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Background: Cuproptosis is a recently found non-apoptotic cell death type

that holds promise as an emerging therapeutic modality in lung

adenocarcinoma (LUAD) patients who develop resistance to radiotherapy

and chemotherapy. However, the Cuproptosis’ role in the onset and

progression of LUAD remains unclear.

Methods: Cuproptosis-related genes (CRGs) were identified by a co-

expression network approach based on LUAD cell line data from

radiotherapy, and a robust risk model was developed using deep learning

techniques based on prognostic CRGs and explored the value of deep learning

models systematically for clinical applications, functional enrichment analysis,

immune infiltration analysis, and genomic variation analysis.

Results: A three-layer artificial neural network risk model was constructed

based on 15 independent prognostic radiotherapy-related CRGs. The risk

model was observed as a robust independent prognostic factor for LUAD in

the training as well as three external validation cohorts. The patients present in

the low-risk group were found to have immune “hot” tumors exhibiting

anticancer activity, whereas the high-risk group patients had immune “cold”

tumors with active metabolism and proliferation. The high-risk group patients

were more sensitive to chemotherapy whereas the low-risk group patients

were more sensitive to immunotherapy. Genomic variants did not vary

considerably among both groups of patients.

Conclusion: Our findings advance the understanding of cuproptosis and offer

fresh perspectives on the clinical management and precision therapy of LUAD.
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Introduction
Among malignancies, lung cancer is the most widely

known around the globe (1), and a major type of non-small

cell lung cancer (NSCLC) is lung adenocarcinoma (LUAD)

covering 40% of lung cancers (2, 3). Conventional

chemotherapy and radiotherapy remain the main treatment

methods for LUAD (4, 5), while patients with advanced LUAD

have a higher risk of treatment failure because of the

development of treatment resistance (4). Novel treatment

modalities have focused on profound changes in the genome,

and to date, there are two main therapeutic strategies related to

genetic factors; targeted therapy and immunotherapy (6).

However, most patients are prone to resistance while

receiving targeted therapies and only a minority of patients

may benefit from immunotherapy. Therefore, further studies

on potential prognostic biomarkers for LUAD are needed to

provide better prognostic prediction and tailored treatment.

A novel non-programmed cell death mechanism caused by

copper overload, cuproptosis, was recently reported (7).

Cuproptosis is regulated by protein lipoylation, and copper

binds directly to the lipoylation constituents of the

tricarboxylic acid cycle, which leads to the aggregation of

lipoacylated proteins and the following loss of iron-sulfur

cluster proteins, thus leading to proteotoxic stress and

eventually cell death (7). These results indicate that copper

ion carriers may serve as an emerging therapeutic modality for

cancer, an approach that may be particularly effective in

cancers that are naturally resistant to apoptosis (7, 8), and by

exploiting the unique action of this metal, a novel approach to

killing cancer cells could be found. Despite the good efficacy of

conventional treatments in LUAD, a large proportion of

patients still experience resistance to radiotherapy or drugs.

Therefore, understanding cuproptosis is expected to provide

accurate prognosis prediction for LUAD patients and guidance

for targeted therapy and immunotherapy for patients who

show resistance to treatment.

In our study, we systematically evaluated cuproptosis-

related genes (CRGs) in patients with LUAD after radiation

therapy and constructed and validated a new cuproptosis-

related risk model. The risk model was an independent

prognostic factor for overall survival (OS) in patients with

LUAD in the training set as well as multiple external validation

sets. Additionally, the high-risk group patients had

immunosuppressed, proliferatively active “cold” tumors, and

the low-risk group patients had anti-tumor-active “hot”

tumors. Finally, we predicted that patients in the low-risk

group would show increased sensitivity to immunotherapy,

whereas patients in the high-risk group would show more

sensitivity to chemotherapy.
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Methods

