indels

were identified using Samtools 0.1.8, Dindel 1.01 and GATK 2.6.4

(DePristo et al., 2011; McKenna et al., 2010). For Dindel, a minimum

variant coverage of seven was used, and for all other programs, the de-

fault parameters were used.

Other metrics: There is a large number of metrics that can be used to

assess the quality of the sequencing experiments. Here we will only ex-

plore the fraction of target bases covered at least once, average coverage

depth and the fraction of target bases covered at least 10-fold.

3 RESULTS

In this section, we first explore some applications of the method

proposed, then compare its results with estimates generated using

the genotypes obtained through the microarray as the true geno-

types. The method only requires that the allele frequencies in the

population from which the samples were drawn are known.

However, this may not be the case; therefore, we explore the

effects of population misspecification.
Pipelines: Figure 1 compares sensitivity and specificity esti-

mates achieved using different alignment and variant calling pro-

gram combinations. The values are based on 31 samples. For

eight samples, SSAHA2 failed to produce results and generated

the messages error: memory allocation failed cannot allocate

memory or error: “memory allocation for array of fasta struc-

tures failed cannot allocate memory”. Represented for each com-

bination are the median and the upper and lower quartiles.

Interestingly, the alignment programs appear to have a stronger

effect on sensitivity, whereas the variant calling programs ap-

peared to effect specificity more strongly. All aligners yield simi-

lar specificities when used in combination with Samtools, and the

combinations NovoAlign/Samtools and BWA/Samtools pro-

vided the highest sensitivity. Therefore, we used NovoAlign as

aligner and Samtools as variant caller as the standard pipeline

for subsequent analyses. The estimates for the specificity using

Samtools with any aligner were in excess of 0.998.
Parameter selection: Each alignment and variant calling pro-

gram has a range of parameters, which can be set by the user. In

general default, values are provided, but these may not always be

appropriate, and altering these parameters can have a marked

effect on sensitivity and specificity. Our procedure can be used to
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investigate such effects. As an example, we explore the effect of

varying the quality thresholds for variant calling using the

NovoAlign/Samtools pipeline (Fig. 2). This threshold is the min-

imum base quality at a position, for a read, required for that read

to be included in the variant call for that position. Figure 2A

shows that altering this parameter has a dramatic effect on

sensitivity, with a rapid drop when the values are set above 20.

The effect on specificity (Fig. 2B) is more modest, and increasing

the values beyond 30 has only a limited effect.
Coverage: Figure 3 explores the effects of average coverage. As

expected, sensitivity increases with increasing coverage. With the

parameters we used, there is a substantial loss of sensitivity when

the average coverage was540-fold. Specificity shows little vari-

ation with increasing depth. At low coverage, finding evidence

for a variant generally becomes more difficult, thus leading to a

low sensitivity and high specificity.
Microarray comparison: For 19 samples, data were available

from both platforms. The variants were called using the

NovoAlign/Samtools pipeline with default parameters. Table 1

compares sensitivity and specificity figures estimated using geno-

type microarray data (fourth column) and our method with two

different sets of allele frequencies (second and third column). The

frequencies used for the estimates in the third column were

calculated from the genotyping results for the 19 samples. We

see that compared with the microarrays, both specificity and

sensitivity estimates are slightly lower by the frequency method

using the CEU population frequencies (second column). One

possible contributor to this effect is that the estimates are dis-

torted because the allele frequencies do not match the frequencies

in our sample. In fact, the difference is smaller when the allele

frequencies used are derived from the genotyping results (third

column). It should also be mentioned that specificity estimates

are in the order of 0.999. These estimates, however, are based

only on a limited number of polymorphic sites (10 165 sites),

suggesting that the ability to adequately assess changes in the

specificity will be limited. This is reflected in the correlation be-

tween the estimates obtained from microarrays and from popu-

lation frequencies. Although there is a good correlation between

the estimates for the sensitivity (Fig. 4; R2=0:71; P=4x10�50),

the correlation for specificity is rather poor although still signifi-

cant (R2=0:39; P=7x10�21).

Fig. 2. Exploring the effect of parameter choice. Represented is the effect

of minimum base quality threshold on estimated sensitivity (Panel A) and

specificity (Panel B). Each point on the graph represents the result for a

single sample analysed using the minimum base quality threshold given in

the abscissa

Fig. 1. Comparison of estimated specificity and sensitivity for different

pipelines
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Allele frequency effects: The method we propose uses allele

frequencies in the estimation of sensitivity and specificity.

