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Abstract: Antioxidants were implicated as potential reagents to enhance osteogenesis, and 

nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro 

and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fuller-

ene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs).  

Fullerol was not toxic against human ADSCs at concentrations up to 10 µM. At a concentration 

of 1 µM, fullerol reduced cellular reactive oxygen species after a 5-day incubation either in the 

presence or in the absence of osteogenic media. Pretreatment of fullerol for 7 days increased the 

osteogenic potential of human ADSCs. Furthermore, when incubated together with osteogenic 

medium, fullerol promoted osteogenic differentiation in a dose-dependent manner. Finally, 

fullerol proved to promote expression of FoxO1, a major functional isoform of forkhead box 

O transcription factors that defend against reactive oxygen species in bone. Although further 

clarification of related mechanisms is required, the findings may help further development of a 

novel approach for bone repair, using combined treatment of nano-fullerol with ADSCs.

Keywords: polyhydroxylated fullerene, bone repair, reactive oxygen species, forkhead box 

protein O1

Introduction
Traumatic injuries and pathological conditions, such as osteoporosis, osteonecrosis, 

and bone tumors, can lead to bone fractures that do not heal through endogenous 

mechanisms. These difficult fractures in individuals are a serious threat to the health 

of the workforce and to the economy. In 2008, a survey showed that 110 million 

adults in the US reported disabling musculoskeletal conditions, and a World Health 

Organization report showed that 50% of the 9 million osteoporotic fractures that had 

occurred worldwide had happened in the Americas and Europe.1,2 It is estimated that 

of the 7.9 million fractures sustained each year in the United States, 5% to 20% result 

in delayed or impaired healing.2 Therefore, there is a need for effective, low cost, and 

innovative approaches of bone repair for musculoskeletal injuries and disease.

Application of stem cells represents one of the most valued advances in bone tissue 

engineering, which offers promise for bone repair.3 Mesenchymal stem cells (MSCs) 

have the ability to differentiate along various lineages of mesenchymal origin, includ-

ing chondrocyte, osteoblast, and adipocyte lineages, depending upon the biological 

environment. Moreover, MSCs can be obtained from multiple adult tissues, such as 

bone marrow, trabecular bone, articular cartilage, muscle, and adipose.4 Retrieval of 

adipose tissue involves a minimally invasive procedure that can be easily performed 

in outpatient clinics, and the yield of adipose-derived stem cells (ADSCs) is about 

5×103 cells per gram of tissue, which is 100-fold higher than the number of stem cells 

from bone marrow.5 Therefore, adipose tissue may be a better source of stem cells 

for potential clinical use. Although the efficacy of ADSCs to enhance bone repair 
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has not yet been investigated in clinical trials, ADSCs have 

been reported to enhance bone healing in various animal 

models.6–11

While combined delivery of ADSCs and growth fac-

tors has been reported to enhance osteogenesis in vivo,9,10,12 

contradictory reports have been published that raise a serious 

concern about the efficacy of this approach. For example, 

ADSCs do not respond to various bone morphogenetic 

proteins (BMPs) in vitro.13,14 In addition, a recent report 

demonstrated that delivery of human ADSCs and BMP-2 

had no advantage over delivery of BMP-2 alone to enhance 

fracture healing in nude rats.15 The obvious limitations of 

growth factors due to their short half-life and high production 

cost should be considered as well. Therefore, alternatives 

to growth factors are needed to enhance the osteogenesis 

of ADSCs.

Recently Yamada et al16 demonstrated by in vitro and 

in vivo experiments that N-acetylcysteine, an antioxidative 

small molecule, could enhance the osteogenesis of rat bone 

marrow stromal cell and bone regeneration. We hypothesize 

that an antioxidant would favor osteogenic differentiation in 

ADSCs as well. Here, we investigated an extremely powerful 

antioxidant, polyhydroxylated fullerene (fullerol),17–19 and 

report for the first time that antioxidative fullerol enhanced 

osteogenesis and reduced reactive oxygen species (ROS) in 

human ADSCs, as well as increased expression of FoxO1, 

a major isoform of forkhead box O transcription factors that 

defend against ROS and promote osteoblast differentiation 

in bone.20,21

Materials and Methods
cell culture
Human ADSCs were purchased from a commercial source 