Data processing

The dataset GSE42172 containing six paired normal A549

lung cancer cell lines and 6 radiation treated A549 lung cancer

cell lines were used to explore CRGs before and after

radiotherapy. We retrieved TCGA-LUAD patient data from

the TCGA database (https://cancergenome.nih.gov/) via the

GDC API, including transcriptome RNA-Seq data, and

Mutect2 platform mutation data, Human Methylation 45

methylation data, copy number variation (CNV) data as well

as associated clinical data. A total of 492 LUAD samples were

collected after excluding patients that lost to follow-up or lacked

clinical information. The primitive FPKM sequencing data were

normalized by TPM and used as a training cohort. Three mature

LUAD cohorts were taken from GEO (http://www.ncbi.nlm.nih.

gov/geo/): GSE30219, GSE42127, and GSE72094, from chip

platforms GPL570, GPL6884, and GPL15048, respectively. The

three datasets were normalized by log2 and then served as

external validation cohorts. In addition, we collected the

publicly available established immunotherapy cohorts

Imvigor210 and GSE135222, comprising 298 patients with

uroepithelial cancer and 27 patients with NSCLC treated with

anti-PD-1, respectively.

Finally, single-cell sequencing data were collected for

GSE131907, containing 58 sequencing cases from 44 patients.

Among them, we selected normal lung tissue, early stage,

advanced stage, and brain metastasis lung tissue for further

analysis, containing 29 samples in total.
Identification of the candidate
cuproptosis-related genes

Eight cuproptosis genes were collected from Tsvetkov et al.

(7), detailed gene list was provided in Table S1. For ssGSEA

analysis, we employed the R package “gsva” to generate

cuproptosis scores, and for multiscale embedded gene co-

expression network analysis we used an R package called

MEGENA. It shows higher performance than co-expression

network construction and is not limited by sample size. Genes

with standard deviation > 0.9 were selected forMEGENA analysis,

and planar filtered network (PFN) was measured following the

gene expression correlation. We applied the multiscale clustering

strategy to construct gene networks having modules or

interconnected subnetworks, and module characteristic genes

were calculated using the module Eigengenes R function to

calculate the correlation of modules with cuproptosis scores and

to identify the most relevant modules. The genes contained in the
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most relevant modules were considered radiotherapy-related

CRGs and used for subsequent analysis.
Single-cell data analysis

Weemployed the R package “Seurat” for processing the scRNA-

seq data. Specifically, cells with “min.cells < 3” and “min.features <

200” were excluded. After filtering cells with mitochondrial

sequencing counts > 20% and nFeature_RNA > 7000, a total of

58812 cells were retained for subsequent analysis. The dataset was

subsequently normalized using the NormalizeData and ScaleData

functions of Seurat. Cell types were identified according to the cell

annotations provided in the original article. The scanpy in Python

was used for the visualization of model genes.

In addition, to reveal changes in cell clusters during tumor

progression, we used the R package “monocle” for single-cell

trajectory analysis (9). According to the following parameters:

num_cells_expressed >= 10, min_expr = 0.1, variable genes of

top 1500 were used to identify single-cell developmental

trajectory, monocle was used to visualize cell developmental

trajectories and dynamic expression of model genes.
Building and validating predictive deep
learning models

We use the R package “survivalmodels” to build an artificial

neural network (ANN) model and the “mlr3” package for

parameter tuning. First, we train the model in the TCGA dataset,

the input layer is the expression of CRGs, the activation function of

the hidden layer is ReLU, and the loss function is the negative log

partial likelihood under the Cox PH model. Five pieces of cross-

validation and dropout parameters were adopted to avoid

overfitting, and the early stopping strategy is also utilized for the

regularization purpose. The best ANN model is selected based on

the C-index and the predicted risk values of individual patients are

generated by Cox regression. For evaluating the risk scores’

predictive ability in the training as well as validation sets, and for

measuring the consistency C-index we utilized the “survcomp” R

package, a larger C-index indicated the model’s higher predictive

accuracy and power (10). The median Risk score was used for

classifying the patients into high- and low-risk groups, and the

prognostic value of the risk model was investigated systematically

by Km survival curves, univariate and multivariate Cox regression,

and time-dependent ROC curves.
Gene enrichment and immune
infiltration analysis

To study the pathway activity of the samples we did ssGSEA

analysis by the R package “gsva”. Gene markers were collected
Frontiers in Endocrinology 03
from previously published literature (11–14) and detailed gene

markers are demonstrated in Table S2. GSEA analysis was

also carried out for studying the KEGG pathway variations in

high and low CuRS groups and screened for significant pathways

by p < 0.05.

