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Abstract
Small-mammal population densities can be regulated by bottom-up (food availability) 
and top-down (predation) forces. In 1993, an El Niño Southern Oscillation event was 
followed by a cluster of human hantavirus with pulmonary syndrome in the south-
western United States. An upward trophic cascade hypothesis was proposed as an 
explanation for the outbreak: Increased plant productivity as a consequence of El Niño 
precipitations led to an unusual increase in distribution and abundance of deer mice 
(Peromyscus maniculatus; reservoir host of Sin Nombre virus). Could such drastic 
events occur in mesic habitats, where plant productivity in response to climate condi-
tions is likely to be much less dramatic? In this work, we investigate to what extent 
deer mouse populations follow a precipitation-driven, bottom-up model in central and 
western Montana and discuss important conditions for such a model to be possible. 
We found positive correlations between deer mouse abundance and on-the-ground 
measured plant productivity with a several-month lag in three of six study sites. This 
effect was weaker when deer mouse populations were more abundant, indicating 
density-dependent effects. Dispersal resulting from territoriality may be important in 
attenuating local density increments in spite of high food availability. In addition, there 
is evidence that population abundance in the study area could respond to other abiotic 
factors. In particular, precipitation in the form of snow may reduce deer mice survival, 
thus compensating the benefits of improved plant productivity. Deer mouse popula-
tions in Montana study sites follow complex dynamics determined by multiple limiting 
factors, leading to a damped precipitation-driven bottom-up regulation. This prevents 
dramatic changes in rodent abundances after sudden increments of food availability, 
such as those observed in other regions.
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1  | INTRODUCTION

How small-mammal population densities are controlled has been 
widely argued for a long time. Most works have focused on the effects 
of food availability and predation, which are referred as bottom-up and 
top-down forces, respectively. Support for both is found early in the 
literature. For example, Lack (1954) showed that vegetable food was 
the major factor controlling various rodent populations’ density which 
in turn led to predator–prey cycles. On the other hand, Pearson (1966, 
1971) observed Microtus californicus populations were limited by car-
nivorous predation, which determined the amplitude and synchroniza-
tion of abundance cycles. More recently, Prevedello, Dickman, Vieira, 
and Vieira (2013) conducted a meta-analysis of food supplementation 
studies and concluded that both bottom-up and top-down forces are 
important for the regulation of populations. However, intrinsic factors 
such as intraspecific competition could also be relevant for controlling 
population densities (Conley, 1976). Socially intolerant individuals 
tend to disperse when density increases, keeping populations locally 
stable (Krebs, Gaines, Keller, Myers, & Tamarin, 1973; Myers & Krebs, 
1971). In situations of extreme densities, even survival and reproduc-
tion can be diminished by physiologically driven behavioral changes 
(Christian, 1950, 1978; David, 1978). Altogether, the complexity of 
population regulation makes hard to predict how climatic events and 
other abiotic factors can impact on rodent abundance and dispersal.

Human health risks associated with disease-bearing species 
are likely to be triggered by sudden changes in rodent populations. 
In 1993, a cluster of Hantavirus pulmonary syndrome (HPS) cases 
caused by Sin Nombre virus (SNV) occurred in the southwestern 
United States. It was hypothesized that precipitation associated with 
an El Niño Southern Oscillation event produced increased plant pro-
ductivity and, consequently, deer mouse (Peromyscus maniculatus, the 
reservoir host of SNV) abundance increased after a several-month lag 
in locations where they previously were absent or rare and where plant 
productivity had previously been extremely low (Dearing & Dizney, 
2010; Glass et al., 2002). The concept that the increased abundance 
and wider distribution of deer mice in the southwestern United States 
occurred in response to increased plant productivity was called the 
trophic cascade hypothesis (Parmenter, Brunt, Moore, & Ernest, 1993; 
Yates, Mills, Parmenter, & Ksiazek, 2002). This increase in the deer 
mouse population may have increased rodent-to-rodent transmission 
of SNV that ultimately spilled over to humans (Mills, Ksiazek, Peters, 
& Childs, 1999).

