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Optimal adaptive control for quantum metrology
with time-dependent Hamiltonians
Shengshi Pang1,2 & Andrew N. Jordan1,2,3

Quantum metrology has been studied for a wide range of systems with time-independent

Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the

complexity of dynamics, little has been known about quantum metrology. Here we investigate

quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the

optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and

show proper Hamiltonian control is generally necessary to optimize the Fisher information.

We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement

scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating

magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of

quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches

T4 in estimating the rotation frequency of the field. We conclude by considering level

crossings in the derivatives of the Hamiltonians, and point out additional control is necessary

for that case.
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P
recision measurement has been long pursued due to its vital
importance in physics and other sciences. Quantum
mechanics supplies this task with two new elements. On

one hand, quantum mechanics imposes a fundamental limitation
on the precision of measurements, apart from any external noise,
the quantum noise1, which is rooted in the stochastic nature of
quantum measurement and manifested by the Heisenberg
uncertainty principle. On the other hand, quantum mechanics
also opens new possibilities for improving measurement
sensitivities by utilizing non-classical resources, such as
quantum entanglement and squeezing2. These have given rise
to the wide interest in quantum parameter estimation3,4 and
quantum metrology5,6. Since its birth, quantum metrology
has been applied in many areas, ranging from gravitational
wave detection7–9, quantum clocks10,11, quantum imaging12–14,
to optomechanics15, quantum biology16 and so on. Various
quantum correlations have been shown useful for enhancing
measurement sensitivities, including spin-squeezed states17–22,
N00N states23–27 and so on. Nonlinear interactions have
been exploited to break the Heisenberg limit even without
entanglement28–35. For practical applications where disturbance
from the environment is inevitable, quantum metrology in open
systems has been studied36–40, and quantum error correction
schemes for protecting quantum metrology against noise have
been proposed41–45.

While most previous research on quantum metrology was
focused on multiplicative parameters of Hamiltonians, growing
attention has recently been drawn to more general parameters
of Hamiltonians46 or physical dynamics47,48, such as those of
magnetic fields46,49–51. Interestingly, in contrast to estimation of
multiplicative parameters, estimation of general Hamiltonian
parameters exhibits distinct characteristics in some aspects,
particularly in the time scaling of the Fisher information46, and
often requires quantum control to gain the highest sensitivity52.

While there has been tremendous research devoted to quantum
metrology, most of those works were focused on time-
independent Hamiltonians, and little has been known when the
Hamiltonians are varying with time. (The most relevant work so
far to our knowledge includes ref. 53 that uses basis splines to
approximate a time-dependent Hamiltonian of a qubit, and
ref. 54 that studies the quantum Cramér–Rao bound for a time-
varying signal and so on) Nevertheless, in reality, many factors
that influence the systems are changing with time, for example,
periodic driving fields or fluctuating external noise. In the
state-of-the-art field of quantum engineering, fast varying
quantum controls are often involved to improve operation
fidelity and efficiency. Therefore, the current knowledge about
quantum metrology with static Hamiltonians significantly
limits application of quantum metrology in broader areas,
and the capability of treating time-dependent Hamiltonians is
intrinsically necessary for allowing the applicability of quantum
metrology in more complex situations.

In this article, we study quantum metrology with time-
dependent Hamiltonians to bridge this gap. We obtain the
maximum quantum Fisher information for parameters in time-
dependent Hamiltonians in general, and show that it is attainable
only with proper control on the Hamiltonians generally. The
optimal Hamiltonian control and the measurement scheme to
achieve the maximum Fisher information are derived. Based on
the general results obtained, we surprisingly find that some
fundamental limits in quantum metrology with time-independent
Hamiltonians can be broken with time-dependent Hamiltonians.
In a minimal example of a qubit in a rotating magnetic field, we
show that the time-scaling of Fisher information for the rotation
frequency of the field can reach T4 in the presence of the optimal
Hamiltonian control, significantly exceeding the traditional limit

T2 with time-independent Hamiltonians. This suggests substan-
tial differences between quantum metrology with time-varying
Hamiltonians and with static Hamiltonians. Finally, we consider
level crossings in the derivatives of Hamiltonians with respect to
the estimated parameters, and show that additional Hamiltonian
control is generally necessary to maximize the Fisher information
in that case.

Results
Quantum parameter estimation. Parameter estimation is an
important task in vast areas of sciences, which is to extract the
parameter of interest from a distribution of data. The core goal of
parameter estimation is to increase the estimation precision. The
estimation precision is determined by how well the parameter can
be distinguished from a value in the vicinity, which can usually be
characterized by the statistical distance between the distributions
with neighbouring parameters55. The well-known Cramér–Rao
bound56 shows the universal limit of precision for arbitrary
estimation strategies, which indicates that for a parameter g in a
probability distribution pg(X) of some random variable X, the
mean squared deviation hd2ĝi � E½ð ĝ

@g E½ĝ�j j � gÞ2� is bounded by

d2ĝ
� �

� 1
nIg
þ dĝh i2; ð1Þ

where n is the amount of data, Ig is the Fisher information57,

Ig ¼
Z

pgðXÞ @g ln pgðXÞ
� �2

dX; ð2Þ

and dĝh i is the mean systematic error. For an unbiased estimation
strategy, dĝh i ¼ 0. The Cramér–Rao bound can generally be
achieved with the maximum likelihood estimation strategy when
the number of trials is sufficiently large57. In practice, however,
due to the finiteness of resource, only a limited number of trials
are available usually. For such situations, the Cramér–Rao bound
may become loose, and new families of error measures have been
proposed to give tighter bounds, for example ref. 58. In this
paper, we pursue the ultimate precision limit of quantum
metrology with time-dependent Hamiltonians allowed by
quantum mechanics, regardless of any practical imperfections
like the finiteness of resources or external noise, so the Cramér–
Rao bound is the proper measure for the estimation precision.