Using the R package “CIBERSORT”, we did the estimation

of the proportion of immune cell infiltration in tumor samples,

which estimates the degree of infiltration of 22 immune

cell types (15). The Estimate algorithm was employed to assess

the samples’ immune activity and tumor purity (16). Finally,

using the study of Thorsson et al, samples of indel neoantigens

and SNV neoantigens were also obtained (17). The

immunophenotypic score (IPS) of the samples was calculated

based on previous studies, with higher IPS indicating stronger

immune activity of the samples (18).
Dissecting the genomic variation
landscape between the two subgroups

For comparing the variations in mutation burden in both

risk groups, we processed the mutation data using the “maftools”

R package, first calculating the total number of mutations in the

samples, then identifying genes with a minimum number of

mutations > 50, the variations in mutation frequencies of both

risk groups were compared using chi-square tests, and

visualizing them using maftools. CNV data were processed

through Gistic 2.0 on the Genepattern website, significantly

amplified and missing chromosomal segments were identified,

and CNV summary maps were visualized using the R

package Circos.
Potential small molecule drugs and
chemotherapy sensitivity prediction

The CTRP2.0 and PRISM databases were used to predict

potentially sensitive small molecule drugs containing sensitivity

data for small molecule compounds in cancer cell lines (CCL),

CCL expression data from the Cancer Cell Line Encyclopedia

(CCLE) project were taken from (https://portals.broadinstitute.

org/ccle/), and a ridge regression model was made as per the

CCL expression data from the CTRP2.0 and PRISM databases

and TCGA expression data using the built-in ridge regression

function of the pRRophetic package for predicting the sensitivity

of various risk subgroups to small molecule compounds in the

TCGA data set. As a standard value for evaluating drug

sensitivity, lower AUC values show better drug sensitivity. We

also introduced the Genomics of Drug Sensitivity to Cancer

(GDSC) database (www.cancerRxgene.org) for predicting

differences in the sensitivity of five common lung cancer

chemotherapeutic agents in high- and low-risk samples.

Moreover, genes that were expressed differentially in the high-
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risk and low-risk group samples are potential therapeutic targets.

Therefore, we used the online database ConnectivityMap

(https://clue.io/) to detect potential drugs targeting these genes

and elucidate the corresponding mechanisms of action.
Predicting immunotherapy affect rates

The response of patients to anti-PD1 and anti-CTLA4

therapies was predicted for all cohorts using the TIDE

algorithm (http://tide.dfci.harvard.edu) (19). Subsequently, we

used the unsupervised subclass mapping (https://cloud.

genepattern.org/gp/) and forecast patients’ response to anti-

PD-1 and anti-CTLA-4 treatment by transcriptome expression

patterns, to predict the response of both high risk and low risk

groups to immunotherapy. Finally, we tested the risk model’s

predictive efficacy in the immunotherapy cohort Imvigor210.
Bioinformatics and statistical analysis

The software R 4.1.0 performed all statistical analyses and was

used in making all the graphs. Differential genes were obtained by

Limma package analysis, and genes with p.adjust < 0.05 and |

Log2FC| > 1 were considered to be significantly different. The
Frontiers in Endocrinology 04
Kruskal-Wallis test was employed for comparing among multiple