This bottom-up precipitation-driven process used to explain HPS 
cases is still discussed in relation to variability among habitats and cli-
matic regimens (Glass 2000; Mills, 2005; Loehman et al., 2012). Deer 
mice are absent or not abundant in many areas of the normally arid US 
southwest during typical dry years. In this region, dramatic changes 
in plant productivity after an El Niño event may produce habitats 
more appropriate for deer mouse populations, at least temporarily. 
Studies in the southwestern United States demonstrated the relation-
ship between vegetation growth and deer mouse abundance 1 year 
later (Engelthaler, 1999; Glass et al. 2000; Glass et al., 2002, 2006; 
Glass, Shields, Cai, Yates, & Parmenter, 2007). In addition, evidence 

of a delayed relationship between precipitation and SNV prevalence 
in deer mouse populations, likely associated with increased plant pro-
ductivity, has been found in the Channel Islands in California (Orrock, 
Allan, & Drost, 2011).

In contrast, in the mesic parts of the US west, deer mouse popula-
tions tend to be nearly ubiquitous, although at varying abundance re-
gardless of climatic changes (Douglass & Vadell, 2016; Douglass et al., 
2001). Mesic habitats (coniferous forests, grasslands, and sagebrush) 
present situations where plant productivity in response to climate con-
ditions is likely to be much less dramatic than in the arid US southwest. 
Consequently, the response of deer mouse populations to changing 
climatic conditions in mesic areas is likely to be less pronounced than 
those seen in the arid southwest. In addition, predator richness has 
also been identified as a factor regulating rodent populations inde-
pendently of precipitation, even in habitats where productivity is 
strongly affected by precipitation (Orrock et al., 2011). Therefore, the 
bottom-up model cannot be generalized straightforwardly to other 
contexts.

Because the emergence of SNV is linked to changes in climate 
(Carver et al., 2015), it is important to clarify the link between deer 
mouse population abundance and plant productivity in the northwest-
ern US where deer mouse populations are persistent. In a study on the 
effects of climate on deer mouse populations, Luis, Douglass, Mills, 
and Bjørnstad (2010) showed that deer mouse population dynamics 
at one location in western Montana were correlated with precipita-
tion, time of precipitation, and temperature after 0- to 5-month lags. 
However, similar correlations were not found at another location in 
western Montana (Luis pers. com.). Moreover, Loehman et al. (2012) 
found that remotely sensed plant productivity provided limited pre-
dictive information regarding deer mouse abundance on two sampling 
grids on which Luis et al. (2010) found climate effects in Montana. 
These contradictory observations could indicate that remotely sensed 
plant productivity may not accurately account for available biomass at 
the scale of single 100 × 100-m sampling grids.

Our primary objective was to assess whether deer mouse popu-
lations follow a precipitation-driven bottom-up model in central and 
western Montana. In so doing, we identify important assumptions of 
the hypothesis and provide potential explanations for variable results 
among sampling sites. For this purpose, we evaluated the relationship 
between deer mouse abundance and various environmental charac-
teristics. In particular, we focus on the response to on-the-ground 
measured plant productivity after various time lags, and we investigate 
density-dependent effects.

2  | MATERIALS AND METHODS

2.1 | Study area and sampling design

We used deer mouse trapping data based on 850,000 trap nights 
and environmental data collected at six sites in central and western 
Montana between 1994 and 2010. Sampled sites included Cutbank, 
Polson, Cascade, Gold Creek, Wisdom, and C.M. Russell Wildlife 
Refuge (Douglass, Van Horn, Coffin, & Zanto, 1996). Locations ranged 
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in elevation from 738 to 2,146 m and comprised four habitat types: 
grassland, sagebrush, meadow, and subalpine fir. For a detailed habi-
tat description, see Douglass et al. (2001). We sampled three grids 
per site over 12–17 years (Table 1). Except for high-altitude grids 
(>1,590 m), deer mice were present during all sampling periods at all 
locations (Douglass & Vadell, 2016).

Trapping and animal handling followed Douglass et al. (1996), 
according to Mills et al. (1999), and approved by the University of 
Montana Animal Use Committee, approval #011-04RDTECH-021304. 
We livetrapped for three nights in each sampling period. All animals 
were marked with ear tags, and sex, breeding condition, weight, and 
presence of scars were recorded. Blood samples were collected from 
deer mice at two of the three grids at each site, with the third grid 
acting as a control grid to determine the effect of blood collection on 
deer mice (Douglass, Kuenzi, Wilson, & Van Horne, 2000). We released 
all animals back to the grid on which they were captured.

