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A mathematical model is developed to study the transport mechanism of a Casson fluid flow inspired by the metachronal
coordination between the beating cilia in a cylindrical tube. A two-dimensional system of nonlinear equations governing the flow
problem is formulated by using axisymmetric cylindrical coordinates and then simplified by employing the long wavelength and
low Reynolds number assumptions. Exact solutions are derived for the velocity components, the axial pressure gradient, and the
stream function. However, the expressions for the pressure rise and the volume flow rate are evaluated numerically. The features of
the flow characteristics such as pumping and trapping are illustrated and discussed with the help of graphs. It is observed that the
volume flow rate is influenced significantly by the width of plug flow region𝐻𝑝 as well as the cilia length parameter 𝜀. The analysis
is also applied and compared with the estimated value of the volume flow rate of epididymal fluid in the ductus efferentes of the
human male reproductive tract.

1. Introduction

The study of fluid transport due to systems of beating cilia
has attracted the attention of many researchers due to its
applications in bioengineering and medical sciences. It is
generally believed that cilia are responsible for the transport
of biological fluids in several physiological processes such
as the removal of tracheobronchial mucus in the respiratory
track, the transport of ovulatory mucus and ovum in the
oviduct of the female reproductive tract system, and the
motion of epididymal fluid in the efferent ductus of the
human male reproductive tract [1–10]. Failure of the trans-
port functionality of cilia can cause a serious illness of the
respiratory system, pathological transport of bacteria, and
infertility in human uterus.Themechanism of cilia transport
has also been exploited for the design and fabrication of
artificial cilia for microfluidic applications [11–13].

Cilia are hair-like appendages extending from the surface
of many cells and deform in a wave-like fashion to propel
either cell itself or the fluid around it. A ciliated organism
carries high densities of cilia arranged in rows along and

across the body surface. Cilia beat in a whip-like asymmetric
manner consisting of an effective stroke and a recovery stroke.
Moreover, when many cilia operate together, hydrodynamic
interactions cause them to beat out of phase leading to
the formation of metachronal waves and an enhanced fluid
flow [1–10]. Like other types of waves, these waves can
also be described by the amplitude, wavelength, and the
frequency. Ciliated surfaces are known to have different
patterns, depending upon whether the metachronal wave
travels in the direction of effective stroke, called symplectic
metachronism, or in the opposite direction to the effective
stroke known as antiplectic metachronism, which is in the
opposite direction of fluid motion. Cilia usually operate in
an environment of low Reynolds number where the effect of
inertia is negligible [1–4].

A survey of the literature shows that Jahn and Bovee
[14] studied the hydrodynamics of protozoa which use cilia
for locomotion. Later, various scientists have studied this
mechanismwith considerations of nature of fluids in different
flow geometries and now several solutions are available in
the literature. The interested reader can see the literature
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Figure 1: Wave motion due to cilia: (a) ciliated tube and (b) metachronal wave pattern.

regarding the cilia-induced flows in [1–16]. However, the
available information indicates that only a little work has
been done to study the role of metachronal wave beating
due to active dynamic of cilia on the propulsion of biological
fluids through tubules. The motivation of this study comes
through a desire to understand the transport of spermatic
fluid through the ductus efferentes of the male reproductive
tract caused by cilia motion. In 1972, Lardner and Shack [1]
developed a model for the flow of a Newtonian viscous fluid
due to ciliary activity in the ductus efferentes of the male
reproductive tube.They used an envelope over the oscillating
cilia to model the metachronal wave. Later on, this approach
is used to study the flows of non-Newtonian power law
fluids in a ciliated channel with the consideration of different
geometries [4–8]. In this study, we have extended the work of
Lardner and Shack for a non-Newtonian Casson fluid in an
axially symmetric tube formore realistic results. It is nowwell
known that most of the physiological fluids behave like non-
Newtonian fluids. In the recent years, several models of non-
Newtonian fluids have been proposed by various scientists to
investigate the flow behavior in certain physiological systems
of living bodies. This is due to their different rheological
characteristics. Among these models Casson model is a
non-Newtonian fluid model with yield stress and has been
widely used for modeling certain biological fluids [17–21].
The cilia transport of Casson fluid in a uniform tube has
not been attempted so far. Keeping this fact in mind, we
are interested to investigate the flow of Casson fluid in
a cylindrical tube due to metachronal wave movement of
cilia. The governing equations and the relevant boundary
conditions are formulated in an axisymmetric cylindrical
coordinate system.The equations are then simplified by using
long wavelength approximation in an environment of low
Reynolds number.The relationship between pressure rise and
the volume flow rate is obtained explicitly. The pumping
characteristics and trapping phenomena of ciliary activity are
also discussed in detail. A comparison of the results for the
volume flow rate of the proposed model to the estimated
values of the flow of seminal fluid in the ductus efferentes
of the human male reproductive tract system is also given.
The graphical behavior of different flow quantities of the
mechanism has also been examined for various parameters
of interest.

