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Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular
tools, circumventingmany of the limitations associatedwith cell-based therapies. Epi-
genetic regulation through histone deacetylase (HDAC) inhibition has been shown
to increase differentiation capacity. Therefore, this study aimed to investigate the
potential of augmenting osteoblast epigenetic functionality using theHDAC inhibitor
Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs
for bone regeneration. TSA was found to substantially alter osteoblast epigenetic
function through reduced HDAC activity and increased histone acetylation. Treat-
ment with TSA also significantly enhanced osteoblast alkaline phosphatase activity
(1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) dur-
ing osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-
EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold)
(P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated
EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) andmigration (1.3-
fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs
(P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and
protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured
with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase
in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of
differentially expressed microRNAs from TSA-EVs, which were osteogenic-related.
Target prediction demonstrated these microRNAs were involved in regulating path-
ways such as ‘endocytosis’ and ‘Wnt signalling pathway’. Moreover, proteomics analy-
sis identified the enrichment of proteins involved in transcriptional regulation within
TSA-EVs. Taken together, our findings suggest that altering osteoblasts’ epigenome
accelerates their mineralisation and promotes the osteoinductive potency of secreted
EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional reg-
ulating proteins. As such, for the first time we demonstrate the potential to harness
epigenetic regulation as a novel engineering approach to enhance EVs therapeutic
efficacy for bone repair.
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 INTRODUCTION

There is a tremendous need for bone tissue due to numerous clinical situations (Baroli, 2009;Dimitriou et al., 2011), with currently
10 million people in the UK affected by musculoskeletal disorders costing the National Health Service £4.76 billion annually
(Chance-Larsen et al., 2019). Alarmingly this is anticipated to increase further in the future as a result of the growing ageing
population and demand for continued quality of life in the older years. Autografts are the current gold standard treatment for the
repair of critical-sized bone defects, however, they are associatedwith several concerns such as their limited availability and donor
site morbidity (Calori et al., 2011; Djouad et al., 2012). Consequently, there is a critical calling for new approaches to regenerate
damaged bone. Hence, extensive research has been conducted within the tissue engineering field to meet the rising demand
for clinically-relevant bone tissue. Although promising cell-based therapies have been reported (Amini et al., 2012), there has
been limited clinical success due to issues associated with intensive cost, scalable manufacture of cells and ethical considerations
(Izadpanah et al., 2006). Thus, there is a growing demand to develop acellular approaches for bone repair (Burdick et al., 2013).
Cells are known to secrete a range of bioactive products into the surroundingmicroenvironment, which have trophic effects on

neighbouring cells stimulating numerous biological processes (Driscoll & Patel, 2019; Sun et al., 2019). One of these cell-secreted
factors, extracellular vesicles (EVs), have been acquiring growing interest in recent years as an acellular tool for regenerative
medicine (El Andaloussi et al., 2013). EVs are cell-derived nanoparticles, which contain a diverse biological cargo including
proteins, nucleic acids and bioactive molecules, and are heavily involved in intercellular communication, regulating tissue devel-
opment and homeostasis (Man et al., 2020; Raposo & Stoorvogel, 2013). The beneficial effects once attributed to cells, are now
thought to be partially due to the paracrine factors delivered by EVs (Gnecchi et al., 2005; Xin et al., 2014). Hence, there has been
intensive investigations into the role these nanoparticles may play as novel acellular tools for bone regeneration (Chen et al., 2019;
Qin et al., 2016), overcoming the tremendous regulatory hurdles associated with the clinical translation of cell-based therapies
(Heathman et al., 2015).
In recent years, several studies have reported the considerable utility of EVs to stimulate osteogenesis (Eichholz et al., 2020;

Tan et al., 2020). For example, Davies et al. demonstrated the osteoinductive capacity of EVs derived from osteoblasts, elicit-
ing enhanced stem cell mineralisation compared to that of the current gold standard growth factor, bone morphogenic protein
2 (BMP2) (Davies et al., 2017). These osteoblast-derived EVs may act as extracellular sites of mineral nucleation, due to their
enrichment with the calcium-channelling protein Annexin. Moreover, the role of EVs in facilitatingmicroRNA transfer to recip-
ient cells and promoting their osteogenic differentiation has also been demonstrated (Cui et al., 2016; Tang et al., 2017). Hence,
EVs play a critical and multifunctional role in regulating osteogenesis, which is dependent on their biological cargo. Although
the potential utility of these nanoparticles have been reported, numerous studies have investigated EV engineering approaches
to further promote the therapeutic efficacy of these vesicles beyond their native function (Kim et al., 2020; Man et al., 2020). Of
the numerous EV engineering strategies explored in the literature (Man et al., 2020), genetic modification of the EV parental cell
has been extensively studied with promising results observed (Kang et al., 2015; Tao et al., 2017). However, there are issues associ-
ated with the use of this technology including high associated costs, ineffectual EV loading and increased risk of tumourigenesis
(Hanna et al., 2016; Kooijmans et al., 2016). Consequently, there is a tremendous need for alternative methods in augmenting the
parental cell phenotype to enhance the therapeutic viability of EVs for bone regeneration.
Altering the cells’ epigenetics via post-translational modifications has gained increasing attention in regenerative medicine

(Dompe et al., 2020; Wijnen & Westendorf, 2019). Epigenetic regulation involves controlling the transcriptional activity of the
genome, without altering the underlying nucleotide sequence (Collas et al., 2008; Huynh et al., 2017), therefore providing an
alternative safermethod of improving EVs therapeutic efficacy through parental cell modification. Histone proteins play a critical
role in regulating the structure of the chromatin. Modifying the acetylation state of the histone via augmenting the activity of
histone deacetylase (HDAC) and histone acetyltransferase (HAT) have been shown tomodify cell transcriptional activity (Lawlor
&Yang, 2019).Hyperacetylation of the chromatin induced by the inhibition ofHDACenzymes has been demonstrated to promote
osteogenic differentiation, through enhanced osteoblast-related gene activation (Jonason et al., 2009; Man et al., 2021; Paino
et al., 2014). Additionally, hyperacetylation of non-histone proteins have also been reported to stimulate osteogenesis through
transcription factor activation. Jeon et al. reported that BMP2 increased HAT acetylation of the osteogenic transcription factor
Runx2 in HEK293 and C2C12 cells, inhibiting Smad specific E3 ubiquitin-protein ligase 1 (Smurf1)-mediated degradation of
Runx2, ultimately enhancing its stability and transcriptional activity (Jeon et al., 2006). Moreover, several studies have reported
the role of HDAC enzymes in binding to Runx2, T-cell factor, nuclear factor of activated T cells and zinc finger protein 521,
which results in modulation of osteogenic differentiation by silencing the expression of key osteogenic-related genes (Choo
et al., 2009; Jensen et al., 2010). HDAC inhibitors (HDACis) are small molecular compounds that have been extensive explored
to reprogram the epigenome for cancer therapeutics and regenerativemedicine applications (Bolden et al., 2013; Eckschlager et al.,
2017; Marks, 2010). Trichostatin A (TSA) is a naturally-derived hydroxamic acid-based HDACi that targets class I and II HDAC
isoforms (Ma et al., 2015). Several studies have demonstrated TSAs’ efficacy in stimulating both stem/progenitor cells osteogenic
differentiation through hyperacetylation induced chromatin remodelling and osteogenic transcription factor activation (Jin et al.,
2013; Schroeder &Westendorf, 2005; Schroeder et al., 2004).
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F IGURE  Experimental outline investigating the effects of altering osteoblast epigenetic functionality on the therapeutic potency of their EVs for bone
regeneration. 1) The influence of TSA on osteoblast epigenetic functionality was assessed. 2) The effects of TSA on osteoblast mineralisation was evaluated by
quantifying ALP activity, collagen production and calcium deposition. 3) EVs were isolated from TSA-treated and untreated mineralising osteoblast over a
2-week period, and the nanoparticles were characterised by their size, morphology, protein and microRNA expression. 4) Investigating the effects of TSA-EV
treatment on hBMSCs osteogenic differentiation. Figure created with BioRender.com

Therefore, in this present study, we investigated augmenting the epigenetic functionality of mineralising osteoblasts using the
HDACi TSA to promote the therapeutic potency of osteoblast-derived EVs for bone regeneration. We determined that 5 nM
TSA effectively altered osteoblast epigenetic function and promoted its mineralising capacity. EVs isolated from TSA-treated
(TSA-EVs) and untreatedmineralising osteoblasts (MO-EVs) were administered to human bonemarrow-derivedmesenchymal
stem cells (hBMSCs) to determine their efficacy in promoting osteogenic differentiation. Additionally, microRNA profiling and
proteomics analysis of EVs was performed to elucidate the mechanisms in which TSA-EVs impart their pro-osteogenic effects
(Figure 1).