In the quantum regime of parameter estimation, we are
interested in estimating parameters in quantum states. The
essence of estimating a parameter in a quantum state is
distinguishing the quantum state with the parameter of interest
from that state with a slightly deviated parameter. When the
quantum state is measured, the parameter in that state controls
the probability distribution of the measurement results, and the
information about the parameter can be extracted from the
measurement results. As there are many different possible
measurements on the same quantum state, the Fisher information
needs to be maximized over all possible measurements so as to
properly quantify the distinguishability of the quantum state with
the parameter of interest. It is shown by refs 59,60 that the
maximum Fisher information for a parameter g in a quantum
state jcgi over all possible generalized quantum measurements is

I Qð Þ
g ¼ 4 @gcg @gcg

���D E
� cg @gcg

���D E��� ���2� �
: ð3Þ

This is called quantum Fisher information, and is closely
related to the Bures distance ds2 ¼ 2ð1� jhcg jcgþ dgijÞ (ref. 61)

through ds2 ¼ 1
4 I Qð Þ

g dg2 between two adjacent states jcgi and
jcgþ dgi, which characterizes the distinguishability between jcgi
and jcgþ dgi.
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In quantum metrology, the parameters to estimate are usually
in Hamiltonians, or more generally, in physical dynamics. The
parameters are encoded into quantum states by letting some
quantum systems evolve under the Hamiltonians or physical
dynamics of interest. The states of the systems acquire the
information about the parameters from the evolution. The
parameters can then be learned from measurements on the final
states of the systems with appropriate processing of the
measurement data. A general process of quantum metrology is
depicted in Fig. 1.

A simple and widely studied example of quantum metrology is
to estimate a multiplicative parameter in a Hamiltonian, say,
to estimate g in Hg¼ gH0 (ref. 62), where H0 is time-independent.
In this case, if a quantum systems undergoes the unitary
evolution Ug¼ exp(� igH0T) for some time T, the quantum
Fisher information (3) that determines the estimation precision of
g is Ig ¼ 4T2Var H0½ � cgj i, where Var[ � ] represents variance and

jcgi is the final state of the system. A more general case concerns
a general parameter in a Hamiltonian46. The quantum Fisher
information for a general parameter g in a Hamiltonian Hg is
4Var½hg Tð Þ�jcg i, and hg ¼ i @g Ug

� �
Uw

g is the local generator of the

parametric translation of Ug¼ exp(� iHgT) with respect to g (ref. 60).
Compared to classical precision measurements, the advantage

of quantum metrology is that non-classical correlations can
significantly enhance measurement sensitivities. Various kinds of
non-classical correlations have been found useful for improving
measurement precision, as reviewed in the introduction. With N
properly correlated systems, the quantum Fisher information can
beat the standard quantum limit and attain the Heisenberg
scaling N2 by appropriate metrological schemes5.

Time-dependent quantum metrology. We now turn to the main
topic of this work, quantum metrology with time-dependent
Hamiltonians. Our goal is to find the maximum Fisher
information for parameters in time-dependent Hamiltonians.

The starting point of quantum metrology with a time-
dependent Hamiltonian is similar as with a time-independent
Hamiltonian above. A system is initialized in some state c0j i and
evolves under the time-dependent Hamiltonian Hg(t) with g as
the parameter to estimate, then after an evolution for some time
T, one measures the final state of the system

cgðTÞ
��� E

¼ Ug 0! Tð Þ c0j i; ð4Þ

where Ug(0-T) is the unitary evolution under the Hamiltonian
Hg(t) for time T, and estimates g from the measurement
results, which is just the standard recipe for a general
quantum metrology. And the quantum Fisher information of
estimating g from measuring jcgðTÞi is still determined by
equation (3), which can be written as I Qð Þ

g ¼ 4Var½hg Tð Þ�jcg ðTÞi,
where hg Tð Þ ¼ i½@gUg 0! Tð Þ�Uw

g 0! Tð Þ.
Everything is similar as before so far, but we can immediately

see two major obstacles to deriving the maximum Fisher
information. One is that due to the complexity of evolution
under a time-dependent Hamiltonian, the unitary evolution
Ug(0-T) is generally difficult to obtain. The other is that even if
we can find a solution to Ug(0-T), it is hard to maximize the
Fisher information, since hg(T) can be quite complex and the
optimization is global involving the whole evolution history of
the system for time T. To derive the maximum Fisher
information for time-dependent Hamiltonians, we need to
overcome these obstacles.

For the purpose of convenience, we first reformulate the
quantum Fisher information as

I Qð Þ
g ¼ 4Var hg Tð Þ

	 

c0j i
; ð5Þ

which is dependent on the initial state c0j i of the system now, and
hg(T) becomes iUw

g (0-T)@gUg(0-T), which is different from the
one in refs 46,60, and can no longer be interpreted as the local
generator of parametric translation of Ug(0-T) with respect to g.

But the maximum of the Fisher information I Qð Þ
g is still the squared

gap between the maximum and minimum eigenvalues of hg(T), as
in the case of static Hamiltonians62. Therefore, the key to
determining the optimal estimation precision for the parameter g
is finding hg(T) and its maximum and minimum eigenvalues.