The basic motivation of this study is the hope that such a
problem will be helpful in many biomedical as well as indus-
trial applications especially in the study of infertility problems

in humans and in the manufacturing of micropumps for
drug-delivery systems. Ciliary pumping mechanism may be
utilized in the manufacturing of swimming microrobots for
biomedical applications [13]. This analysis also offers very
interesting applications for the flow control in lab-on-a-chip
devices and in tiny biosensors.

2. Mathematical Formulation of the Problem

Consider the axially symmetric flow of an incompressible
Casson fluid in a uniform cylindrical tube whose inner
surface is ciliated (see Figure 1). When cilia at the inner sur-
face of the tube operate together, hydrodynamic interactions
cause them to beat out of phase leading to the formation
of metachronal waves and an enhanced fluid flow. We want
to study the fluid transport characteristics of the Casson
fluid in the tube as a function of cilia and the metachronal
wave velocity. Let us choose a cylindrical coordinate system,
(𝑅
∗
, 𝑍
∗
), where 𝑍∗-axis lies along the centerline of the tube

and 𝑅∗-axis is normal to it.
The constitutive equation (relationship between the shear

stress and strain rate) of a Casson fluid model may be defined
in a simplified form as [17–21]

√𝜏∗ = √𝜇 ̇𝛾∗ + √𝜏
∗
0
, for 𝜏∗ ≥ 𝜏

∗

0
,

̇𝛾
∗
= 0, for 𝜏∗ ≤ 𝜏

∗

0
,

(1)

where 𝜏∗ is the shear stress, 𝜇 is the viscosity coefficient of
Casson fluid, ̇𝛾

∗ is the rate of shear strain, and 𝜏∗
0
is the yield

stress.
The fundamental equations governing the axially sym-

metric flow of an incompressible fluid are given by

𝜕𝑈
∗

𝜕𝑅∗
+
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∗
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∗
⋅ 𝜏
∗
,

(2)

where 𝑈∗ and𝑊∗ are the velocity components in radial and
axial directions, respectively, 𝑃∗ is the pressure, 𝜌 is the fluid
density, and 𝜏

∗ is the shear stress. Keeping the view on the
geometry of the metachronal wave pattern, we assume that
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the envelope of cilia tips can be expressed mathematically in
the following form [1–3]:

𝑅
∗
= 𝐻
∗
= 𝑓
∗
(𝑍
∗
, 𝑡
∗
) = 𝑎 + 𝑎𝜀 cos(2𝜋

𝜆
(𝑍
∗
− 𝑐𝑡
∗
)) , (3)

which also describes the equation of an extensible boundary
for the flow in the tube. Here 𝑎 is the mean radius of the
ciliated tube, 𝜀 is a nondimensionalmeasurewith respect to 𝑎,
the cilia length, and 𝜆 and 𝑐 denote the wave length and wave
speed of themetachronal wave. Based upon different patterns
of cilia beating observed by Sleigh [2, 3], the cilia tips can be
considered tomove in elliptical paths such that the horizontal
positions of the cilia tips can be given by