2.2 | Vegetation sampling

Each September, after seed ripening, we measured plant cover at 30 
randomly selected plots on each grid. We used a one-half-meter point 
frame with 10 rods and recorded the contacts with bare ground, rock, 
mosses, lichens, duff litter, grasses, forbs, and shrubs. We clipped and 
placed all herbaceous matter in individual paper bags from each 0.1 m2 
plot for drying. We also recorded the maximum height of shrubs con-
tacting or overhanging the frame. Herbaceous matter was dried and 
weighed to determine productivity, beginning in 2002.

2.3 | Statistical methods

The vegetation variables were determined for each grid as the aver-
age number of contacts for bare ground (bg), rock (ro), moss (mo), li-
chens (lich), duff litter (dl) , grass (gra), forbs (fo), and shrubs (shr) and 
the average of maximum shrub heights (avshr). Biomass (biom) was 
calculated as the dry weight per sampled area unit. All the statistical 
methods described below were performed using the software R (R 
Core Team, 2016).

Correlation among variables may be underestimated if their distri-
butions are too different in shape (Goodwin & Leach 2006). Therefore, 
vegetation variables were either logarithmically or square-root trans-
formed to obtain more symmetrical distributions. Pearson correlation 

coefficients among transformed variables were <0.33, except be-
tween shr and avshr, for which it was 0.51. Collinearity between vari-
ables is undesired as it can lead to larger standard errors in parameter 
estimates. Therefore, the variable avshr was fitted on a linear model 
in terms of shr, and the residuals were used instead of the original val-
ues (i.e., the uncorrelated part of the variable). The remaining variables 
were centered by subtracting their corresponding mean values after 
the transformation.

We were interested mainly in the effect of productivity, measured 
by biomass, on deer mouse abundance, estimated as minimum num-
ber alive (MNA). MNA estimates of population size at each sampling 
period were calculated as the sum of all animals captured during that 
period, plus the number of individuals that were captured during 
at least one previous and one subsequent sampling period, but not 
during the current period (Chitty & Phipps, 1966). Because biomass 
was not measured from 1994 to 2001, we fitted a linear regression 
model to extrapolate biomass from point-frame cover values. We used 
all habitat cover measures except biom as explanatory variables. We 
ranked the full model and all its nested models based on the Akaike 
information criterion corrected for finite sample size (AICc; Burnham 
& Anderson, 2002). The best model (lowest AICc) included the vari-
ables: bg, fo, and gra (Table 2) and was significantly better than any 
other model (ΔAICc ≥ 2). Consequently, the model using cover of bg, 
fo, and gra was used to extrapolate biomass. To determine the error 
in biomass extrapolation, we made a leave-one-out cross validation. 
This procedure simulates the extrapolation on known data, providing 
an estimate of the expected extrapolation error (Burnham, 1983). We 
also considered the uncertainty in regression coefficients. Therefore, 
extrapolated biomass errors were calculated as (σ2 + δ2)1/2, where σ is 
the regression error and δ is the cross-validation error.

To evaluate the relationship between MNA and vegetation vari-
ables, we constructed log-linked Poisson generalized linear mixed-
effect models (GLMMs). We used MNA as the response variable, seven 
habitat variables as explanatory variables (ro, mo, lich, dl, shr, avshr, and 
biomass [biom]), the grid location (site among the six sites listed under 
“study area” above) as fixed effect, and grid as a random factor. To eval-
uate whether such a relationship may have a delayed effect on MNA, 
various data sets were created by shifting the abundances with respect 
to the explanatory variables. Each sampling session where vegetation 
data were available was assigned the MNA measured a given number 
of months later (lag). Incomplete entries were discarded. For each lag 

TABLE  1 Geographic characteristics and sampling periods for the six study sites in Montana

Location
Range of elevation (in 
meters) General habitat Sampling years Sampling months

Cascade 1,396–1,415 Grassland 1994–2010 January–December

Cutbank 1,216–2,146 Grassland 1994–2005 May–October

CM Russell 738–927 Forest 1994–2005 January, May–October

Gold Creek 1,591–1,598 Forest, meadow 1994–2005 May–October

Polson 811–915 Sagebrush 1994–2010 March–November

Wisdom 1,957–2,146 Forest 1994–2005 May–October

bg, bare ground; dl, duff litter; fo, forbs; gra, grass; lich, lichens; ro, rock; shr, shrubs.
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between 0 and 16 months, GLMMs including all the variables and all 
nested models were fitted and averaged using AIC weights with a cor-
rection for finite sample sizes (AICc). Model fitting and averaging were 
conducted using R packages lme4 (Bolker, 2013) and MuMIn (Barton, 
2013), respectively. Only models with ΔAICc < 10 were included in the 
average (Burnham & Anderson, 2002). No assessment of significance 
other than model selection was made at this stage.