(Lonza, Basel, Switzerland) and were characterized for osteo-

genic assays in our previous paper.22 The cells were main-

tained in basal medium that was Dulbecco’s Modified Eagle’s 

Medium (Gibco BRL, Gaithersburg, MD, USA) containing 

10% fetal bovine serum (Hyclone Laboratories, Logan, UT, 

USA), 50 mg/mL ascorbic acid (AA), 100 IU/mL penicillin G, 

and 100 mg/mL streptomycin in a humidified atmosphere of 5% 

carbon dioxide at 37°C. To induce osteogenic differentiation, 

10 mM β-glycerophosphate (GP) and 10-7 M dexamethasone 

(DEX) were supplemented to basal medium, and the medium 

was designated as osteogenic medium. Fullerol (M.E.R. Co., 

Tucson, AZ, USA) was added when cells became 70%–80% 

confluent before (pretreatment) or at the time (cotreatment) 

of induction. All experiments were conducted with cells at  

passage 8 and a starting cell density of 5,000 cells/cm2.

lactate dehydrogenase (lDh) 
and 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2h-tetrazolium (MTs) assays
Both LDH (Biovision Inc., Milpitas, CA, USA) and MTS 

(Promega Corporation, Fitchburg, WI, USA) colorimetric 

kits were used for cell toxicity and proliferative assays, 

respectively, by following the enclosed instructions in each 

product. For the LDH assay, cytotoxicity of 100% was set 

to the positive control where cells were treated by 1% Triton 

X-100, a detergent leading to a complete release of the LDH 

enzyme from the cells. In the MTS assay, cells produced a 

colorful substance, in which the optical density value reflect-

ing the cell number was measured at 490 nm. Cells were 

treated with different doses of fullerol (0–10 µM) for 6 hours 

and 48 hours, for LDH and MTS assays, respectively.

rOs detection
The reagent CM-H

2
DCF-DA (5-[and-6]-chloromethyl-2′, 

7′-dichlorodihydrofluorescein diacetate, acetyl ester) is 

a derivative of 2,7-dichlorodihydrofluorescein diacetate 

(DCF-DA), but with an additional thiol reactive chloro methyl 

group, which helps the transportation of the compound 

through cell membrane. The acetyl group is removed by intra-

cellular esterase, producing DCF-DA, which can be retained 

within cells. The dye DCF-DA itself is nonfluorescent until 

cellular oxidation, at which point it becomes fluorescent.  

In the present experiments, ROS detection was performed 

by a commercial kit for DCF-DA assay (Invitrogen, Eugene, 

OR, USA), according to the manufacturer’s manual. Briefly, 

after treatment, cells were rinsed with Hank’s Balanced 

Salt Solution twice and stained with 20 µM DCF-DA in 

Hank’s Balanced Salt Solution for 30 minutes at 37ºC, and 

the relative fluorescence units were read on a fluorescence 

plate reader with an excitation wavelength of 488 nm and 

an emission wavelength of 515 nm. The signal was then 

normalized by the deoxyribonucleic acid (DNA) content 

measured by a fluorescent dye ethidium homodimer-1 with 

an excitation wavelength of 528 nm and an emission wave-

length of 617 nm.

alizarin red staining
Mineralization was quantified by alizarin red staining using 

a standardized procedure in our laboratory.22 Briefly, the 

cells were stained with 40 mM alizarin red (pH =4.0) for  

20 minutes, while the excess dye was washed away with water. 

After the picture of the whole plate was taken by a common 

digital camera, the dye bound to the deposited minerals in 
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each well was extracted by 10% (volume/volume [v/v]) acetic 

acid. The resultant solution was then neutralized by 10% (v/v) 

NH
4
OH and transferred to a 96-well plate. The optical density 

at 405 nm was measured on a microplate reader.

Quantitative real-time reverse 
transcription-polymerase chain  
reaction (rT-Pcr)
Total ribonucleic acid (RNA) was isolated from cells using the 

RNeasy® Mini kit (Qiagen, Valencia, CA, USA), and comple-

mentary DNA (cDNA) was synthesized with the Reverse 

Transcription System kit (Promega, Madison, WI, USA) fol-

lowing the manufacturers’ instructions. Real-time PCR was 

performed with the QuantiTect® SYBR Green PCR master 

mix (Qiagen, Valencia, CA, USA). The threshold cycle value 

was calculated from amplification plots. Data were analyzed 

using the 2-∆∆CT method with 18s ribosomal RNA (rRNA) 

serving as the reference.23 Gene expression was normalized 

to the control group in each experiment and represented 

as fold of change. The target genes including runt-related 

transcription factor 2 (Runx2), osteocalcin (OCN), alkaline 

phosphatase (ALP), peroxisome proliferator-activated recep-

tor gamma (PPARg), and leptin (LEP), as well as their primer 

sequences and product sizes are shown in Table 1.