𝑍
∗
= 𝑔
∗
(𝑍
∗
, 𝑍
∗

0
, 𝑡
∗
) = 𝑍
∗

0
+ 𝑎𝜀𝛼 sin(2𝜋

𝜆
(𝑍
∗
− 𝑐𝑡
∗
)) ,

(4)

where 𝑍∗
0
is some reference position of the particle and 𝛼 is

a measure of the eccentricity of the elliptical motion of the
cilia tips. If no slip condition applies, the velocities imparted
to the fluid particles are just those of the cilia tips and hence
the axial and radial velocities of the cilia can be formulated as

𝑊
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(5)

Using (3) and (4) into (5) and solving them, one can easily
obtain

𝑊
∗
=
− (2𝜋/𝜆) (𝜀𝛼𝑎𝑐 cos (2𝜋/𝜆) (𝑍∗ − 𝑐𝑡∗))
1 − (2𝜋/𝜆) (𝜀𝛼𝑎 cos (2𝜋/𝜆) (𝑍∗ − 𝑐𝑡∗))

,

𝑈
∗
=

(2𝜋/𝜆) (𝜀𝑎𝑐 sin (2𝜋/𝜆) (𝑍∗ − 𝑐𝑡∗))
1 − (2𝜋/𝜆) (𝜀𝛼𝑎 cos (2𝜋/𝜆) (𝑍∗ − 𝑐𝑡∗))

.

(6)

We require𝑊∗ and𝑈∗ to be the axial and radial velocities on
the boundary of the flow domain given in (3).

The present investigation will be carried out in the
coordinate system (𝑟

∗
, 𝑧
∗
) moving with respect to the fixed

coordinate system (𝑅
∗
, 𝑍
∗
), in which the boundary shape (3)

is stationary. These two coordinate systems are related by the
expressions

𝑧
∗
= 𝑍
∗
− 𝑐𝑡
∗
, 𝑟

∗
= 𝑅
∗
, 𝑤

∗
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𝑢
∗
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∗
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∗
(𝑧
∗
, 𝑟
∗
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∗
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∗
, 𝑅
∗
, 𝑡
∗
) ,

(7)

in which (𝑤
∗
, 𝑢
∗
, 𝑝
∗
) and (𝑊

∗
, 𝑈
∗
, 𝑃
∗
) are the velocity

components and the pressure in the moving and the fixed
coordinates, respectively.

We introduce the following nondimensional quantities:
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𝑎
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𝑎
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𝜇
𝛽,
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𝑎𝜏
∗
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∗

0
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∗

𝑐
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𝑞
∗
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𝑄
∗

2𝜋𝑎2𝑐
,

(8)

where Re is the modified Reynolds number, 𝛼 is the measure
of eccentricity of the elliptical motion, 𝛽 is the wave number,
𝜀 is a dimensionless parameter representing the cilia length,
and 𝑞 and 𝑄 both stand for the dimensionless volume flow
rates.

After using the above nondimensional parameters and
then employing the assumptions of long wavelength and low
Reynolds number, the equations governing the flowofCasson
fluid can be reduced to the following forms:

√𝜏 = √𝜏0 +
√
𝜕𝑤

𝜕𝑟
, for 𝜏 ≥ 𝜏0,

(9)

𝜕𝑤

𝜕𝑟
= 0, for 𝜏 ≤ 𝜏0, (10)

1

𝑟

𝜕 (𝑟𝑢)

𝜕𝑟
+
𝜕𝑤

𝜕𝑧
= 0, (11)

𝜕𝑝

𝜕𝑧
=
1

𝑟

𝜕 (𝑟𝜏)

𝜕𝑟
, (12)

𝜕𝑝

𝜕𝑟
= 0, (13)

𝑟 = ℎ = 1 + 𝜀 cos (2𝜋𝑧) . (14)

The following dimensionless boundary conditions are
imposed on the governing equations as follows:

no slip condition on the inner surface of the tube, that
is,

𝑤 (𝑧, ℎ) = 𝑤 (ℎ) = −1 − 2𝜋𝜀𝛼𝛽 cos (2𝜋𝑧) , (15)

radial velocity at the wall of the tube, that is,

𝑢 (𝑧, ℎ) = 𝑢 (ℎ) = 2𝜋𝜀 sin (2𝜋𝑧)