 MATERIALS ANDMETHODS

. Cell culture and reagents

MC3T3 murine pre-osteoblasts were purchased from American Type Culture Collection (ATCC, UK) and hBMSCs were
acquired from Lonza (Lonza, UK). Basal culture media consisted of minimal essential medium (α-MEM; Sigma-Aldrich, UK)
supplemented with 10% foetal bovine serum (FBS), 1% penicillin/streptomycin (Sigma-Aldrich, UK) and L-glutamine (Sigma-
Aldrich, UK). hBMSCs were used at passage 4. Mineralisation medium comprised of basal culture media supplemented with
10 mM β-glycerophosphate (Sigma-Aldrich, UK) and 50 μg/ml L-ascorbic acid (Sigma-Aldrich, UK). The synthetic glucocor-
ticoid dexamethasone was excluded due to side effects observed in vivo (Li et al., 2005; Woolf, 2007; Xu et al., 2019) and to
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standardise EV isolation/dosing protocols as previously reported (Davies et al., 2017). Culture medium utilised for EV isolation
and dosing was depleted of FBS-derived EVs by ultracentrifugation at 120,000 g for 70 min prior to use.

. Cell viability and morphology assessment

Osteoblasts were seeded at 3× 103 cells/cm2 within a 96-well plate with basal medium and incubated for 24 h.Media was replaced
with fresh basal medium supplemented with/without TSA (Sigma-Aldrich, UK) (5, 10, 20, 50, 100 nM) and incubated for 1, 3 and
7 days. At each time point, AlamarBlue reagent (Thermo Scientific, UK) was added and incubated for 4 h at 37◦C. Fluorescence
readings was acquired using a SPARK spectrophotometer (TECAN, CH) at an excitation/emission wavelength of 540/590 nm,
respectively. Employing the same protocol, the osteoblast morphology via calcein-AM staining (Sigma-Aldrich, UK) after 3 days
of culture, observed under an EVOS fluorescent inverted microscope (Thermo Scientific, UK).

. HDAC activity and HK histone acetylation

Cells were cultured in 96-well plates (3× 103 cells/cm2) in basal medium for 24 h.Mediumwas replaced with fresh basal medium
supplemented with/without TSA (5, 10, 20, 50, 100 nM). At day 3 and 7, the HDAC activity was quantified using an in situHDAC
activity fluorometric assay kit (BioVision, UK) according to the manufacturer’s instructions. Briefly, media was replaced with
100 μl of reaction mix and incubated for 3 h at 37◦C. 100 μl of lysine developer was added then further incubated for 30 min at
37◦C. Fluorescence was measured in a SPARK spectrophotometer at an excitation/emission wavelength of 368/442 nm. HDAC
activity was normalised with DNA content.
Detection of H3K9 acetylation was performed using the EpiQuik™ In Situ Histone H3-K9 Acetylation Assay Kit (Epigentek,

USA) according to the manufacturer’s protocol. The absorbance was read in a SPARK spectrophotometer at 450 nm. Histone
acetylation was normalised with DNA content.
DNAquantificationwas determined byQuant-iT PicoGreenDNAassay (Invitrogen, Life Technologies, UK). Briefly, cells were

lysed following three freeze-thaw cycles in 0.1%Triton™X-100 in Phosphate buffered saline (PBS, Lonza,UK). 90 μl of TE (10mM
Tris-HCl, 1 mM EDTA) buffer was added to 10 μl of cell lysate in a 96-well plate (Corning, UK). 100 μl of PicoGreen reagent was
added to all samples and then incubated at 37◦C for 5 min. The fluorescence was then measured in a SPARK spectrophotometer
at an excitation/emission wavelength of 480/520 nm.

. Osteoblast mineralisation with TSA

Osteoblasts were cultured in 24-well plates at a density of 21 × 103 cells/cm2 in basal medium for 24 h. The media was replaced
withmineralisationmedium supplemented with TSA for 21 days.Medium changes and TSA replenishment was performed every
48 h. Cells cultured in mineralising medium alone were used as control.

. EVs isolation and characterisation

2.5.1 EV isolation

Osteoblasts were cultured at scale in T175 culture flasks (Sarstedt, UK) and medium isolated every two days. Cells were cultured
in osteogenic medium supplemented with/without 5 nM TSA for 14 days. EVs were isolated from conditioned medium (400 ml)
by differential centrifugation: 2000 g for 20 min, 10,000 g for 30 min and 120,000 g for 70 min to pellet EVs (Davies et al.,
2017). The supernatant was removed, and the pellet was washed in sterile PBS and centrifuged at 120,000 g for 70 min and the
resultant pellet was re-suspended in 200 μl PBS.All ultracentrifugation stepswere performedutilising the SorvallWXUltra Series
Ultracentrifuge (Thermo Scientific, UK) and a Fiberlite, F50L-8×39 fixed angle rotor (Piramoon Technologies Inc., USA). EV
characterisation was conducted following guidelines published in the Minimal Information for Studies of Extracellular Vesicles
2018 (Théry et al., 2018).

2.5.2 Particle size and concentration analysis

Total EV protein concentration was determined using the Pierce BCA protein assay kit (Thermo Scientific, UK). Dynamic Light
Scattering (Zetasizer Nano ZS, Malvern Instruments, UK) was used to analyse polydispersity index (PDI). Nanoparticle tracking
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analysis was performed on EV samples to determine particle size and concentration using a ZetaView® instrument (Particle
Metrix, Germany). EV samples were diluted 1:100 in PBS and injected into the ZetaView®, where 4× 40 s videos were obtained of
particles in motion. Particle size and concentration was determined with the ZetaView® software. The quantity of CD63 positive
particles was confirmed using the ExoELISA-ULTRA Complete Kit (CD63 Detection) (System Biosciences, USA) following the
manufacturers’ protocol.

2.5.3 Transmission electron microscopy (TEM)

EV imaging was conducted via a JEOL JEM1400 transmission electron microscope (TEM) coupled with an AMT XR80 digi-
tal acquisition system. Samples were physisorbed to 200 mesh carbon-coated copper formvar grids (Agar Scientific, UK) and
negatively stained with 1% uranyl acetate.

2.5.4 Immunoblotting

Immunoblotting analysis was used to confirm the presence of EV as previously described (Nikravesh et al., 2019). Briefly, follow-
ing the electrophoretic separation of proteins using precast gels (4%-15% Mini-PROTEAN TBX, Biorad, UK), gels were blotted
on polyvinylindene disluoridemembranes (Fisher Scientific, UK) and blockedwith EveryBlot blocking buffer (BioRad, UK). The
blots were incubated overnight at 4◦C with primary antibodies to Alix (1:1000 dilution, Santa Cruz, USA), Annexin 2 (1:2000
dilution, Abcam, UK), CD9 (1:1000 dilution, Abcam, UK) and calnexin (1:1000 dilution, Abcam, UK). The membranes were
incubated with the appropriate secondary antibody, anti-rabbit for Annexin 2, CD9 and calnexin (1:3000 dilution, Cell Signaling,
UK), and anti-mouse for Alix (1:3000 dilution, Cell Signaling, UK), for 1 h at room temperature. Chemiluminescence detection
of bands were images with ChemiDoc XRS+ system (BioRad, UK) by a chemiluminescence reaction using Clarity™Western
ECL substrate (BioRad, UK) and Image Lab software (Life Science Research, BioRad, UK) following supplier’s instructions.

. EVs microRNA isolation, analysis and bioinformatics

Total EV RNA was isolated using the Qiagen miRNeasy Mini Kit (Qiagen, UK) according to the manufacturers’ protocol and
RNA quantity/purity assessed by measuring 260/280 nm absorbance ratio using a NanoQuant plate and a SPARK spectropho-
tometer. RNA content was normalisedwith particle number. Global expression patterns of EVmiRNAswere examined by using a
microarray chip containing 1963 probes formurinemicroRNAs (miR-Base 22).Microarray analysis of EVmicroRNAs (500 ng of
total RNA per EV sample) was performed by LC Sciences (Houston, USA) using the μParaflo™microRNA microarray biochip
technology. Differentially expressed microRNAs were defined by a threshold of P < 0.05 and fold change > 2.0. Significantly
altered microRNAs were further analysed to predict their target genes and pathways. Target genes of miRNAs were predicted
using two algorithms, DIANA-Tarbase v 7.0 and DIANA-microT-CDS. AmicroT threshold of 0.8 whenmicroT-CDS were used
for target gene prediction. DIANA-mirPath v.3 was utilised to performhierarchical clustering ofmiRNAs, to assess gene ontology
(GO) annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways based on interaction level using experi-
mentally validated miRNA interactions derived from DIANA-Tarbase v7.0 and/or predicted miRNA gene targets provided by
DIANA-microT-CDS (Vlachos et al., 2012). Benjamini andHochberg’s false discovery rate (FDR)was appliedwith the significant
threshold set at a p-value of < 0.05.