Western blots
The cells (approximately 500,000) from one well of a 6-well plate 

were lysed with sodium dodecyl sulfate (SDS) sample buffer, 

without bromophenol blue and consisting of 125 mM Tris-HCl 

pH 6.8, 150 mM β-mercaptoethanol, 1% SDS, 20% glycerol, 1X 

protease inhibitor cocktail (Santa Cruz Biotechnology Inc., Dallas, 

TX, USA) and 1 mM phenylmethylsulfonyl fluoride (Santa Cruz 

Biotechnology Inc.). The lysates were homogenized by ultrasonic 

homogenizer and centrifuged at 20,000 rpm for 20 minutes at 

4°C to remove cell debris. Clear supernatants were transferred 

to a precooled fresh tube and immediately placed on ice. The 

protein concentration of the cell lysates was determined using a 

Bradford protein assay kit (Bio-Rad, Hercules, CA, USA). One 

hundred µg of total proteins were run on 5%–12% SDS-poly-

acrylamide gels at constant current of 80 V and electro-transferred 

to nitrocellulose membranes (Thermo Scientific, Waltham, MA, 

USA) at constant voltage of 10 V overnight. Membranes were 

blocked with 5% bovine serum albumin in Tris buffered saline 

with Tween solution (50 mM Tris, pH 7.6, 150 mM NaCl, 

0.05% Tween 20) for 1 hour at room temperature, washed, 

and incubated overnight at 4°C in 5% bovine serum albumin 

in Tris buffered saline with Tween solution containing specific  

antibodies including anti-OCN (Santa Cruz Biotechnology Inc.), 

anti-Runx2 (Cell Signaling, Danvers, MA, USA), anti-superoxide 

dismutase (SOD) 2 (Santa Cruz Biotechnology Inc.), anti-FoxO1a 

(Abcam, Cambridge, MA, USA), anti-β-actin (Sigma-Aldrich 

Co., St Louis, MO, USA) and anti-glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (Cell Signaling). The membranes were 

then incubated with horseradish peroxidase–conjugated second-

ary antibody (Cell Signaling) for 1 hour at room temperature 

followed by chemiluminescent substrate for horseradish peroxi-

dase antibody and enhancer solution (Thermo Scientific) mixed 

in a 1:1 ratio. The membranes were incubated in the dark with 

autoradiography films (Genesee Scientific, San Diego, CA, USA), 

and the films were developed to visualize the bands. Quantifying 

band density: The grayscale images (300–400 dpi) on films were 

scanned using a flatbed scanner. Densitometry was carried out in 

Photoshop (Adobe Systems, Inc., San Jose, CA, USA). Using the 

magic wand tool from the tool palette, the area of each band was 

selected, and the mean histogram was recorded and then charted. 

All Western blots were conducted in duplicates.

Table 1 Target genes, primer sequences, and product sizes for quantitative real-time polymerase chain reaction

Molecule Primer sequences Size of product (bp)

Runt-related transcription factor  
2 (Runx2)

5′-agaTgaTgacacTgccaccTcTg-3′ (sense) 125

5′-gggaTgaaaTgcTTgggaacTgc-3′ (antisense)
Alkaline phosphatase (ALP) 5′-accaTTcccacgTcTTcacaTTTg-3′ (sense) 162

5′-agacaTTcTcTcgTTcaccgcc-3′ (antisense)
Osteocalcin (OCN) 5′-cagcgaggTagTgaagagac-3′ (sense) 144

5′-TgaaagccgaTgTggTcag-3′ (antisense)
Peroxisome proliferator-activated  
receptor gamma (PPARg)

5′-ccTgaaacTTcaagagTacca-3′ (sense) 96

5′-TcaTgaggcTTaTTgTagagc-3′ (antisense)
Leptin (LEP) 5′-gTgcggaTTcTTgTggcTTT-3′ (sense) 174

5′-ggaaTgaagTccaaaccggTg-3′ (antisense)
18s 5′-gTgaccagTTcacTcTTggT-3′ (antisense) 99

5′-gaaTcgaacccTgaTTccccgTc-3′ (antisense)

Abbreviation: bp, base pair.
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Data analysis
Data from the analyses of ROS, mineralization and gene 

expression were expressed as mean Ã ± standard deviation 

(SD). Statistical evaluation was performed with two-tailed 

Student’s t-test using Microsoft Excel® (Microsoft Corpo-

ration, Redmond, WA, USA) to determine the difference 

between two groups, with a P-value of 0.05 or less considered 

as a significant difference.