groups, and the Wilcoxon test was utilized for comparison

between two groups. Variations in proportions were compared

by the chi-square test. For each data set, survival curves for

subgroups were produced with the help of Kaplan-Meier

plotters. The log-rank test determined if the differences were

significant. Two-tailed p < 0.05 was considered significant.
Results

Identification of radiotherapy-associated
cuproptosis features

We first assessed the altered cuproptosis pathway activity due

to radiotherapy using ssGSEA, which showed a trend of increased

cuproptosis pathway activity after radiotherapy (P = 0.31,

Figure 1A). Next, to explore the genes associated with the

altered cuproptosis pathway, we performed MEGENA analysis

using transcriptome and cuproptosis pathway activity. 55 modules

were identified, of which module 19 and its submodule 78 were

most associated with the cuproptosis pathway (cor = 0.82, p <

0.001, Figure 1B), and both modules contained a total of 71 CRGs

for subsequent analysis. We next analyzed the multi-omics

profiles of CRGs in TCGA-LUAD (Figure 1C), most CRGs
A B

D

E

C

FIGURE 1

Identification of radiotherapy-associated CRGs. (A) Box plot showing Cuproptosis pathway activity before and after radiotherapy. (B) Identification of
the most relevant gene modules for Cuproptosis. (C) Heat map showing genomic changes and hazard ratios of CRGs in TCGA-LUAD. From left to
right were respectively: expression differences of CRGs in tumor and normal samples, frequency of mutations and copy number variants of CRGs,
correlation of DNA methylation modifications and expression of CRGs, and univariate Cox regression analysis showing risk ratios of CRGs. *p < 0.05,
**p < 0.01, ***p < 0.001. (D) Summary of mutational events in CRGs in TCGA-LUAD. (E) Circle diagram demonstrating the CNV events of CRGs on
chromosomes.
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were elevated in tumor patients, and we observed a low mutation

frequency and CNV frequency of CRGs. However, most CRGs

were significantly negatively correlated with their methylation

levels, suggesting that CRGs are mainly regulated by methylation

in LUAD. Univariate Cox regression analysis revealed that 21

CRGs were unfavorable prognostic factors for OS in LUAD

patients. Figure 1D summarizes the mutation profile of CRGs in

LUAD and shows that SEMA3A, ANK3, and PDE3A are the three

CRGs with the highest mutation frequencies. Figure 1E shows the

CNV mapping of CRGs on chromosomes.
The single-cell landscape of CRGs

To evaluate the distribution of CRGs in different cells, we

analyzed the single-cell dataset GSE131907. A total of 14 types of

cells (Figure 2A) were identified. The Quasi-time series analysis

showed that tumor epithelial cells and plasma cells were

distributed at the beginning of the time trajectory, immune

cells at the middle of the trajectory, while Malignant cells at the

end of the trajectory (Figure 2B). 21 prognostic CRGs had 15

intersections in the training cohort and three validation cohorts,

afterward, we analyzed the distribution of these 15 prognostic
Frontiers in Endocrinology 05
CRGs. The results showed that all prognostic CRGs were

elevated in advanced LUAD samples as well as in LUAD

samples with brain metastases; in particular, EGFR was more

expressed in samples with brain metastases, while PTGES3 was

significantly elevated in all tumor samples used (Figure 2C). For

different cell types, prognostic CRGs expression was increased

mainly in Malignant cells, while it was decreased in both

immune cells (Figure 2D).
Training and building ANN models

To train the best ANN model, we trained the model using a

random search for 1000 iterations, and the final optimum model

is shown in Figure 3A. The model has a satisfactory C-index in

all four cohorts (C-index > 0.60, Figure 3B). Predicted risk scores

were generated as per the COX regression, and high- and low-

risk patients were distinguished as per the median risk score. A

significantly worse prognosis in high-risk patients was observed

after survival analysis (P < 0.0001, Figure 3C). Survival time was

also considerably shorter in the three external validation cohorts

of the high-risk group (P < 0.05, Figures S1A–C). The risk plot

showed a significantly worse survival status in the high-risk
A

B

D

C

FIGURE 2

Single-cell transcriptional map of CRGs. (A) Umap plots of 14 cell subtypes. (B) Quasi sequential trajectories of 14 cell subtypes, top cell
trajectories; bottom: Pseudotime trajectories. (C) Expression profiles of 15 prognostic CRGs in different tissues. (D) Expression profiles of 15
prognostic CRGs in different cell types.
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group (Figure 3D). We saw identical outcomes in the three

external validation cohorts (Figures S1D–F). ROC analysis

demonstrated that the ANN model had the respective AUCs

of 0.62, 0.63, and 0.66 at 1, 3, and 5 years (Figure 3E), and the

ANN model also had satisfactory predictive power in the three

external validation cohorts (AUC > 0.6, Figures S1G–I).
Predictive independence of risk models