. Sample preparation for proteomics analysis

Protein extraction for proteomic analysis was performed by adding 400 μl acetone (Thermo Scientific, UK) to 100 μl of EVs
previously isolated and resuspended in PBS. Samples were vortexed and incubated at -80◦C for 1 h. After incubation, the samples
were centrifuged at 14,000 g for 10 min. The supernatant was discarded, the pellet dried by inverting and then resuspended in
0.1 M ammonium bicarbonate (Acros Organics, USA), 0.1% RapiGest (Waters Corpo., USA) in LC-MS grade water (Thermo
Scientific, UK) to a final concentration of 1 μg/μl.
Proteins were denatured with 1.5 μl of 1% (w/v) RapiGest in 50mM ammonium bicarbonate and incubated at 80◦C for 45min.

Following incubation, 100 mM DTT (1 μl) was added and incubated for a further 30 min at 60◦C to reduce the proteins, before
being alkylated with 200mM iodoacetamide (1 μl) at room temperature for 30min. Trypsin 1:50 (w/w) (GoldMass Spectrometry
grade, Promega, USA) was added to each sample for proteolytic digestion and left to incubate overnight at 37◦C. Trifluoroacetic
acid was added to a final concentration of 0.5% (v/v) to hydrolyse the RapiGest and heated for a further 45 min at 37◦C, before
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centrifuging for 25min at 18,000 g. The supernatant was collected and 5 μl aliquoted for LC-MS analysis. Aliquoted samples were
diluted 1:4 (v/v) with 15 μl of 0.1% formic acid (v/v) to provide a working solution of 200 ng/μl.

. LC-MS analysis

Extracted peptides obtained from the isolated vesicles were analysed by one dimensional nanoscale reversed-phase (RP) chro-
matography using an ACQUITY M-Class UPLC (Waters Corp., USA) configured for trap and elute. Peptides were loaded (1 μl
injection, 200 ng on-column) onto a Symmetry C18 5 μm, 2 cm × 180 μm pre-column (Waters Corp., USA) with aqueous 0.1%
(v/v) formic acid using a flow rate of 15 μl/min for 2 min. Mobile phases consisted of water with 0.1% (v/v) formic acid (mobile
phase A) and acetonitrile with 0.1% (v/v) formic acid (mobile phase B). Peptides were eluted from the pre-column and separated
over a 90min gradient using a HSS T3 C18 1.7 μm, 15 cm× 75 μm analytical column (Waters Corp., USA). The gradient consisted
of 3 - 40% mobile phase B over 60 min at a flow rate of 400 nl/min, whilst maintaining the analytical column temperature at
35◦C. Lock mass consisting of [Glu1]-Fibrinopeptide was delivered to the reference sprayer of the MS source using the M-Class
Auxillary Solvent Manager with a flow rate of 1 μl/min.
MS data were collected on a Synapt XS mass spectrometer (Waters Corp., UK) operated in positive electrospray ionisation

(ESI) mode with a nominal resolution of 25,000 FWHM (V optics). The capillary voltage was 3.2 kV, cone voltage was 35 V
and source temperature was set at 100◦C. Data were acquired over 50 - 2000 Da mass range with a scan time of 0.5 s. All mass
spectral data were acquired in continuummode using UDMSE to obtain fragmentation data simultaneously (Distler et al., 2016;
Rodriguez-Suarez et al., 2013). Function one (low energy) data were collected using a constant trap and transfer energy of 6 eV
whilst the second (high energy) function consisted of a transfer collision energy ramp of 19 to 45 eV. For mass accuracy, [Glu1]-
fibrinopeptide (m/z= 785.8426) was acquired as lockmass at a concentration of 100 fmol/μl (in 50:50 CH3CN/H2O, 0.1% formic
acid). Lock mass scans were collected every 60 s and averaged over 3 scans to perform mass correction. The time-of-flight mass
analyser was externally calibrated over the acquisition mass range (50 - 2000 Da) before analysis with a NaCsI mixture (Waters
API MS Calibration Solution, 2 μg/μl sodium iodide: 50 ng/μl cesium iodide in 50:50 isopropanol:water, Waters Corp., USA).
These data were collected usingMassLynx v 4.1 software (Waters Corp., UK) in a randomized order with three technical replicates
acquired per sample.

. LC-MS data analysis

Progenesis QI for Proteomics (Nonlinear Dynamics, UK) was used to process all data. Retention time alignment, peak picking
and normalization were conducted to produce peak intensities for retention time (RT) and m/z data pairs. Data were searched
against reviewed entries of a Mus musculus UniProt database (17,048 reviewed entries, release 2020_05) to provide protein iden-
tifications with a FDR of 1%. A decoy database was generated as previously described (Li et al., 2009) allowing for protein/peptide
identification rates to be determined. Peptide and fragment ion tolerances were determined automatically, and searches allowed
for one missed cleavage site. Carbamidomethyl of cysteines was applied as a fixed modification, whilst oxidation of methionine
and deamidation of asparagine/glutamine were set as variable modifications.

. EV treatment of hBMSCs

2.10.1 EV labelling

EVs were labelled using Cell Mask™Deep Red Plasma Membrane Stain (1:1000 in PBS) (Thermo Scientific, UK) and incubated
for 10 min. Labelled EVs were washed twice with PBS via ultracentrifugation at 120,000 g for 70 min. Cells were seeded at a
density of 4 × 103 cells/cm2 in a chamber slide (Corning, UK) for 24 h. Media was replaced with fresh basal media supplemented
with labelled EVs. After 2, 6 and 24 h, cells were fixed with 10% (v/v) neutral buffered formalin (NBF, Cellpath, UK), stained with
Alexa Fluor 488 phalloidin (1:20) (Cell Signalling Technology, UK) and then mounted with Prolong ™ Gold Antifade Mountant
with DAPI (Thermo Scientific, UK) to label the actin cytoskeleton and nuclei respectively. Treated cells were imaged with the
aforementioned EVOS fluorescent inverted microscope.

2.10.2 hBMSCs proliferation and migration

The influence of EVs on hBMSCs proliferationwas assessed via quantification ofDNA content. Briefly, cells were seeded at 1× 104
cells/cm2 in basal media for 24 h. Then, media was replaced with fresh basal medium supplemented with TSA-EVs or MO-EVs
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(10 μg/ml). Cells cultured in basal medium alone were used as a control. DNA content was evaluated on day 3, 7 and 14 utilising
the previously described DNA quantification assay. Migration rate was measured by performing scratch assays. Briefly, cells at a
density of 30 × 103 cells/cm2 in a 6-well plate were seeded and allowed to adhere for 24 h. A scratch was applied with a 200 μl
pipette tip and the width was measured as the baseline. Cell were incubated with basal medium with/without EVs (10 μg/ml) for
3 days. Cells cultured in basal medium alone was used as the control. The rate of migration was assessed under a light microscope
(EVOS XL Core, Invitrogen, UK).

2.10.3 hBMSC osteogenic culture

hBMSCs were seeded in 24-well plates (Nunc, UK) at a density of 21 × 103 cells/cm2 in basal medium and incubated for 24 h.
The media was replaced with mineralisation medium supplemented with TSA-EVs or MO-EVs (10 μg/ml) for 28 days unless
stated otherwise. EV-supplemented mineralisation medium changes were performed every 48 h. Cells cultured in mineralising
medium alone was used as the untreated control.

. Quantitative RT-qPCR analysis

RNase mini kit (Qiagen, UK) was used to extract total RNA from EV treated and untreated hBMSCs according to the manufac-
turer’s protocol. Commercially available primers (SupplementaryTable 1) (Primerdesign,UK)were used to quantify levels of alka-
line phosphatase (ALP), collagen type I (COLA), bone sialoprotein (BSP) and osteocalcin (OCN). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as the internal reference for mRNA. Isolated RNA was amplified in a 20 μl reaction with a
96-well PCR plate (Starlab, UK). Amplification occurred using the AriaMx Real-Time PCR System (Agilent Technologies, UK).
For each sample, the cycle threshold (Ct) value was acquired and the comparative Ct method (2–∆∆Ct) was utilised to quantify
the gene expression levels relative to the housekeeping gene.

. Alkaline phosphatase activity

ALP activity was determined using the 4-nitrophenyl colourimetric phosphate liquid assay (pNPP, Sigma-Aldrich, UK). 10 μl
of cell lysate was added to 90 μl of pNPP and incubated for 60 min at 37◦C. The absorbance at 405 nm was read on a SPARK
spectrophotometer. ALP activity was normalised with DNA content.