+ 𝛼𝛽 (2𝜋𝜀)
2 sin (2𝜋𝑧) cos (2𝜋𝑧) ,

(16)

absence of any radial velocity in the plug flow region,
that is,

𝑢 (𝑧,𝐻𝑝) = 0, (17)

regularity condition, that is,

𝜕𝑤

𝜕𝑟
(𝑧,𝐻𝑝) = 0, (18)
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where𝐻𝑝 is the radius of the plug flow region and it is defined
by

𝐻𝑝 =
2𝜏0

𝜕𝑝/𝜕𝑧
. (19)

It is interesting to note that when 𝜏0 = 0 (𝐻𝑝 = 0), (9)–(19)
reduce to those for simple Newtonian fluid [1] and when 𝜏0 =
0 and 𝛼 = 0, the results of Shapiro et al. [22] can be achieved.

3. Solution and the Flow Analysis

Equation (13) indicates that the pressure 𝑝 is not a function
of 𝑟. This enables us to use the total derivative 𝑑𝑝/𝑑𝑧 in (12).
Now integrating (12) once with respect to 𝑟, we obtain

𝜏 =
𝐶

𝑟
+
𝑟

2

𝑑𝑝

𝑑𝑧
, (20)

where 𝐶 is a constant of integration.
Making use of (20) into (9) along with the boundary

condition (18), we get

𝜕𝑤

𝜕𝑟
=
1

2

𝑑𝑝

𝑑𝑧
{𝑟 + 𝐻𝑝 − 2√𝑟𝐻𝑝} , (21)

whose solution satisfying the boundary condition (15) can be
written as

𝑤 = 𝑤 (ℎ)

+
1

4

𝑑𝑝

𝑑𝑧
{(𝑟 − ℎ) (𝑟 + ℎ + 2𝐻𝑝) −

8

3
√𝐻𝑝 (𝑟

3/2
− ℎ
3/2
)} .

(22)

Substituting 𝑟 = 𝐻𝑝 in (22), we get the velocity in the plug
flow region as

𝑤𝑝 = 𝑤 (ℎ) +
1

4

𝑑𝑝

𝑑𝑧

⋅ {(𝐻𝑝 − ℎ) (ℎ + 3𝐻𝑝) −
8

3
√𝐻𝑝 (𝐻𝑝

3/2
− ℎ
3/2
)} .

(23)

It is noted that (22) gives the expression for axial velocity
of the fluid in a moving coordinate system in terms of the
pressure gradient. As in the theory of lubrication this pressure
gradient has to be derived from an expression for the volume
flow rate which is constant in the moving coordinate system.
So

𝑞 = 2∫

ℎ

0

𝑟𝑤𝑑𝑟 = 2∫

𝐻
𝑝

0

𝑟𝑤𝑝𝑑𝑟 + 2∫

ℎ

𝐻
𝑝

𝑟𝑤𝑑𝑟. (24)

Substituting the expressions for 𝑤𝑝 and 𝑤 in the above
equation and after simplification, we get 𝑑𝑝/𝑑𝑧 in terms of
constant volume flow rate 𝑞, as

𝑑𝑝

𝑑𝑧
=

ℎ
2
𝑤 (ℎ) − 𝑞

ℎ3 [(1/24) (3ℎ + 4𝐻𝑝) − (2√ℎ𝐻𝑝/7)] − (𝐻
4
𝑝
/168)

.

(25)

For one wavelength of the metachronal wave, the integration
of (25) yields the expression of pressure rise Δ𝑝 in the
following form:

Δ𝑝 = ∫

1

0

𝑑𝑝

𝑑𝑧
𝑑𝑧 = 𝐼1 − 𝑞𝐼2, (26)

where

𝐼1 = ∫

1

0

ℎ
2
𝑤 (ℎ) 𝑑𝑧

ℎ3 [(1/24) (3ℎ + 4𝐻𝑝) − (2√ℎ𝐻𝑝/7)] − (𝐻
4
𝑝
/168)

,

𝐼2 = ∫

1

0

𝑑𝑧

ℎ3 [(1/24) (3ℎ + 4𝐻𝑝) − (2√ℎ𝐻𝑝/7)] − (𝐻
4
𝑝
/168)

.