We used univariate and multivariate Cox regression to assess

the relationship between risk scores and patient clinical

characteristics and prognosis. In both the training and

validation sets, univariate Cox regression served as an

independent predictive indicator for risk scores (P < 0.001,

Figure 4A). After correction for biases such as other clinical

traits, multivariate Cox regression showed that risk scores

continued to be an independent predictor of OS in both the

training and validation cohorts (P < 0.001, Figure 4B).

Furthermore, as per the subgroup analysis, the risk score

remained a reliable prognostic factor in different clinical

subgroups (P < 0.05, Figure S2). Therefore, risk scores can be

a reliable prognostic marker for patients with LUAD. We then

created the Nomogram to better quantify the risk assessment of

individual LUAD patients (Figure 4C). Nomogram correction
Frontiers in Endocrinology 06
curves showed good stability and accuracy of the Nomogram

model at 1, 3, and 5 years (Figure 4D). tROC analysis showed

that the Nomogram model was the best predictor at 5 years

compared to clinical characteristics (Figure 4C). predictor

(Figure 4E). We then performed a DCA for evaluating the

decision benefit of the Nomogram model, and the outcomes

revealed that the Nomogram was suitable for risk assessment of

patients with LUAD at 1, 3, and 5 years (Figure 4F).
Functional enrichment analysis of
risk models

Afterward, the link between the risk model and several

typical biological pathways was evaluated. The heat map

depicts the link between risk score and biological pathway

activity (Figure 5A), and the link between risk score and the

corresponding biological pathway is shown on the right side of

the heat map (Figure 5B). The results showed a negative

correlation between most of the immunoreactive pathways and

the risk score, especially the HLA and Type 2 IFN pathways.

Notably, the activity of epithelial-mesenchymal transition was

significantly negatively correlated with the risk score and

increased in the low-risk group. GSEA analysis showed

increased activity of cell cycle, tricarboxylic acid cycle, and
A B

D EC

FIGURE 3

Construction of deep learning model related to CRGs. (A) Schematic diagram of the optimum ANN model. (B) C-INDEX of the optimum ANN
model in the TCGA and GEO cohorts. (C) KM survival curves of the high-risk and low-risk groups in the TCGA cohort. (D) Survival status of
patients in the TCGA cohort. (E) ROC curves of risk score at 1, 3, 5, and 8 years in the TCGA cohort.
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glycolysis pathways in the high-risk group (Figure 5C), and

increased activity of cell adhesion molecules cams and ABC

transport pathways in the low-risk group (Figure 5D). These

outcomes demonstrate that the tumor metabolism and

proliferation were active in the high-risk group, while the

immune pathway activity was increased in the low-risk group.
Immune infiltration analysis of the
risk model

We then evaluated the association between the risk model

and the tumor immune microenvironment. The heat map shows

the relationship between the risk score and the Estimate Score,

the abundance of immune infiltrating cells, and the typical
Frontiers in Endocrinology 07
immune checkpoints (Figure 6A), and the risk score with the

corresponding correlation analysis is shown on the right side of

the heat map (Figure 6B). The outcomes show a significant

increase in tumor purity and Tregs activity in the high-risk

group, and notably, a significant increase in memory immune

cells and CXCL10 in the high-risk group. In contrast, M1

macrophage activity, as well as three immune checkpoints

(PRF1, CTLA4, TBX2), were elevated in the low-risk group.