. In-Cell Western assay

Intracellular protein expression was assessed with the In-Cell Western assay (ICW) as previously reported (Man et al., 2021).
Briefly, cells were fixed in 10% NBF, permeabilised by 0.1% Triton™ X-100 in PBS and non-specific binding was blocked using
the Odyssey blocking buffer (Li-Cor Biosciences, UK). Samples were incubated overnight at 4◦C with primary antibodies to
ALP (1:300), Col1a (1:200), and OCN (1:400) (Abcam, UK) in Odyssey® buffer. Cells were then incubated with IRDye 800CW
secondary antibody (1:800) and CellTag™ 700 stain (1:500; Li-Cor Biosciences, UK) in Odyssey blocking buffer for 1 h. Prior
to scanning, samples were then washed in 0.1% Tween20 in PBS and analysed on an Odyssey SA Imaging System (Li-Cor Bio-
sciences, UK) at 700 and 800 nm. Quantitative analysis was performed using the Image Studio (Li-Cor Biosciences: version 5).

. Collagen production

Extracellular matrix collagen deposition was evaluated with picrosirius red staining. Briefly, cells were washed twice in PBS and
fixed in 10% NBF for 30 min, prior to staining with 0.1% sirius red in saturated picric acid (Sigma-Aldrich, UK) for 1 h. The
unbound dye was removed by washing in 0.5 M acetic acid followed by distilled water wash and left to air dry prior to imaging
using light microscopy (EVOS XL Core, Invitrogen, UK). To quantify collagen staining, 0.5 M sodium hydroxide was used to
elute the bound dye and absorbance were read at 590 nm using the SPARK spectrophotometer.

. Mineral deposition

To evaluate mineralisation, calcium deposition was assessed via alizarin red staining. Cells were washed twice in PBS and fixed
in 10% NBF for 30 min. Following fixation, cells were washed in distilled water and then incubated with alizarin red solution
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F IGURE  The effect of TSA on osteoblasts viability and epigenetic functionality. TSA caused a time-dose dependant effect on osteoblast a) morphology
(day 3) and b) metabolic activity. Treatment with TSA altered osteoblast c) HDAC activity and d) H3K9 histone acetylation in a time-dose dependent manner.
Data are expressed as mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001. Scale bar = 100 μm

(Sigma-Aldrich, UK) for 10 min. The unbound dye was removed by washing is distilled water. Staining was visualised using light
microscopy (EVOS XL Core, Invitrogen, UK). For alizarin red quantification, samples were de-stained with 10% cetylpyridinium
chloride (Sigma-Aldrich, UK) for 1 h and then absorbance were read at 550 nm using the SPARK spectrophotometer.

. Statistical analysis

For all data presented, experiments were performed in triplicate. All statistical analysis was assessed using the IBM SPSS software
(IBMAnalytics, version 21). The Shapiro-Wilk test was used to analyse the normality of data. Data that was proven to be normally
distributed were analysed using parametric students’ T-test, one-way ANOVA, or paired T-test. Non-normally distributed data
were assessed using non-parametric Mann-Whitney t-test or Kruskal-Wallis ANOVA. P values equal to or lower than 0.05 was
considered as significant. *P ≤ 0.05, **P ≤ 0.01 ***P ≤ 0.001.

 RESULTS

. The effects of TSA on osteoblast epigenetic functionality

To determine the effects of TSA on osteoblast viability, cellular morphology and metabolic activity was assessed. Alterations
in osteoblast morphology was observed upon increasing TSA dosages, where cells transitioned from an elongated, fibroblast-
like shape to a larger, flattened morphology (Figure 2a). A time-dose dependent decrease in osteoblast viability was observed
following TSA treatment, with concentrations of ≥ 50 nM for 3 and 7 days significantly reducing osteoblast metabolic activity
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compared to that in the untreated cells (P ≤ 0.001) (Figure 2b). This reduction in metabolic activity was observed alongside
substantial variations in HDAC activity and histone acetylation levels. A time-dose dependant decrease in HDAC activity was
observed upon TSA treatment, where concentrations of ≥ 20 nM (P ≤ 0.05) and ≥ 5 nM (P ≤ 0.001) significantly reduced HDAC
activity compared to that in the untreated cells at day 3 and 7 respectively (Figure 2c). Additionally, TSA elicited a time-dose
dependent increase in histone H3K9 acetylation, with concentrations of ≥ 5 nM for both day 3 and 7 significantly enhancing
histone acetylation levels compared to that in the untreated cells (P ≤ 0.05 - 0.01) (Figure 2d).

. TSA promotes osteoblast mineralisation

The influence of TSA treatment on osteoblast differentiation was evaluated by quantifying ALP activity, collagen production and
calcium deposition (Figure 3a). A time-dose dependant effect on osteoblast ALP activity was observed following TSA treatment.
5 nM TSA substantially increased ALP activity when compared to cells treated with higher TSA concentrations (≥ 10 nM) (1.1,
1.23-fold) (P ≤ 0.01 - 0.001) and the untreated cells (1.1, 1.35-fold) (P ≤ 0.05 - 0.001) at day 7 and 14 (Figure 3b). Variations in ALP
activity were followed by significant changes in extracellular matrix collagen production (Figure 3c). TSA at 5 nM significantly
enhanced collagen deposition when compared to the other TSA-treated groups (≥ 10 nM) (≥ 1.1, 1.7-fold) and the untreated
control (1.4, 2.8-fold) at both day 14 and 21, respectively. TSA treatment induced a time-dose dependent effect on osteoblast
extracellular matrix mineralisation. At day 14 and 21, 5 and 10 nM TSA significantly increased calcium deposition compared to
that of the untreated cells and the ≥ 20 nM TSA treated groups (P ≤ 0.001) (Figure 3d, e). 5 nM TSA treatment was utilised for
subsequent experiments.

. Characterisation of EVs derived from TSA treated osteoblasts

EVs were isolated from untreated/TSA-treated osteoblast conditional media over a 2-week period via differential centrifuga-
tion. TEM imaging demonstrated the presence of particles in both groups of a typical size and spherical morphology of EVs,
where these nanoparticles displayed heterogeneity in their diameters (Figure 4a and Supplementary Figure 1a). Immunoblot-
ting confirmed the presence of Alix, CD9 and Annexin A2 proteins in both EV groups and the absence of Calnexin expression
(Figure 4b). NTA analysis demonstrated that the EVs exhibited an average diameter of 136 and 129 nm for the MO-EVs and
TSA-EVs respectively (Figure 4c, d) (P > 0.05). There was a 1.4-fold reduction in the concentration of TSA-EV particles (4.5 ±
0.82 × 109/ml) compared to MO-EVs (6.4 ± 0.92 × 109/ml), although not significant (Figure 4d) (P > 0.05). TSA-EVs exhibited
a more monodisperse population (1.34-fold) when compared to the MO-EVs (PDI of 0.34 and 0.45, respectively) (Figure 4e)
(P ≤ 0.05). Additionally, the TSA-EVs contained substantially enhanced RNA quantity (3-fold) when compared to that within
the MO-EVs (Figure 4f) (P ≤ 0.001). A significantly reduced protein content from TSA-EVs was observed when compared to
MO-EVs (1.16-fold) (Figure 4g) (P ≤ 0.001). Moreover, there was a slight non-significant decrease (1.05-fold) in the quantity of
CD63 positive particles in the TSA-EV group compared to MO-EVs (Figure 4h) (P > 0.05).

. TSA-EVs promoted the proliferation, migration and osteogenic differentiation of hBMSCs

The influence of TSA-EVs on hBMSCs general behaviour was initially assessed. Cell Mask labelled osteoblast-derived EVs were
successfully internalised by hBMSCs, with labelled EVs situated within the cells’ cytoplasm (Figure 5a). A time-dependant accu-
mulation of labelled EVs in hBMSCs was observed. Control samples are shown in Supplementary Figure 1b. Treatment with
TSA-EVs significantly increased hBMSCs proliferation in a time-dependant manner when compared to that of the MO-EVs
treated (P ≤ 0.05) and untreated cells (Figure 5b) (P ≤ 0.01 - 0.001). Additionally, hBMSCs migration was substantially enhanced
following treatment with TSA-EVs when compared to the MO-EVs treated (1.3-fold) (P ≤ 0.05) and untreated cells (2.1-fold)
(P ≤ 0.001) (Figure 5c).