(27)

It is noticed that the integrals 𝐼1 and 𝐼2 cannot be integrated in
closed form and therefore are evaluated numerically by using
a Mathematics Software Maple.

The constant flux 𝑞 is related to the dimensionless volume
flow rate 𝑄 through the following relation:

𝑄 = 2∫

ℎ

0

𝑟 (𝑤 + 1) 𝑑𝑟 = 𝑞 + ℎ
2
. (28)

The dimensionless time-mean volume flow rate𝑄 is obtained
by using (28) as

𝑄 =
1

𝑇
∫

𝑇

0

∫

ℎ

0

2𝑟 (𝑤 + 1) 𝑑𝑟𝑑𝑡 = 𝑞 + 1 + 0.5𝜀
2
, (29)

where 𝑞 is given by (25). With the help of (26) and (29), the
expression for Δ𝑝 turned out to be

Δ𝑝 = 𝐼1 − (𝑄 − 1 − 0.5𝜀
2
) 𝐼2. (30)

Equation (30) is rewritten in the form

𝑄 = 1 + 0.5𝜀
2
+
𝐼1

𝐼2

−
Δ𝑝

𝐼2

. (31)

The corresponding stream function (𝑤 = (1/𝑟)(𝜕𝜓/𝜕𝑟), 𝑢 =

−(1/𝑟)(𝜕𝜓/𝜕𝑧)) for the flow under consideration can be
written as
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Figure 2: Variations of Δ𝑝 with 𝑄 for different values of (a)𝐻𝑝 when 𝜀 = 0.25 and (b) 𝜀 when𝐻𝑝 = 0.09. The other parameters are 𝛼 = 0.4

and 𝛽 = 0.4.

𝜓 =
1

4

[
[

[

(ℎ
2
𝑤 (ℎ) − (𝑄 − 1 − (1/2) 𝜀

2
)) {(𝑟

4
/4) − (𝑟

2
ℎ
2
/2) + 2𝐻𝑝 ((𝑟

3
/3) − (𝑟

2
ℎ
2
/2)) − (16/21)√𝐻𝑝 (𝑟

7/2
− (7/4) 𝑟

2
ℎ
3/2
)}

ℎ3 [(1/24) (3ℎ + 4𝐻𝑝) − (2√ℎ𝐻𝑝/7)] − (𝐻
4
𝑝
/168)

+2𝑟
2
𝑤 (ℎ)

]
]

]

.

(32)

4. Discussion of the Results

In this section, we provide a careful analysis of the pressure
rise per wavelength Δ𝑝, the volume flow rate 𝑄, the axial
pressure gradient 𝑑𝑝/𝑑𝑧, the axial velocity profile 𝑤, and the
streamlines with the help of graphs. Pressure rise per wave-
length is an important physical measure in ciliary pumping
mechanism.Therefore, the variation of Δ𝑝 versus the volume
flow rate 𝑄 is shown in Figures 2 and 3 for different values
of the plug flow width 𝐻𝑝, the cilia length parameter 𝜀, the
eccentricity parameter of the elliptical motion 𝛼, and the
wave number 𝛽. It is evident from these graphs that there
is an inversely linear relation between Δ𝑝 and 𝑄; that is, an
increase in the flow rate reduces the pressure rise and vice
versa. From Figure 2(a), we can easily observe that there is a
critical value of the volume flow rate, approximately 𝑄 = 0.3,
below which the pressure rise is positive and above which the
pressure rise is negative. This value of the volume flow rate is
known as free pumping flux. Furthermore, we observe that