To account for the error in the extrapolation of biomass, the anal-
ysis described above was repeated following a randomization proce-
dure. For each replicate, a new random variable was generated for 
each entry for which biomass was extrapolated, drawing its value 
from a normal distribution with the mean equal to the extrapolated 
value and standard deviation equal to the extrapolation error. The 
randomization-fitting cycle was repeated 350 times. This number of 
replicates was decided upon a preliminary analysis, so that the stan-
dard error of averaged coefficients would be smaller than their corre-
sponding errors in each replicate. Final errors in the replicate-averaged 
model were calculated considering single-replicate errors and the dis-
persion due to randomizing extrapolated biomass. The error of each 
coefficient α was estimated as

where αi are the estimated values from replicate i (1 < i < N), 
α=

1

N

∑N

i=1
αi is their mean value, and SE(αi) is their standard error from 

each replicate. Effects for a given time lag were considered significant 
when the corresponding 95% confidence intervals (α±1.96E

α
) did 

not include zero. In order to test for possible density-dependent ef-
fects, we investigated the combined effects of previous abundances 
and lagged values of biomass on deer mouse populations. The use 
of autoregressive models (i.e., models for which each observation of 
the response variable is modeled in terms of other observations of 
the same variable) has proved useful for understanding important cor-
relations—both temporal and spatial—in ecology (Vieira et al. 2008, 
Ives et al. 2010). Applying these models to the present data is not 
straightforward as trapping sessions were not always evenly spaced. 
However, trapping sessions were conducted often enough so that 

characteristic times of population dynamics comprised multiple ses-
sions. Therefore, we adopted a coarser approach: For each sampling 
session, we calculated the log-transformed (i.e., log[1 + x]) mean abun-
dances of three previous 6-month periods (short term: 1–6 months, 
midterm: 7–12 months, and long term: 13–18 months prior to current 
session). These three averages, sampling grid, and the mean biomass 
for the three time lags which showed stronger effects (8–10 months 
prior to current session, see Results) were considered as covariates 
in a log-linked Poisson GLM. Two-  and threefold interaction terms 
among biomass, previous abundances, and site were also included in 
the full model (but no interactions among averaged abundances). We 
grouped interactions per site (instead of per grid) to avoid having too 
many parameters to estimate. The full model and all nested models 
were fitted and averaged based on their AICc (Burnham & Anderson, 
2002), using package MuMIn for R (Barton, 2013). Relative impor-
tance (RI) of each term was calculated as the sum of Akaike weights of 
all models having that term. For this analysis, data from site Wisdom 
were excluded due to consistently too low capture rates.

3  | RESULTS

Measured biomass ranged from 29 to 1,666 kg/ha. Fitted biomass 
was in agreement with measured values, within estimated errors 
(Figure 1). Observed MNA ranged from 0 to 170 individuals per trap-
ping grid. Datasets obtained after shifting MNA with respect to habi-
tat variables comprised between 55 and 348 entries for each time lag. 
For most time lags, the standard deviation of all coefficients through 
replicates was similar to individual replicate errors, indicating that bio-
mass extrapolation errors had little impact. Moreover, standard errors 
of averaged coefficients were smaller than individual replicate errors, 
supporting the robustness of our replication procedure.

Averaged coefficients of fitted GLMMs, corresponding to each 
habitat variable and for each time lag, are shown in Figure 2 with their 
respective estimated errors. There was a positive relationship between 
MNA and biomass (Figure 2a) for lags ≥4 months, with a maximum ef-
fect at 9- and 10-month lags. The negative effect of biomass on MNA 
observed for short lags (<3 months) may be an artifact due to temporal 

E
α
=

√

√

√

√
1

N

N
∑

i=1

(α−αi)
2

N−1
+SE

(

αi

)2
,

TABLE  2 The results of models tested to determine best overall 
for extrapolating biomass based on their Akaike information criterion 
corrected for small sample size (AICc)

Candidate model AICc ΔAICc Weight

bg + fo + gra 32.1 0.00 0.293

bg + fo + gra + dl 34.5 2.48 0.085

bg + fo + gra + lich 34.9 2.81 0.072

bg + fo + gra + shr 35.0 2.91 0.068

bg + fo + gra + ro 35.1 3.00 0.065

The most parsimonious model shown in bold font (ΔAICc < 2) was used to 
extrapolate biomass.