The effects of TSA-EV treatment on hBMSCs osteogenic differentiation was evaluated by quantifying osteoblast-related gene
expression and intracellular protein expression. MO-EV treatment elicited a slight non-significant increase inALP, COLA, BSP
and OCN gene expression (P > 0.05) throughout osteogenic culture, whilst displaying a decrease in OCN expression at day 7
and 10 when compared to the untreated group (P > 0.05). Treatment with TSA-EVs significantly upregulated hBMSCs mRNA
expression levels of ALP, COLA, BSP and OCN when compared to MO-EVs treated (Figure 6a) (P ≤ 0.05 - 0.001). COLA
mRNA expression for MO-EV and TSA-EV treated cells was significantly downregulated at day 10 when compared to untreated
cells (P ≤ 0.05). Intracellular levels of osteoblast-related proteins within hBMSCs was analysed by ICW (Figure 6b). Treatment
with TSA-EVs significantly enhanced hBMSCs intracellular protein levels of ALP (1.36, 1.4-fold), Col1a (1.11, 1.18-fold) and OCN
(1.41, 1.58-fold) when compared to that of the MO-EVs treated and the untreated cells at day 14 (P ≤ 0.001) (Figure 6b). The
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F IGURE  TSA treatment promoted osteoblast mineralisation. a) Schematic representation regarding the assessment of TSA on osteoblast
mineralisation. Treatment with TSA elicited a time-dose dependent effect on osteoblast b) ALP activity, c) extracellular matrix collagen production and d, e)
calcium deposition. Data are expressed as mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001. Scale bar = 200 μm

MO-EV group exhibited a significant increase in hBMSCs Col1a expression at day 14 (P ≤ 0.001), with a slight non-significant
enhancement in expression levels of ALP and OCN compared to the untreated control (P > 0.05).

The effects of TSA-EV treatment on hBMSCs extracellular matrix mineralisation was assessed by quantifying ALP activity,
collagen production and calcium deposition. ALP activity was substantially enhanced in hBMSCs treated with TSA-EVs when
compared to that of the MO-EVs treated (1.2, 1.6-fold) and untreated cells (1.4, 2.3-fold) at day 7 and 14 (P ≤ 0.05 - 0.001) (Fig-
ure 6c). Alterations in hBMSCs ALP activity were followed by significant changes in extracellular matrix collagen production.
Osteoblast-derived EV treatment elicited a time-dose dependent increase in hBMSCs collagen deposition during osteogenic
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F IGURE  Characterisation of EVs isolated from TSA treated and untreated mineralising osteoblasts. a) TEM image of EVs isolated from TSA-treated
and untreated osteoblasts. Scale bar = 50 nm. b) Western blot analysis confirming the presence of EV markers (Alix, CD9, and Annexin A2) and absence of
Calnexin (OBs - osteoblast cell lysate control). c) Particle size distribution of isolated EV samples from NTA. Insert shows snapshot of particles during analysis.
d) EV particle size and concentration. e) Polydispersity index of EVs. f) EVs RNA quantification. g) EVs protein content. h) CD63+ particles number. Data are
expressed as mean ± SD (n = 3). *P ≤ 0.05 and ***P ≤ 0.001

culture. The MO-EVs (1.25, 1.26-fold) and TSA-EVs treated (1.68, 1.64-fold) groups exhibited significantly increased collagen
staining compared to the untreated control on day 21 and 28 (P ≤ 0.01 - 0.001) (Figure 6d, e). The TSA-EV treated cells displayed
a 1.34- and 1.3-fold enhancement in collagen deposition when compared to that of the MO-EVs treated group on day 21 (P ≤

0.001) and 28 (P ≤ 0.01) (Figure 6e). Moreover, 50 μg/ml EV treatment significantly increased collagen production when com-
pared to 10 μg/ml EVs treated cells on day 21 and 28 (MO-EV-50 vs. MO-EVs (1.41, 1.19-fold)) (TSA-EV-50 vs. TSA-EVs (1.72,
1.38-fold)) (P ≤ 0.05 - 0.001). The TSA-EV-50 group exhibited a 1.63- and 1.51-fold increase in collagen production when com-
pared toMO-EV-50 treated cells (P≤ 0.001), with substantially increased quantity of collagen richmineral nodule-like structures
(black arrows). Interestingly, the TSA-EV treated cells displayed significantly enhanced collagen deposition when compared to
the MO-EV-50 group on day 28 (1.1-fold) (P ≤ 0.01). TSA-EV treatment led to a time-dose dependent increase in alizarin red
staining for calcium deposition when compared to that of the MO-EV treated and untreated cells, with mineral-like nodules
deposited throughout (Figure 6f). Quantitative analysis revealed that treatment with TSA-EVs significantly increased extracellu-
lar matrix calcium deposition when compared to that of the MO-EV treated (1.17, 1.2-fold) (P ≤ 0.01 - 0.001) and untreated cells
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F IGURE  The influence of TSA-EVs on hBMSCs general behaviour. a) Immunofluorescent images of Cell Mask labelled osteoblast-derived EVs uptake
by hBMSCs were taken at indicated times. Scale bar = 20 μm. The effects of TSA-EVs on hBMSCs b) proliferation and c) migration. Data are expressed as
mean ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001

(1.52, 1.52-fold) (P ≤ 0.001) after 21 and 28 days of osteogenic culture (Figure 6g). Additionally, 50 μg/ml MO-EV and TSA-EV
treatment further enhanced hBMSCs calcium deposition when compared to 10 μg/ml EVs treated cells on day 21 and 28 (MO-
EV-50 vs. MO-EVs (1.17, 1.18-fold)) (TSA-EV-50 vs. TSA-EV (1.58, 1.45-fold)) (P ≤ 0.001). Moreover, the TSA-EV-50 group
exhibited a significantly increased accumulation of calcium deposits when compared to the MO-EV-50 treated cells on day 21
and 28 (1.57, 1.47-fold) (P ≤ 0.001), with enhanced quantity of mineralised nodule formations (black staining).

. TSA induced hyperacetylation altered the microRNA profile of osteoblast-derived EVs

To further elucidate the influence of epigenetic modification on osteoblast-derived EV and its possible role in the enhanced
osteoinductive properties, the EVs microRNA expression was profiled. As shown in Figure 7a, hierarchical clustering revealed
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F IGURE  TSA-EVs promoted hBMSCs osteogenic differentiation and mineralisation. a) Gene expression levels of ALP, COLA, BSP and OCN were
measured in TSA-EV, MO-EV treated and untreated hBMSCs during osteogenic culture. b) The intracellular protein levels of ALP, Col1a and OCN in EV
treated hBMSCs analysed by ICW. c) The effects of TSA-EVs on hBMSCs ALP activity during osteogenic culture. d) Picrosirius red staining for collagen
production of EV-treated hBMSCs. Black arrows highlight collagen rich mineral nodule-like structures. e) Quantitative analysis of picrosirius red collagen
staining. f) Alizarin red staining for calcium deposition on EV-treated hBMSCs. Black staining indicates mineral nodule formation. g) Quantitative analysis of
alizarin red staining. Scale bars = 200 μm. (MO-EV, TSA EV; 10 μg/ml) (MO-EV-50, TSA-EV-50; 50 μg/ml). Data are expressed as mean ± SD (n = 3).
*P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001

differential microRNAs expression in TSA-EVs and MO-EVs. A total of 27 microRNAs species were upregulated, while 6 were
downregulated (fold change cut off, ±2.0; P < 0.05) in the TSA-EVs compared to that in the MO-EVs (Figure 7b). Volcano
plots showed the variation of microRNAs expression between TSA-EVs and MO-EVs (Figure 7c). The differentially expressed
microRNAs are identified in Supplementary Table 2.

. TSA induced differential expression of EVmicroRNAs related to general regulation
mechanisms and osteogenic differentiation

To investigate the functions of the differentially expressed microRNAs, Gene ontology (GO) and Kyoto Encyclopaedia of Genes
and Genomes (KEGG) pathways were assessed. MicroRNAs were found to be associated with GO functional annotation of
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F IGURE  Differential expression of microRNAs derived from TSA-EVs and MO-EVs. a) Hierarchical clustering analysis of microRNAs that were
differentially expressed between TSA-EVs and MO-EVs. b) Venn diagram comparing microRNAs differentially expressed from TSA-EVs and MO-EVs. A total
of 193 shared microRNAs; 27 microRNAs upregulated in TSA-EVs and 6 microRNAs upregulated in MO-EVs. c) Volcano plot displaying Log2 values for the
microRNAs fold-change against Log10 FDR. MicroRNAs with a Log2 fold difference below 2 and a statistical value of > 0.05 were not considered to be
statistically significant (vertical and horizontal lines respectively). The red points in the plot represents the significantly upregulated TSA-EV microRNAs, the
green points represent significantly upregulated MO-EVs microRNAs

biological processes (e.g., anatomical structural development, cell differentiation), cellular compartments (e.g., organelle, chro-
mosome) andmolecularmechanisms (e.g., ion binding, protein binding transcription factor) (Figure 8a-c). The number of signif-
icantly affected KEGG pathways, analysed via experimentally validated and predicted interactions of the differentially expression
EV microRNAs are shown in Figure 8d.
All significantly affected KEGG pathways, analysed by predicted and experimental validated interactions of the differentially

expressed microRNAs related to osteogenic differentiation and general regulatory mechanisms, are summarised in Table 1. A
total of 21 KEGG pathways directly or indirectly related to osteogenic differentiation were enriched within TSA-EVs. Of note,
enriched KEGG pathways of differentially expressed microRNAs including Hippo signalling (mmu04390), MAPK signalling
(mmu04010), Wnt signalling (mmu04310), and ECM-receptor interaction (mmu04512) pathways, are involved in osteogenic
differentiation. Additionally, the differentially expressed microRNAs were enriched in pathways related to general regulatory
mechanisms including regulation of actin cytoskeleton (mmu04810) and endocytosis (mmu04144), possibly signifying the role
of these microRNAs in influencing the internalisation of EVs at the recipient cells. Moreover, enriched pathways of SNARE
interactions in vesicular transport (mmu04130), mRNA surveillance pathway (mmu03015) and protein processing in endoplas-
mic reticulum (mmu04141) may indicate how these microRNAs modulate recipient cell function.