an increase in the plug flow width 𝐻𝑝 causes an increase in
the magnitude of the pressure rise Δ𝑝. This is a revelation
that the pumping machinery has to function more efficiently
to push ahead a Casson fluid (𝐻𝑝 ̸= 0) in comparison to
a Newtonian fluid (𝐻𝑝 = 0). Figure 2(b) shows that the
pressure rise Δ𝑝 increases with an increase in the cilia length
parameter 𝜀 until a critical value of the volume flow rate is
achieved, approximately𝑄 = 0.98, and thereafter an opposite
behavior of Δ𝑝 is observed. Therefore, by choosing suitable
values of 𝑄 and 𝜀, someone may enhance the pumping rate
(Δ𝑝 versus𝑄).The effects of 𝛼 and𝛽 onΔ𝑝 versus the volume
flow rate 𝑄 (i.e., the pumping rate) are shown in Figures 3(a)
and 3(b). It is noticed that the pumping rate increases with
increasing 𝛼 and 𝛽 in the pumping (Δ𝑝 > 0) as well as
copumping (Δ𝑝 < 0) regions. Figures 4(a) and 4(b) exhibit
the effects of 𝐻𝑝 and Δ𝑝 on the volume flow rate 𝑄 versus
the cilia length parameter 𝜀. It is observed that 𝑄 decreases
with an increase in𝐻𝑝 while it increases when Δ𝑝 decreases.
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Figure 3: Variations of Δ𝑝 with𝑄 for different values of (a) 𝛼 when 𝛽 = 0.4 and (b) 𝛽 when 𝛼 = 0.4. The other parameters are𝐻𝑝 = 0.09 and
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and 𝛽 = 0.4.

However, the variations of𝑄 with𝐻𝑝 and Δ𝑝 are found to be
insignificant for large values of 𝜀. Figures 5(a) and 5(b) display
the graphs of volume flow rate 𝑄 versus 𝛼 and 𝛽 for different
values of 𝐻𝑝. As expected, the volume flow rate increases

linearly with 𝛼 and 𝛽 while it decreases when we increase
the width of the plug flow region.

Figures 6(a) and 6(b) are prepared to see the effects of
𝐻𝑝 and 𝜀 on the axial pressure gradient 𝑑𝑝/𝑑𝑧. We observe
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Figure 5: Variations of 𝑄 for different values of𝐻𝑝 with (a) 𝛼 when 𝛽 = 0.4 and (b) 𝛽 when 𝛼 = 0.4. The other parameters are 𝜀 = 0.25 and
Δ𝑝 = −5.5.

that the amplitude of the pressure gradient increases with the
increasing values of𝐻𝑝 and 𝜀 and 𝑑𝑝/𝑑𝑧 is maximum at 𝑧 =
0.5. It is also seen that, in the narrow part of the 𝑧-region, the
pressure gradient is relatively large; that is, the fluid requires
a large amount of pressure gradient to pass through the
region. Furthermore, the magnitude of the pressure gradient
is smaller for the Newtonian fluid as compared to the Casson
fluid. This supports the inference that a large magnitude of
𝑑𝑝/𝑑𝑧 is required to maintain the same flux of Casson fluid
in comparison to the Newtonian fluid. The effect of volume
flow rate𝑄 on the axial pressure gradient is shown in Figure 7.
It is observed that 𝑑𝑝/𝑑𝑧 is positive when 𝑄 < 0.6. In this
situation, the pressure gradient is not favorable for the flow
and is known as adverse pressure gradient. But when𝑄 > 0.6,
pressure gradient is negative and is called favorable pressure
gradient. In this case, 𝑑𝑝/𝑑𝑧 assists the flow in the channel.

The axial velocity profile 𝑤 is plotted in Figures 8 and 9
for various values of𝐻𝑝, 𝜀,𝑄, and 𝛼. It is noted from Figure 8
that 𝑤 gets lessened with the increase in the plug flow region
𝐻𝑝 in the part 0 ≤ 𝑟 ≤ 0.58, but in the remaining part, the
velocity rises with𝐻𝑝. However, the velocity increases in the
whole region with an increase in the cilia length parameter
𝜀. Figure 9(a) indicates that, with the increase in the volume
flow rate, the velocity distribution increases in the whole
region. But when we look at Figure 9(b), we can describe that
the velocity increases with 𝛼 in the part 0 ≤ 𝑟 ≤ 0.83 and
decreases in the remaining part with an increase in 𝛼.