We then examined the number of neoantigens in the high- and

low-risk subgroups and showed no considerable difference in the

number of Indel neoantigens and SNV neoantigens between the

two groups, but there was an increasing trend in the high-risk

group (P > 0.05, Figures 6C, D). Finally, we found that IPS was

higher in the low-risk group in comparison to the high-risk

group (P < 0.001, Figure 6E). In conclusion, these findings
A B

D

E

F
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FIGURE 4

Validation of deep learning models related to CRGs. (A) Univariate COX regression of OS in TCGA and GEO datasets. (B) Multivariate COX
regression of OS in TCGA and GEO datasets. (C) Nomogram based on deep learning model of CRGs. (D) Calibration curves of Nomogram at 1,
3, and 5 years. (E) Nomogram and tROC curves of clinical characteristics. (F) DCA curves of Nomogram at 1 year, 3 years, and 5 years.
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demonstrate that the low-risk group patients have more active

antitumor immunity, while the high-risk group patients have a

suppressed immune microenvironment.
Correlation between risk models and
genomic variants

Several recent studies have shown that genomic variation is

associated with immunotherapy response, for example, more

tumor mutational load (TMB) may generate more peptides

recognizable by the immune system as potential neoantigens,

and antigens containing mutant peptides can activate

the immune system and enhance antitumor immunity when

recognized (20–22). We studied the correlation between TMB

and risk score, and the findings showed that TMB was

substantially higher in the high-risk group and was

significantly correlated with risk score (Figure 7A). The

waterfall plot displays the mutation landscape of the top 20
Frontiers in Endocrinology 08
high-frequency mutated genes in the high and low subgroups,

with PAPPA2, KEAP1, and TP53 having significantly increased

mutation numbers in the high-risk group (Figure 7B). The circle

plot displays the CNV landscape on the chromosomes

of patients in the high-risk and low-risk groups, with the high-

risk group patients having more CNV events (Figures 7C, D).

Specifically, the number of chromosome amplification

and chromosome deletions were higher in the high-risk group

patients in comparison to the low-risk group patients (P < 0.001,

Figures 7E, F).
Risk models can guide clinical
decision making

Differences between the immune and metabolic activities of

the high- and low-risk group patients may predict different

outcomes in terms of treatment benefits, so we first analyzed

the IC50 differences between the two patient groups for five
A

B

DC

FIGURE 5

Functional analysis of CRGs-related deep learning models. (A) Heat map showing the relationship between Risk score and biological pathway
live. (B) Correlation analysis of Risk score and biological pathways. (C) GSEA enrichment map showing the 5 pathways of interest in the high-risk
group. (D) GSEA enrichment plot showing the 5 pathways of interest in the low-risk group.
frontiersin.org

https://doi.org/10.3389/fendo.2022.970269
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.970269
common lung cancer drugs (cisplatin, docetaxel, gemcitabine,

paclitaxel, and vincristine). The outcomes revealed that the IC50

of all five drugs was considerably lower in the high-risk group

patients in comparison to the low-risk group patients (Figure 8A),

and the same results were observed in three external validation

cohorts (P < 0.05, Figures S3A–C), which indicated higher

sensitivity of the high-risk group patients to chemotherapy.

Considering that the high-risk group patients were more

sensitive to chemotherapy, we predicted possible small molecule

compounds using the CTRP and PRISM databases. The results are

shown in Figure 8B. The CTRP database shows that the high-risk

group patients may benefit from GSK461364 and SB-743921.

Specifically, the Prism database also showed that the high-risk

group patients may benefit from docetaxel, suggesting that

docetaxel may be a sensitive drug for cuproptosis. We then

submitted top150 up-and down-regulated genes between the

high- and low-risk subgroups to the cmap database, and a total

of 33 possible targeted small molecule drugs were found

(Figure 8C). Subsequently, the TIDE algorithm revealed higher
Frontiers in Endocrinology 09
sensitivity of the low-risk group patients to immunotherapy (P <