Results
Fullerol displays no toxicity  
against human aDscs
Figure 1A displayed the results from the assay of cytotoxicity 

in human ADSCs, represented by LDH release from cells. 

Cytotoxic activities of control and fullerol groups of various 

doses (0.1, 0.3, 1, 3, and 10 µM) for 6 hours were all less than 

10%, and no significant difference was found between the 

control and any fullerol group. Figure 1B was obtained from 

the proliferative assay for cells treated with the same set of 

fullerol doses for 48 hours. Again, there were no significant 

changes in the cell number between the control and any ful-

lerol group.

Fullerol decreases intracellular rOs  
level during osteogenic induction  
of human aDscs
Fullerol at two doses (low =0.1 µM and high =1 µM) was 

further tested for the ROS scavenging activity in human 

ADSCs during a 5-day culture. The results are shown in 

Figure 2. With basal medium, treatment of both high and 

low doses significantly reduced the intracellular ROS level. 

The ROS levels in all concentrations of osteogenic medium 

were significantly lower than that in the basal medium 

control group. Furthermore, in the presence of osteogenic 

medium, the high dose group, but not the low dose group, 

had an ROS level that was significantly lower than the 

control group.

Pretreatment with fullerol increases 
osteogenic potential of human aDscs
We then investigated whether fullerol pretreatment was 

able to enhance the osteogenic potential of human ADSCs 

while it reduced intracellular ROS level. Osteogenesis was 

assessed by analyses of both the mineralization and gene 

expression of osteogenic markers. Quantitative RT-PCR 

analysis showed that cells treated with an osteogenic 

medium lacking AA (ie, basal medium containing GP and 

DEX) and fullerol for 7 days had a significantly higher 

expression of Runx2, OCN, and ALP compared with that 

of cells treated with the AA-free osteogenic medium alone 

(Figure 3A). Importantly, after incubation in a complete 

osteogenic medium for a further 2 weeks, cells with fullerol 

pretreatment exhibited much more mineralization by alizarin 

red staining (Figure 3B).

Fullerol promotes osteogenic 
differentiation of human aDscs
The effects of fullerol on osteogenic differentiation of human 

ADSCs were determined independently as well as in combi-

nation with osteogenic medium. Treatment of fullerol at the 

high dose (1 µM) for 13 days was determined via alizarin red 

staining to significantly enhance the mineralization (Figure 4A 

and 4B). Accordingly, expression of osteogenic markers was 

significantly elevated in the presence of high dose fullerol by 

quantitative RT-PCR analysis (ALP and OCN, Figure 4C) 

and Western blot analysis (OCN, Figure 4D). Interestingly, 

Figure 1 assays for cell survival and cell proliferation in human aDscs treated with different doses of fullerol (10, 3, 1, 0.3, 0.1, and 0 µM) (n=4).
Notes: (A) lDh assays with 6-hour treatment of fullerol. (B) MTs assays with 48-hour treatment of fullerol.
Abbreviations: aDscs, adipose-derived stem cells; ctrl, control group without any treatment; lDh, lactate dehydrogenase; MTs, 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium; OD, optical density; Pc, positive group for lDh assay with treatment of cells by 1% Triton X-100 to release 
the highest intracellular lDh into culture medium.
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 fullerol simultaneously inhibited gene expression of adipo-

genic markers PPARg and LEP (Figure 4C).

Fullerol augments expression of FoxO1 
gene expression in human aDscs
In an attempt to study the possible mechanistic pathway under-

lying promotion of osteogenesis by fullerol in human ADSCs, 

we investigated expression of an important transcription factor 

FoxO1 and its target genes Runx2 and SOD2 by Western blot 

analysis. FoxO1 level was relatively low in basal medium 

and robustly elevated after osteogenic induction. Fullerol 

(1 µM) caused an additive increase in FoxO1 in the presence 

of osteogenic medium (Figure 5A). In line with its stimulation 

of FoxO1 expression, fullerol also augmented expression of 

Runx2 and SOD2 (Figure 5B).