Allele frequencies vary between populations, and the ethnicity

of the individuals who provided a sample may not always be

precisely known. We therefore explored how the use of alterna-

tive allele frequency data from a variety of populations would

influence our results. Figure 5 explores the effects of using the

allele frequencies for 11 HapMap populations in the estimation

of the performance of the pipelines used previously. The figure

suggests that misspecification of population frequencies tends to

lead to lower estimates of both sensitivity and specificity.

However, the lines connecting the values for different pipelines

calculated using different allele frequencies tend to be parallel.

This indicates that the results are correlated (P50.01 for all

comparisons), suggesting that although the estimates may vary,

the different pipelines will tend to be in the same order.

Indel calling: This analysis is based on 12 samples and 8365

indel variants included in the 1000 genomes data (CEU). The low

number of positions considered makes estimation of specificity

problematic. One possibility is to include in the analysis sites

where no indel has been reported in the databases and assign

them a low probability to carry a variant. Here we followed this

path assuming that the frequency of a rare allele in a position

where no variant has been described to be 10–8. Figure 6 shows

the results for different indel calling pipelines. For all pipelines,

the sensitivity is substantially lower than the values obtained for

single-base substitutions (compare with Fig. 1). We also observe

that Samtools has the lowest sensitivity, whereas GATK per-

formed best. We also saw that the combination BWA/GTAK

performed best. The higher specificity value achieved by Dindel

is likely due to the minimum variant call threshold used in ana-

lysis. The average estimates for sensitivity using the bowtie/

GATK and NovoAlign/GATK pipelines are 0.35 and 0.34,

respectively.

4 DISCUSSION

The approach we presented here estimates two parameters, the

sensitivity and the specificity of variant calls in a next-generation

sequencing experiment, by comparing the observed variants with

population allele frequency data in a maximum likelihood frame-

work. We illustrated some of its potential applications by com-

paring analysis pipelines and variant calling parameters and

exploring the effects of differences in coverage. As both sensitiv-

ity and specificity are influenced by various experimental factors,

including sample preparation, the sequencing itself and the bio-

informatic pipelines used to analyse data, the procedure could be

used to assess the performance of a sequencing experiment glo-

bally and could complement other commonly used approaches,

such as the assessment of base call quality or of coverage metrics.

Fig. 4. Correlation between sensitivity estimates from microarray data

and using CEU population frequencies. Each point represents the sensi-

tivity value obtained for individuals and analysis pipelines

Fig. 3. Effect of average coverage. Each point represents the sensitivity

(log scaled) achieved for a sample at a given value

Table 1. Mean sensitivity and specificity estimates

Sensitivity

and Specificity

Estimated from

CEU frequenciesa Sample frequenciesb Microarrayc

Sensitivity 0.962 0.979 0.984

(95% CId) (0.945–0.970) (0.962–0.986) (0.982–0.986)

Specificity 0.998 0.999 0.999

(95% CI) (0.997–0.998) (0.999–0.999) (0.999–1.00)

Notes: Represented are the estimates for the specificity and sensitivity of the

NovoAlign/Samtools pipeline.
aAllele frequencies for the Hapmap CEU population.
bAllele frequencies calculated from the genotyping genotyping results for the 19

samples.
cGenotypes determined using the Illumina 660 W chip.
d95% confidence interval for the mean, determined by resampling.
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The main advantage of the method presented here is that it does

not require a reference technique, such as genotyping using

microarrays; a reference method in itself may be problematic,
as its overall error rates have been reported to be in the order

of 10–2 (Li et al., 2013). However, our method relies on the avail-

ability of appropriate allele frequencies.
The use of allele frequencies has two consequences. The first is

that compared with the situation where the presence or absence

of variants is known, using a probability introduces a degree of

uncertainty that is reflected in a larger scatter of the estimates

(Table 1). The second is that it forces one to decide which set of

allele frequencies to use. The choice of the allele frequencies from

a specific population, or, if available, from a particular subpo-
pulation, disregards the possibility that individuals may represent

a mixture from different populations. This problem could be

circumvented using a more complicated machinery that con-

siders, for example, the probability of belonging to a certain

population, or of carrying certain haplotypes. Misspecification

of the population frequencies will influence the specificity and

sensitivity estimates, but Figure 5 suggests that if two procedures
are significantly different in specificity or sensitivity, misspecifi-

cation of the allele frequencies will tend to preserve the order.