F IGURE  1 Relationship of fitted (from plant cover data) to 
measured values of biomass in Montana. Error bars enclose the 95% 
confidence interval (mean ± 1.96 SE). The red dashed line represents 
a 1:1 relationship and is included as a visual guide
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self-correlation. Additionally, MNA was negatively related with shrub 
cover (Figure 2c) or residuals of the average shrub height (Figure 2d) 
for every time lag, except for a 4-month lag. The fact that shrub cover 
and the residuals of average shrub height had a negative correlation 
with MNA for most time lags indicates a constant effect. Moreover, the 
residuals of average shrub height displayed more consistent association 
than shrub cover per se, suggesting that deer mice were less abundant 
in places with tall shrubs. The remaining habitat variables displayed 

a negative effect for some time lags: 0, 2, 7–12, and 14 months for 
moss (Figure 2b); 7–9 months for duff litter (Figure 2e); 1, 6, 7, and 
9–11 months for lichens (Figure 2f); and 5–8, 10, 12, 15, and 16 months 
for rocks (Figure 2g). Slight positive effects of moss and lichens on MNA 
were observed for 3-month and 0-month lags, respectively.

The analysis of density-dependent effects was conducted on a 
dataset of 329 entries, for which it was possible to properly calculate 
the required averaged lagged values. Figure 3 shows the averaged 
coefficients for terms with stronger support in the averaged model 
(RI ≥ 0.98, whereas for other terms RI < 0.6). Here, site interactions 
were added to main terms in order to display net effects at each 
site. Short- and midterm averaged previous MNAs were positively 
associated with current MNA at all sites, indicating that all popula-
tions were rather stable (positively correlated) at these timescales. 
This is not surprising as typical life spans of deer mice (between 
1 and 2.5 years in the wild, ref.) are longer than these periods. In 
contrast, long-term averaged previous MNAs were not uniformly 
related with current MNA across five sites: Coefficient estimates 
were positive in Cutbank, CMR, and Polson (albeit almost null here), 
but negative in Cascade and Gold Creek. This difference may imply 
that population dynamics are slower in the former than in the latter. 
For all sites except Cutbank, lagged biomass had a positive effect 
on current MNA and displayed a negative interaction with short-
term averaged previous MNA. The strength of the main effect was 
similar across the four sites, whereas the negative interaction was 
particularly stronger at CMR. Results for Cutbank—second lowest 
in densities after Wisdom, the excluded site—show a weak negative 
main effect of biomass and a positive interaction with short-term 
averaged previous MNA. However, in order to properly assess the 
effects of biomass, the interaction term has to be weighed by the 
corresponding covariate. Figure 4 shows the range of biomass val-
ues (both measured and extrapolated) for each site and the fitted 
effect of biomass. The latter was calculated as

where biom is the averaged lagged biomass, αbiom and αinter are the 
main and interaction coefficients for biomass, respectively, and MNA 

biom×

[

αbiom+αinter× log
(

1+MNA
)]

,

F IGURE  2 Generalized linear mixed-effect models regression 
coefficients for vegetation covariates associated with minimum 
number alive for various time lags averaged over 350 randomized 
replicates. Error bars enclose the 95% confidence interval 
(mean ± 1.96 SE). Each panel (labeled a-g) corresponds to a different 
variable, indicated by the y-axis title
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is the short-term averaged previous MNA. In the three sites with 
higher biomass (Cascade, Cutbank, and Gold Creek), abundance ex-
hibited a similar positive response to biomass, which becomes less 
steep for higher biomass values. In contrast, in the other two (CMR 
and Polson), main and interaction terms cancel each other, and no 
consistent effect of biomass is evident.

4  | DISCUSSION

The bottom-up regulation model assumes that energy (i.e., food) 
is the only factor limiting populations, so their densities should in-
crease continuously with greater food availability. Plant material 
(mostly as seeds but some vegetative parts) directly provides en-
ergy and supports many insect populations which are also a source 
of energy for deer mouse populations (Pearson & Callaway, 2006). 
Therefore, rodent populations should expand after periods of warm 
temperatures and abundant precipitation due to the subsequent 
increase in plant productivity (Hansson, 1979). Considering all the 
stages in a bottom-up model, the maximum positive effect on ro-
dent abundance can be expected about a year after warm and rainy 
weather for several reasons (Heisler, Somers, & Poulin, 2014): It 
takes a growing season between precipitation and the expression 
of productivity. Once mice receive adequate biomass, it takes time 
for the population to respond through survival and reproduction. 
The same applies for insect populations before they represent an 
increased source of energy for mice.