Discussion
In the current study, we investigated the effects of antioxidative 

nano-fullerol on the osteogenic capacity of primary cultures 

of human ADSCs by conventional experimental techniques 

for cell biology and biochemistry, including cell survival and 

proliferative assays, intracellular ROS measurement, calcium 

deposit detection, real-time RT-PCR, and Western blotting. The 

outcomes are encouraging in the following areas: (1) fullerol 

was nontoxic toward human ADSCs at doses up to 10 µM, (2) 

fullerol was an ROS scavenger for human ADSCs, (3) pretreat-

ment or cotreatment of fullerol enhanced osteogenic capacity 

of human ADSCs in culture, and (4) fullerol stimulated gene 

expression of FoxO1 and its target genes Runx2 and SOD2.

Fullerene has a unique structure, composed of 60 carbon 

atoms that form a hollow sphere about 1 nanometer in diam-

eter.24 Capable of being reversibly reduced by up to six elec-

trons and with as many as 34 methyl radicals added to a C
60

 

sphere, fullerenes (fullerene C
60

 and its derivatives) have been 

characterized as “radical sponges” and are reported to have 

antioxidant activity several hundred-fold higher than other 

antioxidants.25 This was supported by our previous findings that 

fullerol was more powerful than a conventional antioxidant, 

glutathione, in inhibiting expression of adipogenic markers 

and stimulating expression of osteogenic markers in a mouse 

bone marrow stromal cell line, D1 cells.26 A variety of different 

fullerenes have been studied for their biomedicinal applications, 

and they have taken on an important role in the research areas 

of both nanobiotechnology and nanomedicine.27 Furthermore, 

due to its simple, straightforward preparation and its robust 

R
FU

s

Fullerol (µM)
Basal medium

Ctrl
0

50

100

150

200

250

300

aa
a a

a,b

0.1 1 Ctrl 0.1 1

Osteogenic medium
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Notes: Intracellular ROS were monitored by a fluorescent dye DCF-DA, and the 
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Figure 3 Fullerol pretreatment increased osteogenic potential of human aDscs.
Notes: cells were pretreated with fullerol (1.0 µM or 0.1 µM) for 7 days, followed by osteogenic induction for 14 days (n=4). (A) gene expression of osteogenic markers, 
Runx2, OCN, and ALP by real-time rT-Pcr at day 7, using 18s as internal control. (B) alizarin red staining at day 21. letters a and b denote P,0.05 versus BM and gP/DeX 
group, respectively.
Abbreviations: aDscs, adipose-derived stem cells; ALP, alkaline phosphatase; BM, basal medium; Ful, fullerol; gP/DeX, glycerophosphate/dexamethasone; OCN, osteocalcin; 
OD, optical density; Runx2, runt-related transcription factor 2.
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Figure 5 Fullerol promoted gene expression of FoxO1.
Notes: This transcription factor’s targets, runx2 and sOD2, were analyzed by Western blots. human aDscs were treated with OM alone or together with1 µM fullerol 
(OM + Ful) for 7 (A) or 13 (B) days.
Abbreviations: aDscs, adipose-derived stem cells; BM, basal medium; FoxO1, forkhead box protein O1; Ful, fullerol; gaPDh, glyceraldehyde 3-phosphate dehydrogenase; 
OD, optical density; OM, osteogenic medium; runx2, runt-related transcription factor 2; sOD: superoxide dismutase.
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water solubility,19,28–30 fullerol has been considered as a candi-

date with priority for the biomedical purpose of fullerenes.31 

Our present data showed that fullerol served as an antioxidant 

in human ADSCs without cytotoxicity at doses up to 10 µM 

(Figures 1 and 2), and this is in agreement with a majority 

of previous reports with regards to other tissues and cell 

types.17–19,28,32–39

It has been shown that ROS inhibit osteogenesis and 

bone formation. Mody et al40 reported that three oxidants, 

hydrogen peroxide (H
2
O

2
), xanthine, and xanthine oxidase, 

and minimally oxidized low-density lipoproteins inhibited 

osteoblastic differentiation of MC3T3-E1 mouse bone preo-

steoblast cell line and M2-10B4 mouse marrow stromal cell 

line, while increasing intracellular oxidative stress. Chen 

et al41 observed a dramatic decrease of ROS as a consequence 

of upregulation of SOD2 and catalase upon osteogenic 

induction of human bone marrow-derived mesenchymal 

stem cells (BM-MSCs), while exogenous H
2
O

2
 retarded this 

osteogenic differentiation. Barbagallo et al42 revealed that 

increased expression of a major redox regulating gene, heme 

oxygenase-1, augmented osteogenesis in human BM-MSCs. 