. The proteome of TSA-EVs is enriched in proteins involved in transcriptional regulation

The proteomes ofMO-EVs and TSA-EVs were compared for three independent sample preparations using label-freeMS-LC/LC
approach. The use of stringent criteria only permitted the inclusion of proteins identified in a least two biological replicates,
with > 2 spectral counts in at least one repeat. Protein database searching resulted in the identification of a total of 1325 pro-
teins. Of these, 25 proteins were significantly upregulated in TSA-EVs, 27 upregulated in MO-EVs, and 1273 shared proteins
(Figure 9a, b). The differentially expressed proteins are identified in Supplementary Table 3. Pearson correlation, comparing
all biological samples to one another, show a high average correlation between replicates in the MO-EV (0.90) and TSA-EV



MAN et al.  of 

TABLE  Enriched KEGG biological pathways related to osteogenesis and regulatory mechanisms

KEGG pathways related to osteogenic differentiation
p-value,
FDR corrected Genes MiRNAs Algorithms

Hippo signalling pathway mmu04390 1.18E-05 82 18 TarBase

2.68E-08 55 25 MicroT-CDS

FoxO signalling pathway mmu04068 3.75E-07 85 19 TarBase

1.04E-03 54 28 MicroT-CDS

PI3K-Akt signalling pathway mmu04151 1.32E-03 111 29 MicroT-CDS

Signalling pathways regulating pluripotency of stem cells mmu04550 1.49E-03 50 26 MicroT-CDS

ECM-receptor interaction mmu04512 1.49E-03 27 27 MicroT-CDS

MAPK signalling pathway mmu04010 1.71E-04 129 18 TarBase

1.96E-03 86 30 MicroT-CDS

cAMP signalling pathway mmu04024 5.22E-03 67 30 MicroT-CDS

cGMP-PKG signalling pathway mmu04022 3.88E-02 82 15 TarBase

5.51E-03 57 29 MicroT-CDS

mTOR signalling pathway mmu04150 1.95E-03 38 19 TarBase

7.73E-03 25 22 MicroT-CDS

Estrogen signalling pathway mmu04915 2.09E-02 49 15 TarBase

1.09E-02 29 25 MicroT-CDS

AMPK signalling pathway mmu04152 9.07E-03 71 19 TarBase

1.28E-02 43 27 MicroT-CDS

Focal adhesion mmu04510 2.44E-02 101 17 TarBase

1.76E-02 66 31 MicroT-CDS

Insulin signalling pathway mmu04910 1.60E-03 78 18 TarBase

1.82E-02 48 27 MicroT-CDS

TGF-beta signalling pathway mmu04350 1.60E-03 43 18 TarBase

2.00E-02 32 24 MicroT-CDS

Ras signalling pathway mmu04014 4.56E-02 103 19 TarBase

2.03E-02 63 30 MicroT-CDS

Wnt signalling pathway mmu04310 4.90E-02 69 16 TarBase

2.74E-02 46 30 MicroT-CDS

Hedgehog signalling pathway mmu04340 3.32E-02 20 23 MicroT-CDS

Adherens junction mmu04520 9.90E-05 47 17 TarBase

TNF signalling pathway mmu04668 6.48E-04 58 16 TarBase

HIF-1 signalling pathway mmu04066 2.28E-03 62 19 TarBase

Rap1 signalling pathway mmu04015 2.16E-02 102 18 TarBase

KEGG pathways related to general regulatory mechanism
p-value,
FDR corrected Genes MiRNAs Algorithms

Sphingolipid signalling pathway mmu04071 4.39E-04 72 18 TarBase

3.06E-03 46 27 MicroT-CDS

Regulation of actin cytoskeleton mmu04810 9.07E-03 108 18 TarBase

3.22E-03 72 31 MicroT-CDS

Endocytotsis mmu04144 6.12E-07 128 18 TarBase

7.67E-03 67 29 MicroT-CDS

SNARE interactions in vesicular transport mmu04130 4.10E-02 18 14 TarBase

mRNA surveillance pathway mmu03015 4.37E-02 31 23 MicroT-CDS

Protein processing in endoplasmic reticulum mmu04141 5.84E-06 101 18 TarBase

2.38E-02 48 22 MicroT-CDS
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F IGURE  Gene ontology analysis of microRNAs found to be significantly upregulated in TSA-EVs. Top ten GO prediction scores covering the domains
of a) biological processes, b) cellular compartments and c) molecular mechanisms of microRNAs significantly upregulated in TSA-EVs. d) Total number of
experimentally validated and predicted interactions enrich KEGG pathways fromMicroT-CDS and Tarbase databases

(0.97) groups (Figure 9c). When comparing MO-EV and TSA-EV to one another, an average correlation of 0.85 is observed,
revealing a significant degree of similarity in the protein expression between MO-EVs and TSA-EVs. To provide an overview
of the principal processes, mechanisms and cellular location of proteins significantly upregulated in TSA-EVs, GO analysis was
performed. Significantly enriched TSA-EV proteins were found to be associated with GO functional annotation of molecular
function (e.g., histone acetyltransferase activity, peptide-lysine-N-acetyltransferase activity), cellular components (e.g., histone
acetyltransferase complex, pre-catalytic spliceosome) and biological processes (e.g., histone acetylation, histone modification)
(Figure 9d-f). The functional efficacy of TSA-EVs on augmenting hBMSCs epigenetic functionality was evaluated by quantifying
histone acetylation levels (Supplementary Figure 3). TSA-EV treated hBMSCs elicited a significant increase in H3K9 acetylation
levels in a time-dependent manner when compared to the MO-EVs treated (P ≤ 0.01 - 0.001) and the untreated cells (P ≤ 0.001).

 DISCUSSION

In the last decade, the field of EVs has rapidly expanded and is constantly unearthing new understanding of the role these
nanoparticles play in various biological processes, signifying the potential influence EVs may have on the future direction of
healthcare technologies. Several studies have demonstrated the therapeutic efficacy of EVs as novel acellular tools for bone repair
(Davies et al., 2017;Wang et al., 2018;Wei et al., 2019). Although the potential utility of these nanosized vesicles has been reported,
several approaches have been employed to further improve their therapeutic efficacy (Man et al., 2020). Genetic modification of
the EV parent cell is a commonly utilised approach to promote the clinical viability of these nanoparticles (Kang et al., 2015; Tao
et al., 2017); however, there are limitations associatedwith this technique (Hu et al., 2020; Kooijmans et al., 2016).Harnessing post-
translational modifications through altering the cells’ epigenetics has been demonstrated to enhance osteogenic differentiation
(Hu et al., 2013; Huynh et al., 2016), hence, providing a potential novel strategy to improve EVs therapeutic efficacy for bone
regeneration.
In the present study, we investigated the influence of altering osteoblast’s epigenetic functionality to promote the osteoinduc-

tive capacity of their secreted EVs. TSA, a naturally-derived HDACi, has been reported to accelerate osteogenic differentiation
through hyperacetylation induced chromatin remodelling and transcription factor activation (Jin et al., 2013; Schroeder &Wes-
tendorf, 2005; Schroeder et al., 2004). Chromatin remodelling increases the accessibility to osteoblast-related genes of interest,
while HDAC inhibition and the hyperacetylation of non-histone proteins promotes the activity/stability of key osteogenic tran-
scriptional factors, such as Runx2 (Huynh et al., 2017). Herein, we demonstrated the successful augmentation of osteoblast epi-
genetic functionality through TSA-induced histone hyperacetylation (Figure 10), consistent with several studies in the literature
(Hu et al., 2013; Man et al., 2021; Schroeder & Westendorf, 2005). Additionally, we found that TSA induced acetylation resulted
in a time-dose dependent effect on osteoblast mineralisation, where administration of low TSA dosages (≤ 10 nM) increased
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F IGURE  Analysis of differentially expressed proteins derived from TSA-EVs and MO-EVs. a) Volcano plot displaying Log2 values for the proteins
fold-change against Log10 FDR. Proteins with a Log2 fold difference below 1 and a statistical value of > 0.05 were not considered to be statistically significant
(vertical and horizontal lines respectively). The red points in the plot represents the significantly upregulated TSA-EV proteins, the green points represent
significantly upregulated MO-EVs proteins. b) Venn diagram comparing proteins differentially expressed from TSA-EVs and MO-EVs. A total of 1273 shared
proteins; 25 proteins upregulated in TSA-EVs and 27 proteins upregulated in MO-EVs. c) Pearson correlations between technical replicates, biological
replicates and sample groups were determined. GO analysis of proteins found to be significantly upregulated in TSA-EVs. Top ten GO prediction scores
covering the domains of d) molecular function, e) cellular components and f) biological processes of proteins significantly upregulated in TSA-EVs