When the conditions for a bottom-up regulation are met, a sud-
den increase in food availability may unleash a population explosion. 
Examples of such situations outside the US southwest are found 
worldwide: In temperate Europe, bank voles populations increase 
after mast years (Johnson, Moraes Figueiredo, & Vapalahti, 2010); in 
western Patagonia, infrequent flowering of colihue cane is followed 
by a drastic growth of granivorous rodent populations (Jaksic & Lima, 
2003; Piudo, Monteverde, González Capria, Padula, & Carmanch, 
2004). However, the same species subject to bottom-up regulation in 
one region may show completely different dynamics in another con-
text, such as the contrasting predation-driven top-down regulation of 
bank voles in northern Europe (Johnson et al., 2010).

While there is sound evidence of a precipitation-driven bottom-up 
process ruling deer mouse population dynamics in the arid southwest-
ern United States and the Channel Islands in California (Orrock et al., 
2011), the mechanism is not so clear in the western mesic habitats. 
Below, we analyze whether the conditions for a precipitation-driven 
bottom-up regulation are met in Montana study sites.

4.1 | Food as the only limiting factor

Liebig’s law of the minimum states that population growth will always 
be controlled by the scarcest essential resource (Salisbury, 1992). In 
this context, energy must be the only limiting factor. Other require-
ments such as nest sites and escape cover cannot be more limiting 
than energy. Food effects have been tested with several species of 

rodents. An increase in food results in various demographic changes 
(Duquette & Millar, 1995), but neither increased food (Duquette & 
Millar, 1995; Wolff, 1985) nor natural seed production (Kaufman et al. 
1995; Elkington et al., 1996) necessarily increased population density. 
Increased mast yield does increase deer mouse population density 
(Ostfeld, Jones, & Wolff, 1996; Wolff, 1985; Schnurr et al. 2002), but 
there were no mast-producing plants on our study sites. Thus, it is 
doubtful that energy is always the only limiting factor for our study 
populations.

The average response across six sampling locations to an increase 
in plant productivity was delayed increased MNA. The maximum pos-
itive effect of biomass on deer mouse abundance occurred after a 
9-month lag. This suggests a connection between plant productivity 
and rodent population growth. However, the lagged effect of biomass 
on MNA was relevant only in Cascade, Cutbank, and Gold Creek, the 
three locations with higher plant productivity in this study. Lack of 
an association between biomass and abundance at Polson and C. 
M. Russell sites indicates that plant productivity, albeit low, is not a 
limiting factor for local populations. On the contrary, deer mice were 
scarce in Wisdom site, although biomass values were typically higher 
than in Polson and C. M. Russell sites. While the low abundances in 
Wisdom are likely due to high elevation of this site, it is not clear why 
deer mouse populations in Cascade, Cutbank, and Gold Creek are so 
strongly dependent on plant productivity whereas those in Polson and 
C. M. Russell are sustained with so little available biomass. It is possi-
ble that the latter relied on a different source of food, not accounted 
by the measured biomass.

Our finding that directly measured productivity was a good pre-
dictor of population growth in Cascade is contrasting with previous 
work by Loehman et al. (2012), who found no correlation between deer 
mouse abundance and remotely sensed plant productivity in Cascade 
and Polson study sites. This may indicate that the large size of the re-
motely sensed area in Loehman et al.’s work may not accurately account 
for smaller-scale patterns which drive population dynamics locally.

Other habitat features, including rocks, duff litter, moss, and li-
chens, had a negative association with abundance only for some time 
lags, mostly around 7–10 months. This is coincident with the strongest 
positive association with biomass, suggesting that there is a connec-
tion among all effects. Rocky environments affect nesting habitats 
(Wolff & Sherman, 2008) while moss and lichens may be indicators of 
recent climatic conditions such as humidity and temperature or hab-
itat quality. It is possible that these abiotic factors also affected deer 
mouse survival, and due to the characteristic times of their population 
dynamics, all the effects on MNA become apparent after about the 
same time lag.