Usually the evolution under a time-dependent Hamiltonian
Hg(T) is represented by the time-ordered exponential of Hg(T),
but it is complex and not convenient for our problem. Here we
take an alternative approach that breaks the unitary evolution
Ug(0-T) into products of small time intervals Dt and takes the
limit Dt-0. Interestingly, it turns out that with this approach, the
maximum Fisher information (and the optimal quantum control)
can be obtained without knowing the exact solution to Ug(0-T).
We show in Supplementary Note 1 that such an approach leads to

hg Tð Þ ¼
Z T

0
Uyg 0! tð Þ@g Hg tð ÞUg 0! tð Þdt: ð6Þ

Obviously, it still includes the unitary evolution Ug(0-t), which
is unknown. However, it has the advantage that it is an integral
over the time t, which makes it possible to decompose the
global optimization of the eigenvalues of hg(T) into local
optimizations at each time point t. The idea is that, as is known,
the maximum eigenvalue of an Hermitian operator must be its
largest expectation value over all normalized states, so the
maximum eigenvalue of hg(T) is the maximum time integral of
c0h jUw

g 0! tð Þ@g Hg tð ÞUg 0! tð Þ c0j i from 0 to T over all c0j i.
Considering Ug(0-T) is unitary, Ug(0-t) c0j i is also a normal-
ized state, so the upper bound of c0h jUw

g 0! tð Þ@g Hg tð Þ
Ug 0! tð Þ c0j i must be the maximum eigenvalue of @gHg(t) at
time t, which can be denoted as mmax(t). From this, it can be
immediately inferred that the maximum eigenvalue of hg(T) is
upper bounded by

R T
0 mmax tð Þdt. Similarly, the minimum eigen-

value of hg(T) is lower bounded by
R T

0 mmin tð Þdt. With these two
bounds for the maximum and minimum eigenvalues of hg(T),
respectively, we finally arrive at the upper bound of the quantum
Fisher information I Qð Þ

g ,

I Qð Þ
g �

Z T

0
mmax tð Þ� mmax tð Þð Þdt

� �2

: ð7Þ
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Figure 1 | General procedures of quantum metrology. Quantum metrology

can generally be decomposed to four steps: preparation of the initial states

of the quantum systems, parameter-dependent evolution (Ug in the figure)

of the systems, measurements on the final states of the systems, and post

processing of the measurement data to extract the parameter. Each node at

the left side of the figure represents one quantum system (which can be

very general and consist of subsystems). Usually multiple systems are

exploited to undergo such a process, and they can be entangled at the

preparation step to increase the estimation precision beyond the standard

quantum limit, which is the advantage of quantum metrology.
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It shows that the upper bound of the quantum Fisher
information I Qð Þ

g is determined by the integral of the gap between
the maximum and minimum eigenvalues of @gHg(t) from time 0 to
T. It can straightforwardly recover the quantum Fisher information
for a time-independent Hamiltonian Hg by identifying mmax(t) at all
times t and identifying mmin(t) at all times t, respectively. And when
Hg¼ gH0, the maximum Fisher information is just T2D2, where D
is the gap between the maximum and minimum eigenvalues of H0,
the same as the result in ref. 62.

Optimal Hamiltonian control. A question that naturally arises
from the above result is whether the upper bound of quantum
Fisher information I Qð Þ

g (7) is achievable. From the above
derivation of the upper bound of I Qð Þ

g , it is obvious that the upper
bound cannot be saturated generally, unless there exists initial
states c0j i and c1j i of the system such that Ug(0-t) c0j i and
Ug(0-t) c1j i are the instantaneous eigenstates of @gHg(t) with the
maximum and minimum eigenvalues, respectively, at any time t.
This imposes two conditions: (i) there exist c0j i and c1j i, which
are the eigenstates of @gHg tð Þ with the maximum and minimum
eigenvalues at the initial time t¼ 0; (ii) Ug(0-t) c0j i and
Ug(0-t) c1j i should remain as the eigenstates of @gHg(t) with the
maximum and minimum eigenvalues for all t under the evolution
of Hg(t). The first condition is easy to satisfy, but the second one
is difficult, since the time change of an instantaneous eigenstate
of @gHg(t) is generally different from the evolution under the
Hamiltonian Hg(t) when Hg(t) does not commute with @gHg(t) or
Hg(t) does not commute between different time points. This
condition is the main obstacle to the saturation of the upper
bound of Fisher information (7).

However, it inspires us to think that if we can add some control
Hamiltonian, which is independent of the parameter g, to the
original Hamiltonian, so that the state evolution under the total
Hamiltonian is the same as the time change of the instantaneous
eigenstates of @gHg(t), then a state starting from the eigenstate of
@gHg(0) with the maximum or minimum eigenvalue will always
stay in that eigenstate of @gHg(t) at any time t. And the upper
bound of quantum Fisher information I Qð Þ

g can then be achieved
by preparing the system in an equal superposition of the
eigenstates of @gHg(t) with the maximum and minimum
eigenvalues at the initial time t¼ 0. So the key is finding such a
control Hamiltonian.