osteogenesis when compared to higher concentrations (> 20 nM). This has been similarly reported in the literature (Huynh
et al., 2016; Schroeder & Westendorf, 2005), likely due to the effects of high HDACi concentrations on the long-term cellular
viability. Hence, from a scalability perspective, administrating TSA at a dose that does not detrimentally affect cell number or
functionality is highly advantageous (Rohde et al., 2019). In addition to examining the influence of TSA on osteoblast epigenetic
functionality and differentiation, it is important to characterise the effects of this parental cell augmentation on the secreted
EVs. It was observed that EVs isolated from TSA-treated osteoblasts displayed reduced polydispersity (1.34-fold), particle size
(1-05-fold), concentration (1.4-fold) and protein content (1.16-fold) when compared to MO-EVs. This profile has been reported
to correlate with the degree of osteoblast differentiation (Davies et al., 2019), indicating the potentially enhanced osteoinductive
capacity of TSA-EVs. Moreover, the increased osteoblast extracellular matrix collagen production induced by TSA likely played
a critical role in the quantity of EVs isolated from the conditional media, due to collagen-mediated EV immobilisation (Buzás
et al., 2018; Krohn et al., 2016). Interestingly, the TSA-EVs exhibited a 3-fold increase in RNA content when compared to that
in the MO-EVs. This suggests that the enhanced osteoblast transcriptional activity induced by TSA mediated hyperacetylation,
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F IGURE   Schematic representation of the mechanism TSA augments osteoblast epigenetic functionality and mineralisation, enhancing the therapeutic
potency of their secreted EVs to stimulate hBMSCs osteogenic differentiation. Figure created with BioRender.com

enriched secreted EVs with elevated levels of RNA species, which may be partly responsible for its improved biological potency
at recipient hBMSCs (Figure 10).

EVs ability to regulate intercellular communication such as stimulating the recruitment of endogenous cells is highly advanta-
geous for bone tissue engineering applications (Su et al., 2018). Our findings demonstrate that osteoblast-derived EVs significantly
promoted hBMSCs proliferation and migration when compared to that of untreated cells, consistent with findings in the liter-
ature (Eichholz et al., 2020; Haertinger et al., 2020; Xu et al., 2019). Interestingly, TSA-EVs elicited a more potent influence on
hBMSCs proliferation and migration when compared to that of MO-EVs. With TSA-EVs exhibiting a 3-fold increased RNA
content compared to MO-EVs, it is likely this enrichment plays a role in the enhanced cellular response to TSA-EVs. It has
been reported that microRNAs are the most abundant RNA species within EVs, likely due to their small size (Huang et al., 2013;
Kim et al., 2017; O’brien et al., 2020). Hence, microRNA analysis was utilised to further elucidate the role of TSA in promoting
osteoblast-derived EVs paracrine effects. Intriguingly, the SNARE interactions in vesicular transport, endocytosis and regulation
of actin cytoskeleton KEGG pathways were enriched by differentially expressed TSA-EVs microRNAs, indicating the possi-
ble microRNA function in regulating EV internalisation at recipient cells. Moreover, TSA-EVs were significantly enriched with
miR-31-5p andmiR-143-3p, microRNAs reported to promote the recruitment of numerous cells types (Li et al., 2015).Wang et al.
demonstrated that miR-143 targets HDAC7 in osteoblasts and endothelial cells, resulting in enhanced osteogenic and angiogenic
effects, respectively (Wang et al., 2020). This indicates the role of miR-143 in TSA-EVs on promoting target cells differentia-
tion capacity by modifying their epigenetic functionality. Therefore, the enrichment of these microRNAs in TSA-EVs may be
involved in promoting the recruitment and stimulation of endogenous cells through post-translational modifications for bone
regeneration.
Several studies have reported the use of HDACis in modifying the cells’ differentiation capacity (Huynh et al., 2016; Jin et al.,

2013), however, there has been limited investigations into their influence in augmenting the cells secretome, particularly the
therapeutic efficacy of EVs for bone regeneration. HDACis have been assessed as promising pharmacological agents to halt dis-
ease progression or for cancer therapeutics (Minetti et al., 2006; West & Johnstone, 2014), with their influence on EV secretion
recently acquiring growing interest. For example, Sandonà et al. reported the utility of TSA in enhancing the therapeutic efficacy
of EVs derived from fibro-adipogenic progenitors (FAPs) to supportmuscle stem cells-mediated regeneration of dystrophicmus-
cles. HDACi treatment enriched FAP-EVs with miR-206 leading to enhanced regeneration and reduced fibrosis (Sandonà et al.,
2020). Wang et al. used of the HDACi B390 to induce apoptosis in pancreatic cancer cells and decreased vascular endothelial
growth factor C expression in secreted EVs, inhibiting the nanoparticles role in cancer progression (Wang et al., 2020). Herein, we
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investigated the influence of epigenetic reprogramming through TSA induced hyperacetylation, on the osteoinductive potency
of osteoblast-derived EVs as a novel engineering approach. We demonstrated that EVs isolated from TSA-treated osteoblasts
substantially promoted the mineralisation capacity of hBMSCs through the early, mid and late-stages of osteogenic differen-
tiation exhibited by enhanced osteoblast-related gene/protein expression, ALP activity and extracellular matrix mineralisation
compared to MO-EVs treated and the untreated cells. Additionally, TSA-EVs elicited an enhanced dose-dependent increase in
hBMSCs extracellular matrix collagen and calcium deposition when compared toMO-EV treatment, thus providing further evi-
dence into TSA-EVs increased osteoinductive properties. Interestingly, the MO-EVs treated hBMSCs presented a disparity in
the differentiation status of the cell when compared to the osteogenic maturity of the mineralised matrix. Our findings showed
a slight non-significant increase in the MO-EV treated hBMSCs osteoblast-related gene/intracellular protein expression, while
also exhibiting a significantly enhanced ALP activity, extracellular matrix collagen production and calcium deposition when
compared to the untreated control. This indicates the reduced efficacy of MO-EVs in stimulating hBMSCs differentiation com-
pared to TSA-EVs, however, MO-EVs were able to facilitate the mineralisation of the cell’s extracellular matrix, likely due to
the enrichment of pro-mineralising proteins associated with MO-EVs, including Annexins as reported in the literature and in
the proteomics analysis in this present study (Davies et al., 2017, 2019). Moreover, the more mature collagen extracellular matrix
from the TSA-EV treated hBMSCs, likely promoted the sequestering of endogenous EVs secreted from differentiating hBMSCs
and TSA-EV treatment (Buzás et al., 2018; Krohn et al., 2016), thus further facilitating matrix mineralisation. Taken together, the
functional analysis of TSA-EVs osteoinductive efficacy indicates its ability to promote osteogenesis through stimulating hBMSCs
osteogenic differentiation and the mineralisation of its extracellular matrix (Figure 10).