4.2 | Density-independent behavior

In order for populations to grow as long as additional food becomes 
available, intraspecific interactions must remain constant through all 
population densities. If deer mice were territorial, their numbers may 
be limited by social behavior before resources become limiting (Krebs 
et al., 1973).
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Previous work by Lonner, Douglass, Kuenzi, and Hughes (2008) 
and Waltee, Lonner, Kuenzi, and Douglass (2009) reported the effects 
of population density on dispersal at Cascade and Polson study sites 
in Montana, where they found that dispersal increased as population 
density increased. Fairbairn (1978) reported similar behavior of P. ma-
niculatus in Vancouver, Canada. This indicates that at least the pheno-
typic behavior of deer mice changes with population density, in that 
mice became intolerant of each other (territorial) and some left the 
area. Further evidence of territoriality occurred during a peridomestic 
study by Douglass, Kuenzi, Williams, Douglass, and Mills (2003), when 
deer mice removed from buildings were quickly replaced by new mice. 
In control buildings, mouse populations remained stable and were 
comprised of the same individuals for the duration of the study.

Our results offer evidence that such territoriality may indeed con-
strain the effects of forage (biomass). For Cascade and Gold Creek 
study sites (both with highest abundances out of the three sites where 
we found a positive effect of biomass on MNA), the interaction term 
between lagged biomass and short-term previous MNA was negative. 
This appears as a slight saturation in the fitted effect of lagged bio-
mass on MNA (Figure 4). The meaning of this saturation is that pop-
ulation growth resulting from increased plant productivity becomes 
less pronounced in moments of higher abundance, thus supporting the 
existence of a density-dependent social limit.

4.3 | No interspecific competition or predation

Competing species may interfere with deer mice using available en-
ergy, thus reducing the impact of changes in plant productivity on 

mice populations. The most abundant other small-mammal species 
at the study sites were voles (Microtus sp.), which were only present 
sporadically on the grids. Small-mammal communities at our study 
sites were relatively simple compared to studies conducted in the US 
southwest (Douglass & Vadell, 2016). Therefore, although competi-
tion (either by aggressive interference or by simply getting to the food 
first) may have occurred at some point on some of our grids, we can 
expect that it was not a strong factor determining deer mouse abun-
dance at our study sites.

On the other hand, increased survival or recruitment as a conse-
quence of increased food availability could be countered by increased 
predation, leading to a mixture of top-down and bottom-up processes 
(Prevedello et al., 2013). The predators’ coyote (Canis latrans), ermine 
(Mustela erminia), and rattlesnake (Crotalus viridus) were occasionally 
observed or trapped on or near various grids. We do not have data 
on the effect of these predators on deer mouse abundance in our 
study sites. However, in the Channel Islands in California, predator 
richness has been associated with lower hantavirus prevalence, likely 
as result of reduced deer mouse density (Orrock et al., 2011). Kotler 
(1984) documented predation on deer mice by owls in the Great 
Basin Desert. Later, Kotler (1985) described avoidance of open areas 
and foraging in bushes as antipredation strategies, which eventu-
ally determined microhabitat use. Reduced foraging activity of deer 
mice in response to artificial light was also observed in experiments 
(Clarke 1983). If density-dependent behavior forces some individuals 
to forage in open areas due to increased density, predation risk also 
increases at higher densities. Thus, predation may limit population 
growth as a consequence of the social limit caused by intraspecific 
strife. However, this compensatory effect is expected to be secondary 
to that of plant productivity (Mutshinda, O’Hara, & Woiwod, 2009; 
Ostfeld & Holt, 2004).

4.4 | Only productivity-mediated effects of 
precipitation affect deer mouse populations

In the precipitation-driven bottom-up model, precipitation effects 
on populations are mediated by plant productivity. Therefore, it is an 
indirect effect which should become apparent only several months 
after precipitation occurred. Plant productivity at the relatively dry 
Montana sites (typical annual precipitation <35 cm) increases with 
greater precipitation. Luis et al. (2010) showed that higher tempera-
ture and more precipitation during summer through early winter were 
important in determining deer mouse survival after a 5-month lag in 
Cascade study site. Our finding of a delayed positive effect of bio-
mass on MNA in Cascade and two other study sites, together with 
Luis et al.’ observations, indicates that rain would have positive effects 
on deer mouse survival through improved plant productivity in these 
locations.