A convenient way to realize the above target is to let each
eigenstate of @gHg(t) stay in the same eigenstate of @gHg(t) at all
times t when evolving under the total Hamiltonian. (Actually
@gHg(t) should be replaced by the derivative of total Hamiltonian
now, but they are the same because the control Hamiltonian must
be independent of g.) It implies that the kth eigenstate ck tð Þj i of
@gHg(t) should satisfy the Schrödinger equation Htot tð Þ ck tð Þj i
¼ i@t ck tð Þj i, where Htot(t) denotes the total Hamiltonian. Unlike
the usual situations where we know the Hamiltonian and want to
find the solution to the state, here we know the solution to the
state, ck tð Þj i, and need to find the appropriate Hamiltonian
Htot(t) that directs the evolution instead. A simple solution to this
equation is Htot tð Þ ¼ i

P
k @tck tð Þj i ck tð Þh j. (Note this solution

is Hermitian because
P

k @tck tð Þj i ck tð Þh j is skew-Hermitian.)
Considering every eigenstate ck tð Þj i satisfies the U(1) symmetry,
that is, multiplying ck tð Þj i by an arbitrary phase e� iyk tð Þ does not
change that state, Htot(t) can be generalized to include an
additional term

P
k

_yk tð Þ ck tð Þj i ck tð Þh j: _yk tð Þcan be replaced by
arbitrary real functions fk(t), and yk tð Þ ¼

R t
0 fk t0ð Þdt0. Thus, the

optimal control Hamiltonian Hc(t) finally turns out to be

Hc tð Þ ¼
X

k

fk tð Þ ck tð Þj i ck tð Þh j �Hg tð Þþ i
X

k

@tck tð Þj i ck tð Þh j:

ð8Þ

It will be seen in the examples below that proper choices of the
functions fk(t) can significantly simplify the control Hamiltonian
Hc(t) in some cases.

The role of this control Hamiltonian is to steer the eigenstates
of @gHg(t) evolving along the ‘tracks’ of the eigenstates of @gHg(t)
under the total Hamiltonian, which is the path to gain the most
information about g, instead of being deviated off the ‘tracks’ by
the original Hamiltonian Hg(t). This is critical to the saturation of
the upper bound of Fisher information. A schematic sketch for
the role of the optimal control Hamiltonian Hc(t) is plotted in
Fig. 2. It is worth mentioning that similar ideas have been
pursued in other works63–66 to steer the states of quantum
systems along certain paths, such as the instantaneous eigenstates
of Hamiltonians, with proper control fields.

It can be straightforwardly verified that with the above control
Hamiltonian, the eigenstates ck 0ð Þj i of @gHg(t) at t¼ 0 are the
eigenstates of hg(t) for any time t, and the corresponding
eigenvalues are

R T
0 mk tð Þdt, where mk(t) is the kth eigenvalue of

@gHg(t) at time t. Therefore, Hc(t) indeed gives the demanded
control on the Hamiltonian to reach the upper and lower bounds
of the eigenvalues of hg(t), and the upper bound of the quantum

Fisher information I Qð Þ
g (7) can then be achieved by simply

preparing the system in an equal superposition of the eigenstates
of @gHg(t) with the maximum and minimum eigenvalues at the
initial time t¼ 0 and making proper measurements on the system
after an evolution of time T. The optimal measurement that gains
the maximum Fisher information is generally a projective
measurement along the basis �j i ¼ 1ffiffi

2
p e� iymax Tð Þ cmax Tð Þj i �
�

e� iymin Tð Þ cmin Tð Þj iÞ, where cmax Tð Þj i and cmin Tð Þj i are the
eigenstates of @gHg(t) with the maximum and minimum
eigenvalues at time t¼T, and ymax(T) and ymin(T) are the
additional phases of cmax Tð Þj i and cmin Tð Þj i depending on the

⎪�� (t )〉 ⎪�� (t  + Δt )〉

exp(–iH g
 (t )

Δt)
exp(–iH

c  (t )Δt )

Figure 2 | Optimal Hamiltonian control scheme. To achieve the maximum

Fisher information, the optimal control Hamiltonian needs to keep the

eigenstates of @gHg(t) evolving along the tracks of the eigenstates of

@gHg(t) under the total Hamiltonian. The evolution under the total

Hamiltonian Hg(t)þHc(t) for a short time Dt can be approximated as

exp(� iHc(t)Dt)exp(� iHg(t)Dt). When exp(� iHg(t)Dt) is applied on an

eigenstate ck tð Þj i of @gHg(t), the resulted state (represented by the dashed

ray in the figure) is not necessarily still the instantaneous eigenstate

ck tþDtð Þj i at time tþDt, and the role of the control Hamiltonian Hc(t) is

to pull the state back to the instantaneous eigenstate ck tþDtð Þj i at time

tþDt. In this way, with the assistance of the control Hamiltonian Hc(t),

each eigenstate ck tð Þj i of @gHg(t) will always evolve along the track of that

eigenstate at any time t.
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choice of fk(t) in the optimal control Hamiltonian (8). The details
of the measurement scheme are discussed in Supplementary
Note 2.

It is worth noting that the optimal control Hamiltonian (8)
involves the estimated parameter g. However, g is unknown, so it
should be replaced with a known estimate of g, say gc, in practice,
and the control Hamiltonian becomes

Hc tð Þ¼
P

k
fk tð Þ fck tð Þ

��� E fck tð Þ
D ����Hgc tð Þ

þ i
P

k
@t
fck tð Þ

��� E fck tð Þ
D ���: ð9Þ

where g has been replaced by gc and fckðtÞ
��� E

denotes the kth
eigenstate of @gHg(t) with g¼ gc.

The estimate gc can be first obtained by some estimation
scheme without the Hamiltonian control, then applied in the
control Hamiltonian to have a more precise estimate of g. The
new estimate of g can be fed back to the control Hamiltonian to
further update the estimate of g. Thus, the above Hamiltonian
control scheme is essentially adaptive, requiring feedback from
each round of estimation to refine the control Hamiltonian and
optimize the estimation precision.