One of the critical issues is the location of the polymorphisms
used. Here we chose those included in the regions targeted by the

enrichment procedure. However, as the practical interest is to

detect mutations likely to cause disease, a natural choice would

be to use all the polymorphisms in coding or perhaps in regula-

tory regions. This would assess the experiment as a whole includ-

ing the choice of the enrichment procedure. Another question is
the choice of the polymorphisms. Initially we used the poly-

morphisms included in the microarray. These polymorphisms

represent a selection based on criteria that probably include the

likelihood of being efficiently typed using microarray technology.

This will probably result in avoiding certain types of polymorph-

isms and polymorphisms in certain locations such as regions with

Fig. 5. Effect of reference population misspecification. Values represent

the average sensitivity across all individuals in our study. CEU: Utah

residents with northern and western European ancestry from the

CEPH collection; TSI: Tuscan in Italy; MEX: Mexican ancestry in Los

Angeles, California; GIH: Gujarati Indians in Houston, Texas; ASW:

African ancestry in southwest USA; MKK: Maasai in Kinyawa,

Kenya; CHB: Han Chinese in Beijing, China; JPT: Japanese in Tokyo,

Japan; CHD: Chinese in Metropolitan Denver, Colorado; LWK: Luhya

in Webuye, Kenya; YRI: Yoruban in Ibadan, Nigeria

Fig. 6. Sensitivity of different indel detection pipelines
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extreme base compositions. It is possible that sequencing experi-
ments are accurate in exactly the same regions. This would lead
to overestimation of sensitivity and specificity when using micro-
array genotyping as reference technique. The method proposed

here allows for a comparison of different types of polymorphisms
and we showed its application to the identification of indels. As
expected, sensitivity appears to be lower for indels than for

single-nucleotide substitutions. Although allele frequencies for
polymorphisms not included in microarrays may not be accurate,
our results are consistent with published studies that show that

indel detection is still a challenging issue (Albers et al., 2011;
Bansal et al., 2011).
As our interest focused on the detection of rare variants, we

were able to dichotomize the outcome by scoring at each position
whether a variant was present or absent. This leads effortlessly
into the determination of specificity and sensitivity. However,
more complicated scenarios are possible, such as assessing the

calling of each of the three possible genotypes defined by a vari-
ant/reference allele system at each position. Here, however, we
chose the more simple approach. Studies frequently focus on

sensitivity as opposed to specificity (e.g. Pattnaik et al., 2012);
however, estimation of specificity is important, as it may help to
assess the amount of validation work that is required, that is

closely related to false-positive rate. A specificity of 0.99 and a
frequency of deviations from the reference sequence in the order
of 1 per 1000 sites would be expected to lead, on average, to �10
false-positive findings to one true variant position. Therefore,

practically useful methods of variant detection benefit from
having specificities that are considerably 40.99. Estimating
such a parameter accurately will require examining a large

number of sites. For example, simply counting false- and true-
negative findings, relying, for example, on microarray data
would require at least 10650 invariant positions to establish

the difference between a method that has specificity of 0.999
compared with one with a specificity 0.9999 with 80% power.
In this article, we primarily relied on sites that are known to be

polymorphic; however, we could also include sites for which
there are no reported variants and assume that this implies a
low minor allele frequency. This would allow to increase the
number of sites used and to improve the ability to estimate the

specificity.
As our procedure is simple, it would be possible to use it to

optimize analysis parameters, by integrating it into, for example,

a variant caller so that it maximizes the sensitivity while not
allowing specificity to sink below a certain threshold. Such a
procedure would benefit from the fact that the order appears

to be insensitive to the choice of population. This would allow
for an estimation of the amount of validation work required and
the likelihood that a change of interest can really be identified
and can guide the design of future experiments.

In summary, we have developed an approach to assess the
performance of whole-exome or -genome sequencing experi-
ments that requires only the knowledge of the population fre-

quencies of polymorphisms. Such a method could be easily

used to assess new/updated analysis procedures and to inform

the choice of analysis pipeline, analysis parameters or even of

experimental tools.
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