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Abstract

Summary: Recent studies have shown that the traditional position weight matrix model is often in-

sufficient for modeling transcription factor binding sites, as intra-motif dependencies play a signifi-

cant role for an accurate description of binding motifs. Here, we present the Java application

InMoDe, a collection of tools for learning, leveraging and visualizing such dependencies of putative

higher order. The distinguishing feature of InMoDe is a robust model selection from a class of par-

simonious models, taking into account dependencies only if justified by the data while choosing

for simplicity otherwise.

Availability and Implementation: InMoDe is implemented in Java and is available as command

line application, as application with a graphical user-interface, and as an integration into Galaxy on

the project website at http://www.jstacs.de/index.php/InMoDe.

Contact: ralf.eggeling@cs.helsinki.fi

1 Introduction

The position weight matrix (PWM) model (Stormo et al., 1982) has

been the standard choice for representing the statistical properties of

functional DNA elements such as transcription factor binding sites

for more than three decades. While easy to interpret, use and visual-

ize, the original PWM model makes the assumption that all nucleo-

tides contribute independently to the total binding affinity. Recent

studies have shown that taking into account dependencies among

nucleotides can yield a better motif representation (Eggeling et al.,

2014a; Keilwagen and Grau, 2015; Siebert and Söding, 2016; Zhao

et al., 2012), and that the DNA shape (Mathelier et al., 2016) could

serve as one biophysical explanation for deviations from the inde-

pendence assumption.

In this article, we present InMoDe, a user-friendly suite of multiple

tools for learning intra-motif dependencies in various scenarios.

InMoDe is based on parsimonious context trees (PCTs) as proposed

by Bourguignon and Robelin (2004), which provide a sparse param-

eterization of the conditional probability distribution for avoiding

overfitting. The position-specific use of PCTs yields an inhomogeneous

parsimonious Markov model (iPMM). Both model structure and par-

ameters of an iPMM can be robustly learned without resorting to

computationally expensive parameter tuning even when latent vari-

ables are involved (Eggeling et al., 2015). While finding optimal PCTs

is computationally hard, recent algorithmic advances allow us to solve

typical instances fast enough to effectively consider dependencies up to

order six (Eggeling and Koivisto, 2016). InMoDe also provides tools

for applying learned models, such as scanning given sequences for stat-

istically significant hits and classifying binding sites. The learned

dependencies of an iPMM can be directly visualized by a conditional

sequence logo (CSL, Fig. 1A), which can be viewed as PCT-based ex-

tension of a traditional sequence logo (Schneider and Stephens, 1990).

InMoDe is implemented in Java using the Jstacs library (Grau et al.,

2012) and provides three user interfaces: a command line interface, a

GUI and an integration into Galaxy workflows. In the next two sec-

tions, we briefly discuss the different components of InMoDe, consist-

ing of four learning modes and three application tools. For a detailed

documentation of all features we refer to the user guide on the project

website.

VC The Author 2016. Published by Oxford University Press. 580

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(4), 2017, 580–582

doi: 10.1093/bioinformatics/btw689

Advance Access Publication Date: 29 November 2016

Applications Note

http://www.jstacs.de/index.php/InMoDe
Deleted Text: ,
Deleted Text: Zhao <italic>et<?A3B2 show $146#?>al.</italic>, 2012; 
Deleted Text: Figure 
http://www.oxfordjournals.org/


2 Learning modes

In the most simple scenario, the input data is a set of gapless aligned

binding sites of identical length, which might have been either ob-

tained experimentally or from a database. Structure and parameters

of a single iPMM can be learned exactly using the tool

SimpleMoDe, which implements the methodology of Eggeling et al.

(2014b).

In the case of, e.g. ChIP-seq positive fragments, the input se-

quences are of arbitrary length and the location of the binding sites

is not known, leading to the problem of de novo motif discovery.

Here, learning is computationally more expensive as it involves la-

tent variables that indicate motif occurrence and strand orientation

of a putative binding site in each sequence. The tool DeNovoMoDe

implements a recent algorithm for learning iPMM s in this scenario

(Eggeling et al., 2015), which is a variant of a stochastic EM algo-

rithm (Nielsen, 2000), but uses the BIC-score (Schwarz, 1978) of the

optimal iPMM as target function.

In a third scenario, we again assume the input sequences to be

pre-aligned and of same length. But in contrast to the first scenario,

not one single, but a mixture of K component models is to be

learned. Here, latent variables are involved as well and indicate the

mixture component. A possible use case is to investigate to which

degree complex intra-motif dependencies could be explained by two

(or more) different models of lower complexity. The tool

MixtureMoDe allows this type of analysis, using essentially the

same algorithm as DeNovoMoDe with the sum of the K BIC-scores

as target function.

Finally, the tool FlexibleMoDe combines the functionality of

the three previous tools, by taking into account latent variables for

motif position, strand orientation and motif type. While it contains

the other three tools as special cases, it allows a wide range of add-

itional scenarios for less common use-cases. In addition,

FlexibleMoDe allows for learning from weighted data, which can

be useful if sequences should contribute to a different degree, e.g. ac-

cording to ChIP-scores, to the learned model.

3 Application tools

ScanApp scans a given dataset for high-scoring occurrences of a pre-

viously learned iPMM. In order to assess which likelihood value is

sufficient for declaring a hit, it determines a cutoff threshold based

on a user-specified false positive rate (FPR) for occurrences on a

negative dataset. A negative dataset can be either given as user input

or it is constructed as a randomized version of the positive dataset.

ClassificationApp performs a binary classification of se-

quences, where the classes are represented by an iPMM each, thus it

accepts only sequences of the same length as the models. If no back-

ground iPMM is available, either a pseudo-background based on a

homogeneous Markov chain originating from a user-specified nega-

tive dataset or a PWM model with uniform parameters can be used

instead.

All learning tools automatically produce a standard visualization

of structure and parameters of the learned iPMM(s) in terms of a

CSL. The tool VisualisationApp allows to plot customized

CSLs in order to obtain an appropriate degree of detail according to

publication format and target audience. For example, Figure 1 dis-

plays a default CSL, which additionally contains descriptions of the

main plot elements on the left.

4 Conclusions

InMoDe provides multiple tools for learning, utilizing and visualiza-

tion intra-motif dependencies within functional DNA elements.

While the main use case is modeling of transcription factor binding

sites, other types of functional nucleotide elements that may be rep-

resented by sequence motifs can be analyzed as well.
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Fig. 1. Exemplary conditional sequence logo as generated by VisualisationApp (A) and screenshot of the graphical user interface (B). The examples use the

E2F1 dataset from JASPAR (Sandelin et al., 2004). The top row of nucleotide stacks in the CSL corresponds to a classical sequence logo (displayed in top-right
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plicity where nothing else is justified by the data, such as at position 4–7 and 11
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