We stress that the control Hamiltonian (9) is independent of
the parameter g, although the optimal control Hamiltonian (8)
involves g, otherwise the control Hamiltonian would
carry additional information about g, which is not physical.
From a quantum state discrimination point of view, the
estimation of g is essentially to distinguish between
T exp½ � i

R T
0 Hg tð Þdt� c0j i and T exp½ � i

R T
0 Hg þ dg tð Þdt� c0j i,

where c0j i is the initial state of the system. When a control
Hamiltonian Hc(t, gc) is applied (where gc is explicitly denoted),
the two states become T exp½� i

R T
0 Hg tð ÞþHc t; gcð Þ
� �

dt� c0j i and

T exp½� i
R T

0 Hgþ dg tð ÞþHc t; gcð Þ
� �

dt� c0j i. One can see that when
g has a virtual shift dg in the original Hamiltonian, gc is
unchanged in the control Hamiltonian. The parameter gc in the
control Hamiltonian is always a constant (even when it is equal to
the real value of g), while the parameter g in the original
Hamiltonian is a variable. This is how the control Hamiltonian is
independent of g. The appearance of g in the optimal control
Hamiltonian (8) just indicates what gc maximizes the Fisher
information, and it turns out to be the real value of g.

As a simple verification of the above results, we show how
the current results can recover the known ones in quantum
metrology with time-independent Hamiltonians. Consider
estimating a multiplicative parameter g in a time-independent
Hamiltonian Hg¼ gH0, which is the simplest case that has been
widely studied. In this case, @gHg(t)¼H0 and @tck tð Þj i¼ 0. To
obtain a simple control Hamiltonian, we can choose fk(t) to be the
kth eigenvalue Ek of H0, that is, multiply ck tð Þj i with a phase
e� iEkt , in the optimal control Hamiltonian Hc(t) (8); then
Hc(t)¼ 0. This implies no Hamiltonian control is necessary for
this case, in accordance with the result in ref. 62.

A more general case is that the Hamiltonian is still
independent of time but the parameter to estimate is not
necessarily multiplicative. This has attracted a lot of attention
recently46–48,50–52,67. The Hamiltonian in this case can be
represented as Hg(t)¼Hg in general. Since the Hamiltonian is
still time-independent, we have @tck tð Þj i¼ 0. So, the optimal
control Hamiltonian is Hc tð Þ ¼

P
k fk tð Þ ck tð Þj i ck tð Þh j �Hg . But

in this case, ck tð Þj i are not necessarily the eigenstates of Hg, andP
k fk tð Þ ck tð Þj i ck tð Þh j cannot cancel Hg generally. To simplify

Hc(t), we can simply choose fk(t)¼ 0, then Hc(t)¼ �Hg. It
implies a reverse of the original Hamiltonian can lead to the
maximum Fisher information in this case. This recovers the result
in ref. 52, which showed that the optimal control to maximize the

quantum Fisher information for this case is just to apply a reverse
of the original unitary evolution at each time point. Of course,
this is not the unique solution to Hc(t), and a large family of
solutions exist corresponding to different choices of fk(t), all
leading to the maximum Fisher information.

Estimation of field amplitude. To exemplify the features of
quantum metrology with time-dependent Hamiltonians and the
power of the above Hamiltonian control scheme, we consider a
simple physical example below. This example will show some
important characteristics of time-dependent quantum metrology
and how the optimized Hamiltonian control can dramatically
boost the estimation precision.

Let us consider a qubit in a uniformly rotating magnetic field,
B tð Þ ¼ B cosotexþ sinotezð Þ, where ex and ez are the unit
vectors in the x̂ and ẑ directions, respectively, and we want to
estimate the amplitude B or the rotation frequency o of the field.
To acquire the information about the magnetic field, we let the
qubit evolve in the field for some time T, then measure the final
state of the qubit to learn B or o. The interaction Hamiltonian
�B tð Þ � r between the qubit and the field is

H tð Þ ¼ �B cosotsX þ sinotsZð Þ; ð10Þ
where we assumed the magnetic moment of the qubit to be 1.

We first consider estimating the amplitude B of the magnetic
field. It is easy to verify that the derivative of H(t) with respect to
B has eigenvalues ±1 for any t, therefore, the maximum
quantum Fisher information (7) of estimating B at time T is

I Qð Þ
B ¼ 4T2: ð11Þ

As shown previously, it requires some control on the
Hamiltonian to reach this maximum quantum Fisher
information. It can be straightforwardly obtained that the
eigenstates of @BH(t) are cþ tð Þ

�� �
¼ cos ot

2 þj iþ sin ot
2 �j i and

c� tð Þj i¼ sin ot
2 þj i� cos ot

2 �j i, where �j i ¼ 1ffiffi
2
p 0j i � 1j ið Þ,

corresponding to oscillations in the Z�X plane. Since @BH(t)¼
B� 1H(t), we can choose the first term in equation (8) to cancel
H(t). Then, the optimal control Hamiltonian Hc(t) (8) is

Hc tð Þ ¼ � o
2
sY : ð12Þ

What about if we do not apply the control Hamiltonian Hc(t)?
We obtain the evolution of the qubit and the quantum Fisher
information for the amplitude B without any Hamiltonian control
in Supplementary Note 3. The quantum Fisher information for
this case is

I Qð Þ
B;0 ¼

16B2T2

4B2þo2
þ 8o2 1� cos T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2þo2
p� �

4B2þo2ð Þ2
: ð13Þ

It implies that when T 	 1,

I Qð Þ
B

I Qð Þ
B;0


 1þ o2

4B2
; ð14Þ

indicating that the increase of Fisher information by the
Hamiltonian control is determined by the ratio between o and B.