Yamada et al16 showed that antioxidant N-acetylcysteine was 

beneficial to osteogenesis of BM-MSCs and bone regenera-

tion in rats. Particularly, Reid et al43 demonstrated that in 

human ADSCs, ROS were upregulated and downregulated 

during osteogenesis and adipogenesis, respectively. There-

fore, we questioned if an antioxidant would be beneficial 

to osteogenic differentiation of human ADSCs. In the pres-

ent work, we confirmed that osteogenic medium induced 

downregulation of ROS, and fullerol had an additive effect 

(Figure 2). Furthermore, either pretreatment or cotreatment 

of antioxidative fullerol promoted osteogenesis of human 

ADSCs in the presence of osteogenic induction (Figures 3 

and 4). It is also demonstrated by an ongoing research project 

in our laboratory that fullerol has a similar impact on osteo-

genesis of mesenchymal stem cells from bone marrow. On 

the other hand, osteogenesis and adipogenesis are regarded 

to be closely correlated with the capacity of the progenitor 

cells during bone regeneration, and many reagents have 

been demonstrated to have opposite impacts on osteogenesis 

and adipogenesis.44–48 In this regard, we and others have 

recently reported that fullerol could inhibit the differentia-

tion of marrow stromal cells and OP9 preadipocytes into 

adipocytes due to its scavenging activity against intracel-

lular ROS.26,49,50 Taken together, these findings highlighted 

fullerol as a novel pharmaceutical candidate for the purpose 

of producing augmented bone regeneration. To this end, it 

is necessary to perform in vivo studies using fullerol-treated 

ADSCs (for example, subcutaneous implantation) for bone 

regeneration.

FoxO1 belongs to the winged helix/forkhead family 

of transcription factors that have been shown to regulate 

expression of many genes involved in many cell processes, 

including cell proliferation, survival, differentiation, and 

redox balance.51 In particular, several recent studies revealed 

that FoxO1 is able to promote osteoblast differentiation of 

the progenitor cells.20,21,52–54 However, its role in regulating 

osteogenic differentiation of ADSCs has not been reported 

yet. The data obtained from the present Western blot analysis 

showed that in human ADSCs, expression of FoxO1 was 

upregulated after addition of the osteogenic medium, and 

more importantly, cotreatment of fullerol with the osteogenic 

medium further augmented expression of this transcript 

factor and its significant targets Runx2, OCN, and SOD2 

(Figure 5). Teixeira et al21 performed osteogenic induction 

using BMP-2 in mouse mesenchymal cells C3H10T1/2 and 

revealed that FoxO1 expression increased along with the 

osteogenic markers Runx2 and ALP during osteogenic differ-

entiation. This is consistent with our present data (Figure 5)  

with regard to osteogenesis of human ADSCs in the pres-

ence of an induction medium containing AA, DEX, and GP, 

although Yang et al55 reported a negative role of FoxO1 in 

regulation of Runx2 and osteocalcin expression. Based on 

this preliminary data, we proposed a possible mechanism by 

which fullerol may exert its modulatory effect on osteoblast 

differentiation of mesenchymal stem cells through increasing 

FoxO1 and decreasing ROS (Figure 6). Additionally, SOD2 

Mesenchymal stem cells

Fullerol Osteogenic

FoxO1 ↑

Osteoblast differentiation

ROS ↓ Pro-
oxidants

induction Fullerol

Runx2 OCN SOD2↑ ↑ ↑

Figure 6 schematic illustration of putative pathways for the enhancement of 
osteoblast differentiation of mesenchymal stem cells by fullerol.
Notes: Fullerol increases osteogenic markers runx2 and OcN, and an antioxidative 
enzyme sOD2 through FoxO1. Meanwhile, fullerol supports osteoblast differentiation 
by the means of reducing the intracellular rOs level both directly and indirectly.
Abbreviations: ↑, increase; ↓ decrease; OCN, osteocalcin; rOs, reactive oxygen 
species; runx2, runt-related transcription factor 2; sOD2, superoxide dismutase 2.
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is  hypothesized to play a role in diminishing ROS by ful-

lerol, adding a new idea to the current ones on how fullerol 

exhibits its antioxidative activity within cells.56,57 Emphasis 

should be placed on the fact that the proposed mechanism 

is currently at its early stage and needs to be further verified 

by more detailed experimental evidence.

Conclusion
Our findings provided preliminary evidence that nano-

fullerols were able to enhance the osteogenesis of human 

ADSCs. This finding might offer potential opportunity for 

the use of nano-fullerol as alternatives to growth factors, 

serving as positive regulators of human ADSCs for the tissue 

engineering-based repair of bone fractures and defects.
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