To further elucidate the mechanisms in which TSA-EVs imparts its pro-osteogenic effects, particularly in stimulating cellu-
lar differentiation, microRNA profiling was conducted. Utilising available databases, target prediction of differentially expressed
TSA-EVmicroRNAs showed substantial enrichment in KEGG pathways related to osteogenic differentiation such as Hippo sig-
nalling pathway, MAPK signalling pathway, Wnt signalling pathway, FoxO signalling pathway and ECM-receptor interaction.
MicroRNA profiling highlighted several pro-osteogenic microRNAs significantly enriched in the TSA-EVs. Among them, miR-
21 is known to target Spry1, an inhibitor of osteogenic differentiation, and Sox2, a marker of pluripotency, hence resulting in the
osteogenic lineage-specific differentiation (Li et al., 2015; Yang et al., 2013). Furthermore, miR-21 is involved in the regulation of
the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β) signalling pathway, leading to an increased
accumulation of cytoplasmic β-catenin, enhanced Runx2 expression and osteogenic differentiation (Meng et al., 2015). Similarly,
reports have shown thatmiR-26a promotes osteogenic differentiation by targetingGSK-3β, activating theWnt signalling pathway
(Liu et al., 2018; Su et al., 2015). Zhao et al. demonstrated that miR-199b-5p expression was increased during osteogenesis, and
when overexpressed it promoted BMSCs osteogenic differentiation through GSK3β/β-catenin pathway (Zhao et al., 2016). Addi-
tionally, miR-15b, an osteoblast-specific microRNA (Sainitya et al., 2015), is known to target Smurf1, an inhibitor of osteogenic
differentiation (Vimalraj et al., 2014). Smurf1 degrades Runx2 through the proteasomal pathway, therefore, the upregulation of
miR-15bwill indirectly increase Runx2 levels (Shimazu et al., 2016). AnothermiRNAupregulated inTSA-EVs,miR-181a, has been
reported to promote osteogenesis via inhibiting key transforming growth factor-β (TGF-β) signallingmolecules such as the TGF-
β type I receptor (TβR-I/Alk5) and TGF-β induced (Bhushan et al., 2013; Zheng et al., 2019). Moreover, miR-125b, a microRNA
found to be involved in osteoblast-osteoclast communication was significantly enriched in TSA-EVs (Yoshiko & Minamizaki,
2020). Minamizaki et al. reported miR-125b involvement in regulating bone turnover, where the enrichment of this microRNA
in EVs within the bone matrix, inhibits bone resorption via downregulating the transcriptional repressor PRDM1, subsequently
upregulating the anti-osteoclastogenic genesMafb and Irf (Minamizaki et al., 2020). Interestingly, TSA-EVs were significantly
enriched in miR-22, which has been reported to inhibit the expression of HDAC6 in adipose-derived stem cells, promoting its
osteogenic differentiation (Huang et al., 2012). Similarly, miR-143 has been shown to stimulate BMSCs and osteoblast minerali-
sation by inhibiting HDAC7 activity (Wang et al., 2020). This indicates that modifying the osteoblast epigenome through TSA,
augments the epigenetic functionality of recipient hBMSCs through EVmicroRNA delivery, mimicking themechanism of trans-
generational epigenetic inheritance reported in the literature (Sahoo & Losordo, 2014; Sharma, 2014). Together, these findings
suggest altering the epigenetic functionality and differentiation ofmineralising osteoblast enriches their EVs with pro-osteogenic
microRNAs (Figure 10). Future studies would be required to functionally validate the biological efficacy of these differentially
expressed microRNAs. Moreover, it would be of interest to examine the influence on TSA induced epigenetic regulation on the
expression and therapeutic efficacy of other RNAs species within the TSA-EVs.
In order to further investigate the influence of TSA induced epigeneticmodification on the composition and biological potency

of TSA-EVs, the vesicles protein composition was analysed via mass spectrometry. GO analysis showed that the differentially
expressed TSA-EV proteins were associated with transcriptional regulation. Among them, Ankyrin repeat domain-containing
protein 11 (AnkRD11) is a chromatin regulator which modulates histone acetylation and gene expression (Gallagher et al., 2015).
The introduction of a N-ethyl-N-nitrosourea mutation in the AnkRD11 gene in mice, resulted in craniofacial abnormalities
and reduced overall bone mineral density, indicating the role of this protein in normal skeletal development (Barbaric et al.,
2008). Another chromatin regulator, KAT8 regulatory NSL complex subunit 3 (Kansl3) was found to be upregulated in TSA-EVs.
Kansl3 is a subunit of the histone acetyltransferase complex, which is involved in histone H4 acetylation and thereby regulating
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transcriptional activity (Cai et al., 2010). Moreover, histone H4 acetylation has been reported to promote osteogenic maturation,
indicating the lineage-specific effects of Kansl3 on hBMSCs differentiation (Dudakovic et al., 2013). Similarly, the Plant home-
odomain finger protein 14 (PHF14) was significantly enriched in TSA-EVs. Several studies have reported the role of PHD fingers
as epigenetic effectors by regulating transcription and chromatin dynamics (Aasland, 1995; Musselman & Kutateladze, 2011) and
their role on osteogenesis has been reported in the literature. For example, the PHF20 was shown to positively regulate osteoblast
differentiation by increasing H3K4me3 enrichment on the Runx2 promoter, enhancing the transcription factor activity (Yang
et al., 2017). In addition to chromatin remodelling proteins, TSA-EVs were also significantly enriched with proteins involved
in regulating RNA processing. For example, the pre-mRNA-splicing factor 38B (Prpf38b) was found to be upregulated in TSA-
EVs. Pre-mRNA splicing factors has been shown to mediate mRNA processing and splicing (Di et al., 2019), indicating the role
of Prpf38b in regulating the translation of pre-mRNA transcripts to mature mRNA in hBMSCs. Similarly, RNA-binding protein
10 (Rbm10) is known to be involved in mRNA processing and miRNA biogenesis (Zhao et al., 2017). The nuclear carrier protein
Ran-binding protein 17 (Ranbp17) was also enriched in TSA-EVs, which functions in regulating the transport of proteins and
RNAs through the nuclear pore (Lee et al., 2010). Similarly, Washc5 has been shown to mediate endosomal sorting, indicating
its role in processing endocytosed EVs (Gilleron et al., 2019). Interestingly, the pro-osteogenic proteins previously identified in
MO-EVs to be responsible for its pro-mineralising capacity (Davies et al., 2017, 2019), such as calcium-channelling annexin pro-
teins, were not significantly altered by TSA treatment. The TSA induced enrichment of EV proteins involved in transcriptional
regulation indicates the role of TSA-EVs in augmenting the epigenetic landscape of the recipient cell (Figure 10), confirmed by
the functional assessment of TSA-EV induced hBMSCs histone hyperacetylation. The delivery of these transcriptional regulating
proteins likely facilitate the therapeutic efficacy of TSA-EV pro-osteogenic microRNAs and ultimately accelerates the osteogenic
maturation of hBMSCs. Moreover, the augmented epigenetic landscape induced by TSA-EV transcriptional modifiers probably
facilitated the enhanced hBMSCs expression of osteoblast-related genes during the early phase of osteogenesis. It is important
to note that due to the diverse biological cargo of EVs, is it likely that the osteoinductive capacity of TSA-EVs is a combination
of changes across all EV components (i.e. metabolites, lipids, proteins, RNA species etc.), although this would require further
investigation.
In the present study,we investigated the influence of altering the epigenetic functionality ofmineralising osteoblasts on enhanc-

ing the therapeutic efficacy of their EVs for bone regeneration. We isolated and characterised EVs from TSA-treated mineral-
ising osteoblasts and further examined the biological potency of these EVs on hBMSCs. Having demonstrated the enhanced
osteoinductive capacity of TSA-EVs, microRNA profiling and proteomic analysis was conducted to further elucidate the possi-
blemechanism inwhich these nanoparticles promote osteogenesis.We predicted the targets of the TSA-EV enrichedmicroRNAs
and the signalling pathways to be related to osteogenic differentiation. Moreover, the TSA-EVs were significantly enriched with
transcription regulating proteins. Hence, the TSA-EV enrichment of these pro-osteogenic microRNAs and proteins involved in
epigenetic regulation may be partially responsible for promoting hBMSCs osteogenic differentiation, however, the functional
validation of these augmented components induced by epigenetic reprogramming would be required in future studies.
Having reported the enhanced osteoinductive capacity of TSA-EVs in vitro, there is growing precedence to elucidate the

therapeutic capacity of EVs in more physiologically relevant models in vivo (Man et al., 2020). There are several pertinent issues
with the therapeutic delivery of EVs in the field including controlling their release kinetics at the defect site, optimising EV dosing
regimen to maximise their therapeutic response in vivo and the development of a biomaterial system that facilitates EV-induced
bone regeneration (Brennan et al., 2020). We believe these factors would have a tremendous impact on the clinical efficacy of
EVs, irrespective of the nanoparticle’s therapeutic potency. Although the in vivo investigation of TSA-EVs is beyond the scope
of this present study, which is focused on determining whether epigenetic reprogramming is a viable EV engineering approach
and elucidating possible mechanisms linked to its enhanced osteoinductive properties, future studies will assess the therapeutic
delivery of TSA-EVs within a biomaterial system to effectively investigate the clinical efficacy of this EV engineering approach
for bone augmentation strategies. In addition to conducting in vivo testing, to move this novel approach towards the clinic,
demonstration of TSA-EVs efficacy against a positive treatment control would be a valuable pursuit, for example BMP2.

 CONCLUSION

In conclusion, these findings demonstrate that altering osteoblasts epigenetic functionality via TSA induced hyperacetylation,
enhanced the differentiation capacity of the parental cell and the osteoinductive potency of their EVs. Furthermore, microRNA
profiling revealed HDACi treatment enriched TSA-EVs with microRNAs associated with osteogenic-related pathways. Pro-
teomics analysis identified the enrichment of epigenetic regulating proteins within TSA-EVs. These findings demonstrate the
considerable utility of epigenetic regulation as a novel engineering approach to enhance the therapeutic efficacy of EVs as an
acellular tool for bone repair. To our knowledge, this is the first study to promote EVs regenerative potency for bone augmenta-
tion strategies through epigenetic reprogramming.
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