It is interesting to note that if the field rotation frequency o is
small, the increase in Fisher information by the Hamiltonian
control would be small as well, as shown by equation (14). This is
because when o � 1, the magnetic field is changing so slowly
that the evolution of the qubit state is approximately adiabatic,
and an eigenstate of @BH(t) would always stay in that eigenstate
considering @BH(t) commutes with H(t). Thus, the condition for
optimizing the Fisher information can be automatically satisfied,
and the maximum Fisher information is achieved as a result. This
is also verified by equation (12) that when o� 1, the optimal
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control Hamiltonian is close to zero, which means almost no
Hamiltonian control is necessary for this case.

The quantum Fisher information of B is plotted for different
rotation frequencies o without the control Hamiltonian and
compared to that with the optimal control Hamiltonian (12) in
Fig. 3.

Estimation of field rotation frequency. Now, we turn to the
estimation of the rotation frequency o of the magnetic field.
Frequency measurement is important in many areas of physics,
and has been widely studied in different contexts, for example, a
single-spin spectrum analyzer68. High-precision phase estimation
has been realized in many experiments in recent years, for
example, on a single nuclear spin in diamond with a precision of
order T� 0.85 by Waldherr et al.69

To study the estimation precision of the frequency o, note
@oH(t) is tB(sin otsX� cos otsZ). The eigenvalues of @oH(t) are
m(t)¼±tB then, so the maximum and minimum eigenvalues of
hoðTÞ are

R T
0 mðtÞdt¼ � 1

2 BT2. Therefore, the maximum Fisher
information of estimating o is

I Qð Þ
o ¼ B2T4: ð15Þ

The eigenstates of @oH(t) are cþ tð Þ
�� �

¼ sin ot
2 0j i þ cos ot

2 1j i and
c� tð Þj i¼ cos ot

2 0j i � sin ot
2 1j i. If we choose fk(t)¼ 0 for

equation (8), then the optimal control Hamiltonian is

HcðtÞ ¼ B cosotsX þ sinotsZð Þ� o
2
sY : ð16Þ

The first term in Hc(t) (16) cancels the original Hamiltonian H(t),
so that the eigenstates of @oH(t) would not be deviated by H(t),
and the second term in Hc(t) guides the eigenstates of
@oH(t) along the tracks of those eigenstates during the whole
evolution under the total Hamiltonian with the control Hc(t).

The above result of I Qð Þ
o has an important implication: it is

known that the time scaling of Fisher information for a parameter
of a time-independent Hamiltonian is at most T2, even with some

control on the Hamiltonian, a fundamental limit in time-
independent quantum metrology52; however, in this example,
the time scaling of Fisher information for the frequency o reaches
T4, an order T2 higher than the time-independent limit! This
indicates that some fundamental limits in the time-independent
quantum metrology no longer hold when the Hamiltonian
becomes varying with time, and they can be dramatically violated
in the presence of appropriate quantum control on the system,
showing a significant discrepancy between the time-dependent
and the time-independent quantum metrology.

An interesting question that naturally arises is if there is no
control Hamiltonian Hc(t), can the maximum Fisher information
I Qð Þ
o still scale as T4? In Supplementary Note 3, we derive the

maximum Fisher information for the rotation frequency o in the
absence of Hamiltonian control by an exact computation of
the qubit evolution in the rotating magnetic field, and the result
turns out to be

I Qð Þ
o;0 ¼ 4B2T2

4B2 þo2 �
8B2T sin T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þo2
pð Þ

4B2 þo2ð Þ3=2

þ 8B2 1� cos T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þo2
pð Þð Þ

4B2 þo2ð Þ2 :
ð17Þ

Therefore, without any Hamiltonian control on the system, the
Fisher information would still scale as T2 as in time-independent
quantum metrology, which is substantially lower than the T4

scaling with the optimized Hamiltonian control. This exhibits the
advantage of Hamiltonian control in enhancing time-dependent
quantum metrology.

Figure 4 plots the Fisher information of o in the presence of
the control Hamiltonian with various oc, and compares it to that
without the control Hamiltonian.

It should be noted that when the Hamiltonian is allowed to
vary with time, the time scaling of Fisher information may be
raised in a trivial way: the strength or the level gap of the
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Figure 3 | Quantum Fisher information for the field amplitude. Quantum

Fisher information I
Qð Þ

B for the amplitude B of the rotating magnetic field B(t)

versus the evolution time t is plotted for different choices of rotation

frequency o without the Hamiltonian control, and compared to that with

the optimized Hamiltonian control. The true value of B in the figure is 1.

It can be observed that when o is large compared to the amplitude of the

magnetic field B, the Fisher information becomes small. The Fisher

information with the optimal Hamiltonian control is the highest, whatever o
is, which verifies the advantage of Hamiltonian control for this case.
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Figure 4 | Quantum Fisher information for the field frequency. The

logarithm (base 10) of the quantum Fisher information I
Qð Þ
o for the rotation

frequency o of the magnetic field B(t) versus the evolution time t is plotted

for different trial values oc of the rotation frequency, and compared to the

Fisher information in the absence of the control Hamiltonian Hc(t). The real

value of B and the real value of o are both 1. It can be observed that, even

with some sub-optimal choices of oc that is not equal to the real value of o,

the scaling of the Fisher information can still be much higher than that

without any Hamiltonian control, and when oc approaches the real rotation

frequency o of the magnetic field, higher Fisher information can be gained

with the assistance of Hamiltonian control. When oc¼o, the Fisher

information reaches the maximum, which confirms the theoretical results.
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Hamiltonian may itself increase rapidly with time. For example, if
the Hamiltonian is growing exponentially with time (for example,
Hg¼ getsZ), the Fisher information can have an exponential time
scaling. The nontriviality of the current result lies in that the
Hamiltonian (10) has a fixed gap 2B between its highest and
lowest levels, which does not scale up with time, and thus the
increase in Fisher information does not result from any time
growth of the Hamiltonian.