Another interesting phenomenon in the cilia transport
is trapping. In the wave frame, streamlines under certain
conditions split to trap a bolus of fluidwhichmoves as awhole

with the speed of metachronal wave. The effect of the plug
flow width 𝐻𝑝 on the streamlines pattern is demonstrated
through Figure 10. It is observed that the size and the number
of closed streamlines trapping boluses reduce as we increase
the width of the plug flow region. The influence of the cilia
length parameter 𝜀 is illustrated in Figure 11. It is found that
as 𝜀 increases, the size and the number of closed streamlines
trapping boluses increase. Thus, the trapping is opposed by
the presence of yield stress and is favored by the cilia length
parameter.

5. Application: Fluid Transport in
the Ductus Efferentes

We have formulated a mathematical model to study the fluid
transport characteristics in an axisymmetric tube under the
action of ciliary beat that generates a metachronal wave. This
type of fluid transport is observed in the ductus efferentes of
the human male reproductive tract. The ductuli efferentes in
human body are usually 10–15 tubules connecting the rete
testis to the epididymis. The cells lining these tubules are
ciliated and are responsible for the transport of fluids. As
pointed out by Lardner and Shack [1], the approximate value
of the flow rate in human rete testis per ductus efferentes can
be estimated as 6×10−3mLh−1 with approximate dimensions
of 𝑎 = 50 𝜇m, with frequency of beat of the cilia being
20 sec−1 and 𝑐 = (20 beats sec−1) × 10 𝜇 = 200 𝜇sec−1. These
values justify the use of long wavelength and low Reynolds
number approximations in this analysis. Lardner and Shack
[1] calculated the approximate values of nondimensional flow
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rate 𝑄 and the dimensional flow rate 𝑄∗(= 𝜋𝑎
2
𝑐𝑄) as 2.2 ×

10
−2 and 0.12 × 10

−3mLh−1, respectively, by using 𝜀 = 0.1,
𝛽 = 0.1, 𝛼 = 1, and Δ𝑝 = 0 in their model. Unfortunately,
the calculated value of 𝑄∗ is not in good agreement with
the experimentally estimated value. However, if we choose

𝜀 = 0.3, 𝛽 = 0.1, and Δ𝑝 = −5.5 in our model, we obtain,
for a Newtonian fluid (𝐻𝑝 = 0),

𝑄 = 1.110356, 𝑄
∗
= 0.006278. (33)
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For non-Newtonian fluid (𝐻𝑝 = 0.01),

𝑄 = 1.07273, 𝑄
∗
= 0.00606, (34)

which appears to be the most favorable result. In the end, we
hope that the present analysis is useful from biomedical point

of view as not much information on this topic is currently
available. We also believe that considerably more theoretical
and experimental investigations are necessary to understand
adequately themechanism involved in the transport of semen
in the ductus efferentes.
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Figure 10: Streamlines for (a)𝐻𝑝 = 0.0, (b)𝐻𝑝 = 0.01, (c)𝐻𝑝 = 0.05, and (d)𝐻𝑝 = 0.09. The other parameters are 𝜀 = 0.25, 𝛼 = 0.4, 𝛽 = 0.4,
and 𝑄 = 0.95.

6. Concluding Remarks

In the present analysis, we have examined the role of cilia
motion in terms of metachronal waves in the transport
of a Casson fluid through an axially symmetric tube. The
implication of long wavelength and low Reynolds number
allows us to obtain the flow exactly. The main findings of the
above analysis may be summarized as follows.

(i) It is noted that the relation between Δ𝑝 and 𝑄 for the
Casson fluid is linear (as for Newtonian fluid). Also,
the pressure difference required to refrain the flow
completely is positive.

(ii) The magnitude of the pressure rise increases with
an increase in the plug flow width which shows that
the pumping rate decreases for the Casson fluid in
comparison to the Newtonian fluid.

(iii) Δ𝑝 and 𝑄 are showing opposite behaviors for all
values of other parameters.

(iv) The pressure gradient required to pass the same
amount of a Casson fluid is comparatively larger than
that of a Newtonian fluid under the same set of
conditions.
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Figure 11: Streamlines for (a) 𝜀 = 0.05, (b) 𝜀 = 0.15, (c) 𝜀 = 0.25, and (d) 𝜀 = 0.35. The other parameters are𝐻𝑝 = 0.05, 𝛼 = 0.4, 𝛽 = 0.4, and
𝑄 = 0.95.