However, precipitation was also present in the form of snow 
cover and duration, almost every winter and sometimes in May 
and September throughout the duration of the study. While snow 
supplied significant water and likely increased plant productivity, 
it is not clear whether it may have also had a direct effect on 

F IGURE  4  (a) Boxplot representation of measured and 
extrapolated biomass values distributions per site (Cas = Cascade, 
Cut = Cutbank, CMR = C.M. Russell wildlife refuge, GC = Gold Creek, 
Pol = Polson, and Wis = Wisdom). (b) Contribution of biomass to 
the linear predictor of minimum number alive in the averaged GLM, 
per site. Color of each data series matches the corresponding site in 
panel (a)

(a)

(b)
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populations. In northern Europe, snow has been found to provide 
shelter, reducing predation risks during winter (Hansson 1985). 
In contrast, Douglass and Vadell (2016) reported populations 
reached annual lows on all grids at the end of winter, with the 
exception of mild winters (no midwinter snow accumulation) when 
deer mouse population numbers were higher. This suggests a neg-
ative relationship between snow accumulation and overwinter 
survival. It is not clear whether this is actually a consequence of 
snow or it is due to more general weather conditions correlated 
with snow accumulation (e.g., lower temperatures). In either case, 
should plant productivity be increased after snowy winters, re-
duced overwinter survival will limit the benefits of subsequently 
increased food availability.

4.5 | A population regulation model for deer mouse 
populations in the Northern Great Plains

Periods of low food availability acting as a limiting factor for deer 
mouse were observed at three study sites, but population fluctuations 
at two other sites could not be explained in terms of biomass availabil-
ity. Moreover, at the three study sites where biomass was related to 
increased MNA, the food limit would not be much lower than the so-
cial limit due to intraspecific competition and density-dependent be-
havior. Therefore, increased food availability likely enhances survival 
and leads to population growth, but individuals soon leave crowded 
areas. Dispersal thus attenuates the local density increment below the 
higher food limit (Figure 5).

Increased predation may occur as a result of higher rodent density, 
but most likely after abundance is already limited by density-dependent 
interactions. For this reason, this increment in predation would not be 

a crossover from bottom-up to top-down regulation as more prey be-
comes available for predators (Orrock et al., 2011; Prevedello et al., 
2013). Instead, populations are limited by a combination of energy 
availability and social behavior, leading to a damped bottom-up pro-
cess. Other abiotic factors, such as snow accumulation and availability 
of nesting sites, may also contribute to compensate beneficial effects 
of increased plant productivity in response to precipitation.

Still, the proposed damped precipitation-driven bottom-up model 
adequately explains the observed dynamics only in the three study 
sites where consistent fluctuations in response to measured biomass 
were observed. What energy source replaces biomass at the study 
sites with lower measured plant productivity and whether it acts as a 
limiting factor remain to be explored.

5  | CONCLUSION

In the arid US southwest, deer mouse populations expand after El 
Niño events that produce widespread plant growth where typically lit-
tle growth occurs during dry years (Parmenter et al., 1993; Yates et al., 
2002). Similar strong associations between precipitation and rodent 
density, mediated by increased plant productivity, were observed in the 
Channel Islands in California (Orrock et al., 2011). In contrast, the con-
ditions required for a strictly precipitation-driven bottom-up regulation 
to occur are only partly met by persistent deer mouse populations in 
Montana. Although we found positive correlations between deer mouse 
abundance and plant productivity with a several-month lag, as required 
to fit the hypothesized upward trophic cascade model, the effect was 
neither particularly strong nor universal over 18 livetrapping grids in 
Montana. Predation and interspecific competition appear to be of little 

F I G U R E  5 .  Schematic description of the damped trophic cascade timeline in Montana (green dashed line represents the population density 
theoretically allowed by the food supply alone; red dotted line (social limit) is the population density allowed by density-dependent factors). In 
periods of low food availability, rodent survival (represented by brown/gray mice ratio) may be limited by food. After warm and rainy periods 
which increase plant productivity, higher food availability may enhance survival, leading to population growth. However, once the population 
density (blue line) approaches a social limit, mice disperse despite surplus food availability. Local abundance thus increases, but not as much as 
expected if food were the only limiting  f a c to r
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importance in regulating deer mouse populations in Montana study sites, 
but social and abiotic factors may play roles not observed in desert habi-
tats of the US southwest.

It is clear that deer mouse populations in northwestern Montana 
display complex dynamics which requires consideration of multiple 
potential limiting factors (Heisler et al., 2014). Thus, a combination of 
factors prevents dramatic changes in rodent abundances after sud-
den increments of food availability, such as those observed in other 
regions.
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