One may be wondering about the origin of the T4 scaling. It is
not from the control Hamiltonian, since the control Hamiltonian
is independent of the estimated parameter, which is o in this
example. The T4 scaling originates from the dynamics of the
original Hamiltonian. Consider two original Hamiltonians with
slightly deviated parameters o and oþ do. The discrepancy
between them is amplified by a time factor t as they evolve, and
correspondingly the distance between the states evolving under
these two Hamiltonians is amplified by a time factor t as well.
Since the squared distance between two states with neighbouring
parameters is approximately proportional to the quantum Fisher
information as manifested by the Bures metric61, the quantum
Fisher information of o can therefore be increased by an order T2

after an evolution of time T. The control Hamiltonian helps keep
the qubit on the optimal route that gains the most Fisher
information.

Adaptive control for frequency estimation. A notable point in
the above Hamiltonian control scheme for frequency estimation
is that the optimal control Hamiltonian Hc(t) (16) involves the
rotation frequency o. However, o is the parameter to estimate,
so, in practice, we can only use an estimate of o, say oc, instead of
the real value of o in implementing the control Hamiltonian (16),
and the control Hamiltonian would actually be

Hc tð Þ ¼ B cosoctsX þ sinoctsZð Þ� oc

2
sY : ð18Þ

When the measurement runs for multiple rounds, the estimate oc

will approach the real value of o, and the optimal Fisher
information (15) can be saturated by adaptively updating the
estimate of o in the control Hamiltonian. This implies that a
feedback of the information about o from each round of
measurement into the next round is necessary to implement
the optimal Hamiltonian control scheme and maximize the
estimation precision for o.

The details of the adaptive Hamiltonian control scheme are
presented in Supplementary Note 5. Generally one needs to first
obtain an initial estimate of o by some estimation scheme
without the Hamiltonian control, then apply it to the control
Hamiltonian and update it by estimation in the presence of the
control Hamiltonian. The updated estimate of o can again be
applied in the control Hamiltonian to produce a better estimate of
o, and so forth.

An important point shown in Supplementary Note 4 is that
with an estimate of o, oc, which deviates from the exact value of
o by do, do¼oc�o, the Fisher information in the presence of
the Hamiltonian control is approximately

I Qð Þ
o ¼ B2T4 1� 1

18
T2do2

� �
: ð19Þ

So, to approach the T4 scaling of Fisher information for a given
evolution time T, the necessary precision do of the estimate oc in
the control Hamiltonian is only of the order T� 1, so the feedback
of a low-precision estimate of o in the Hamiltonian control can
lead to a high-precision estimate of o. This lays the foundation
for the adaptive Hamiltonian control scheme. In particular, it
implies that the precision of the initial estimate of o also just

needs to be of the order T� 1, attainable in the absence of
Hamiltonian control, which is exactly what we need.

In fact, such an iterative feedback control scheme can approach
the T4 scaling of Fisher information very efficiently. It is shown in
Supplementary Note 5 that the number of necessary rounds of
feedback control to realize the T4 scaling for a large T is only

n� log2 ln T
� �

; ð20Þ
a double logarithm of T, so very few rounds of feedback control
are necessary to approach the T4 scaling.

It is also worth mentioning that there is a minimum precision
requirement of the initial estimation of o without the
Hamiltonian control, so that the Fisher information increases
after each round of feedback control:

I04
1

B2 1� 1
18N

� � ; ð21Þ

where N is the number of measurements in each round of
feedback control, otherwise the Fisher information would
decrease as the feedback control proceeds.

Discussion
The final problem we want to discuss about the above optimal
Hamiltonian control scheme for time-dependent quantum
metrology is the case that the eigenstate of @gHg(t) with the
maximum or minimum eigenvalue does not always stay in the
same eigenstate during the evolution. In deriving the optimal
control Hamiltonian (8), we let each eigenstate of @gHg(t) stay in
the same eigenstate during the evolution for simplicity. This
implicitly assumes that the eigenstate of @gHg(t) with the
maximum or minimum eigenvalue also stays in the same
eigenstate during the evolution. However, if the highest or lowest
level crosses other levels of @gHg(t), the corresponding eigenstate
will change from one eigenstate of @gHg(t) to another at the
crossing.

In the presence of such a level crossing, the upper bound of the
maximum eigenvalue of hg(T) or the lower bound of the

�

t

Ha (t )

�m (t )

�n (t )

�

Figure 5 | Additional Hamiltonian control scheme at level crossings of

@gHg(t). Additional Hamiltonian control is necessary to eliminate the effect

of a crossing between the highest/lowest level and another level of @gHg(t).