(v) It is observed that, with an increase in𝐻𝑝, the velocity
distribution decreases with an increase in the plug
flow width in the central part of tube but increases
near the boundary. However, the effect of 𝐻𝑝 on the
velocity distribution near the boundary is not much
significant.

(vi) The size and the number of circulations of the closed
streamlines reduce as we increase the width of plug
flow region.

(vii) It is found that the calculated value of the volume
flow rate by using our model is 0.00606mLh−1 and

is in excellent agreement with the estimated value as
pointed out in [1].

(viii) The corresponding results for a Newtonian fluid can
be recovered as a special case from our results by
taking𝐻𝑝 = 0.
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[9] J. R. Vélez-Cordero and E. Lauga, “Waving transport and pro-
pulsion in a generalized newtonian fluid,” Journal of Non-
Newtonian Fluid Mechanics, vol. 199, pp. 37–50, 2013.

[10] S. M. Mitran, “Metachronal wave formation in a model of
pulmonary cilia,” Computers and Structures, vol. 85, no. 11–14,
pp. 763–774, 2007.

[11] J. Hussong, W.-P. Breugem, and J. Westerweel, “A continuum
model for flow induced by metachronal coordination between
beating cilia,” Journal of Fluid Mechanics, vol. 684, pp. 137–162,
2011.

[12] S. N. Khaderi, M. G. H. M. Baltussen, P. D. Anderson, D.
Ioan, J. M. J. den Toonder, and P. R. Onck, “Nature-inspired
microfluidic propulsion using magnetic actuation,” Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 79,
no. 4, Article ID 046304, 2009.

[13] K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired magnetic
swimmingmicrorobots for biomedical applications,”Nanoscale,
vol. 5, no. 4, pp. 1259–1272, 2013.

[14] T. L. Jahn and E. C. Bovee, “Movement and locomotion of
microorganisms.,” Annual Review of Microbiology, vol. 19, pp.
21–58, 1965.

[15] D. J. Smith, E. A. Gaffney, and J. R. Blake, “Mathematical mod-
elling of cilia-driven transport of biological fluids,” Proceedings
of The Royal Society of London. Series A. Mathematical, Physical
and Engineering Sciences, vol. 465, no. 2108, pp. 2417–2439, 2009.

[16] D. J. Smith, E. A. Gaffney, and J. R. Blake, “A viscoelastic traction
layermodel ofmuco-ciliary transport,”Bulletin ofMathematical
Biology, vol. 69, no. 1, pp. 289–327, 2007.

[17] P. Nagarani and A. Lewis, “Peristaltic flow of a Casson fluid in
an annulus,” Korea Australia Rheology Journal, vol. 24, no. 1, pp.
1–9, 2012.

[18] A. V. Mernone, J. N. Mazumdar, and S. K. Lucas, “A mathemat-
ical study of peristaltic transport of a Casson fluid,”Mathemati-
cal and Computer Modelling, vol. 35, no. 7-8, pp. 895–912, 2002.

[19] R. Ponalagusamy and R. Tamil Selvi, “A study on two-layered
model (Casson-Newtonian) for blood flow through an arterial

stenosis: axially variable slip velocity at the wall,” Journal of the
Franklin Institute. Engineering and Applied Mathematics, vol.
348, no. 9, pp. 2308–2321, 2011.

[20] P. Chaturani and R. Ponnalagarsamy, “A two layered model for
blood flow through stenosed arteries,” in Proceedings of the 11th
National Conference on Fluid Mechanics and Fluid Power, pp.
16–22, 1982.

[21] P. Chaturani and R. P. Samy, “Pulsatile flow of Casson’s fluid
through stenosed arteries with applications to blood flow,”
Biorheology, vol. 23, no. 5, pp. 499–511, 1986.

[22] A. H. Shapiro,M. Jaffrin, and S. L.Weinberg, “Peristaltic Pump-
ing with long wavelength at low Reynolds number,” Journal of
Fluid Mechanics, vol. 37, no. 4, pp. 799–825, 1969.