The role of the additional control Hamiltonian Ha(t) is to transform the

original instantaneous highest/lowest level to the new instantaneous

highest/lowest level of @gHg(t). Suppose the red curve in the figure is the

highest level of @gHg(t). Before t, mn tð Þ is the highest level of @gHg(t). At

time t, mn tð Þ crosses the level mm tð Þ, which becomes the highest level after

the crossing. The additional control Hamiltonian Ha(t) is to transit the

highest level from mn tð Þ to mm tð Þ at time t. The argument is similar if the

blue curve is the lowest level of @gHg(t).
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minimum eigenvalue of hg(T) cannot be attained, and as a result
the upper bound (7) on the quantum Fisher information cannot
be saturated. In particular, if the highest and lowest levels of
@gHg(t) cross each other, the Fisher information will even drop
after the crossing, because the gap between the maximum and
minimum eigenvalues of hg(T) will shrink. Thus, it is necessary to
cancel or suppress the effect of level crossing in @gHg(t) to
maximize the Fisher information.

To keep the highest or lowest level of @gHg(t) still in the highest
or lowest level after a crossing in @gHg(t), we need to change the
dynamics of the system near the crossing so that the highest or
lowest level of @gHg(t) before the level crossing transits to the new
one after the level crossing. We propose an additional
Hamiltonian control scheme in the Methods to realize such a
transition.

In Fig. 5, the role of the additional Hamiltonian control is
plotted. When there are multiple crossings between the highest/
lowest level and other levels of @gHg(t) during the whole evolution
process, there must be an additional Hamiltonian control applied
at each level crossing.

Methods
Additional quantum control at level crossings of @gHg(t). Suppose a crossing
occurs between the highest or lowest level and another level of @gHg(t) at time t.
mn tð Þ is the highest or lowest level of @gHg(t) before t while mm tð Þ becomes the
highest or lowest level after t, and cn tð Þj i and cm tð Þj i are the corresponding
eigenstates. Intuitively, the following sX-like control Hamiltonian

Ha tð Þ ¼ h tð Þ ei ym tð Þ� yn tð Þð Þ cn tð Þj i cm tð Þh j
	

þ ei yn tð Þ� ym tð Þð Þ cm tð Þj i cn tð Þh j


;

ð22Þ

should rotate cn tð Þj i to cm tð Þj i, with h(t) to be some time-dependent control
parameters and e� iym tð Þ, e� iyn tð Þ to be the additional phases of cm tð Þj i, cn tð Þj i
determined by the choices of fm(t), fn(t) in the optimal control Hamiltonian (8). In
order not to affect the additional Hamiltonian controls at other level crossings,
Ha(t) must be completed within a sufficiently short time dt. As shown in
Supplementary Note 6, the control parameter h(t) must satisfyZ tþ 1

2dt

t� 1
2dt

h tð Þdt ¼ lþ 1
2

� �
p; ð23Þ

where l is an arbitrary integer, so that the system can be exactly transferred to the
new eigenstate cm tð Þj i from cn tð Þj i by the additional control Hamiltonian.

An intuitive idea why the above additional control Hamiltonian Ha(t) can drive
cn tð Þj i to cm tð Þj i can be understood as follows. Note that the total Hamiltonian is

the sum of Hg(t), Hc(t) and the additional control Hamiltonian Ha(t) now.
According to the time-dependent generalization of the Suzuki–Trotter product
formula70, if we break the time interval t� 1

2 dt � t � tþ 1
2 dt into many small

pieces at properly sampled time points t1, t2, ?, tn, the total evolution of the
system from t� 1

2 dt to tþ 1
2 dt can be approximated as the time-ordered product

of Ug tj ! tjþ 1
� �


 exp � i Hg tj
� �
þHc tj

� �� �
Dtj

	 

exp � iHa tj

� �
Dtj

	 

, where

Dtj¼ tjþ 1� tj, implying that at each short time piece Dtj, the state e� iyn tjð Þ cn tj
� ��� �

is slightly shifted to e� iym tjþ1ð Þ cm tj
� ��� �

by Ha(tj), following which e� iyn tjð Þ cn tj
� ��� �

is shifted to e� iyn tj þ 1ð Þ cn tjþ 1
� ��� �

and e� iym tjð Þ cm tj
� ��� �

is shifted to

e� iym tjþ 1Þ cm tjþ 1ð Þj ið by Hg(tj)þHc(tj). Thus, the total effect of the additional control
Hamiltonian Ha(t), along with the original Hamiltonian Hg(t) and the control
Hamiltonian Hc(t), is continuously driving the system from e� iyn tð Þ cn tð Þj i to
e� iym tð Þ cm tð Þj i, where cn tð Þj i and cm tð Þj i are also changing at the same time.

A rigorous analysis for the additional Hamiltonian Ha(t) is given in
Supplementary Note 6. It turns out that in a rotating frame where all e� iyk tð Þ ck tð Þj i
are static, the total Hamiltonian is transformed to H0(t)¼ h(t)smn, where smn is a
sX-like transition operator between two static basis states nj i and mj i in the new
frame that correspond to e� iyn tð Þ cn tð Þj i and e� iym tð Þ cm tð Þj i in the original frame.
This indicates that in the presence of the additional control Hamiltonian Ha(t),
cn tð Þj i can be transited to cm tð Þj i continuously around the level crossing between
mn tð Þ and mm tð Þ.

It should be noted that an additional phase ð� 1Þlþ 1i will be introduced to the
eigenstates cm tð Þj i and cn tð Þj i of @gHg(t) by the additional Hamiltonian control.
This may change the relative phase of the system when it is in a superposed state
involving cm tð Þj i or cn tð Þj i and needs to be taken into account in that case. The
detail about the additional phase is given in Supplementary Note 6.

Data availability. The code and data used in this work are available on request to
the corresponding author.
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