0.05, Figure 8D), subclass mapping also demonstrated that the

patients with low-risk score were more sensitive to

immunotherapy (P<0.05, Figure 8E), a result confirmed in the

external validation cohort (P < 0.05, Figures S3D–F). The same

result was observed in the validation cohort (P < 0.05, Figures

S3G–I). Finally, we found significantly longer survival times in the

immunotherapy cohort for NSCLC in patients with low-risk

scores (P < 0.0001, Figure 8F). In a large immunotherapy

cohort with long-term follow-up, taking into account the effect

of treatment delay, we found that patients with low-risk scores

survived longer in comparison to patients with high-risk scores at

three months (P < 0.0001, Figure 8G). Moreover, compared with

the high-risk group, patients in the low-risk group had more TMB

and neoantigens, suggesting that low risk score is correlated with a

high response to immunotherapy (P<0.01, Figures 8H, I). In

conclusion, these results suggest that the high-risk group

patients are more responsive to chemotherapy, whereas patients

in the low-risk group are more responsive to immunotherapy.
A B

D

E

C

FIGURE 6

CRGs correlation deep learning model for immune infiltration analysis. (A) Heat map displaying the relationship of Risk score, Estimate score,
immune cell infiltration abundance, and immune checkpoint table (B) From top to bottom: correlation analysis of Risk score and Estimate score,
immune cell infiltration abundance, and immune checkpoint expression. (C) Box plot demonstrating the difference of indel neoantigens among
both risk groups. (D) Box plot showing the difference of SNV neoantigens between the high-risk and low-risk groups. (E) Box plot
demonstrating the difference in IPS among the high- and low-risk groups.
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Discussion

LUAD is the most widely known type of lung cancer and

among the major causes of death that occur as a result of cancer.

Due to the significant heterogeneity of LUAD, patients with

advanced LUAD often show resistance to conventional

treatment modalities, especially radiotherapy (4). Therefore, it

is difficult to predict prognosis and develop individualized

treatment strategies timely. Cuproptosis is a recently reported

modality of cell death that could be an emerging treatment

modality for cancer, and this approach may be particularly

effective in cancers that are naturally resistant to apoptosis (7,
Frontiers in Endocrinology 10
8). Therefore, this study focused on CRGs after LUAD

radiotherapy and developed a robust prognostic model that

could be utilized as an independent prognostic factor for

patients with LUAD. Moreover, this model can distinguish

between “hot” tumors with active antitumor immunity and

“cold” tumors with active metabolism and proliferation and

can inform the development of chemotherapy and

immunotherapy regimens.

Cell death is strongly associated with cancer progression,

metastasis, and treatment response, and inhibition of cell death

increases tumor metastasis and resistance of malignant cells to

chemotherapy (23, 24). Induction of cell death mechanisms
A
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FIGURE 7

Genomic variation landscape of CRGs-related deep learning models. (A) Box plot showing the difference in TMB among the two risk groups.
(B) Oncoplot of significantly mutated genes between the two risk groups. (C) The loop diagram shows the CNV landscape in the high-risk
group. (D) The loop diagram shows the CNV landscape in the low-risk group. (E) Box plots represent the variation in chromosome amplification
numbers in the high-risk and low-risk groups. (F) Box plots display the variation in the number of chromosome deletions among the two
risk groups. *P < 0.05.
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rather than apoptosis has emerged as a new cancer treatment

strategy, as most tumors are innately resistant to apoptosis (25).

The development of bioinformatics technologies has taken a

leading edge in analyzing complex genomic changes, and there

have been numerous studies demonstrating the potential of

transcriptome analysis in predicting lung cancer patient
Frontiers in Endocrinology 11
prognosis (26–28). We focused for the first time on CRGs in

LUAD patients after radiotherapy in an attempt to provide a

prognostic prediction for radiotherapy-resistant LUAD patients,

and we found that CRGs were significant prognostic factors in

LUAD, and advanced ANN models based on CRGs showed

excellent predictive efficacy in both the training and external
A
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F G
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C

FIGURE 8

CRGs-related deep learning model in guidance of clinical treatment decisions. (A) Box plot showing the predicted IC50 values of five commonly
used drugs in the high-risk and low-risk groups. (B) Spearman correlation analysis and differential drug analysis of small molecule compounds
and Risk Score. Top: CTRP database; bottom: PRISM database. (C) Oncoplot represents the identified small molecule compounds, with the
horizontal axis representing the small molecule inhibitor name and the vertical axis representing the biological pathway targeted by the small
molecule inhibitor. (D) The TIDE algorithm was used for predicting the response of the two risk groups to immunotherapy. (E) Subclass mapping
was employed to predict the sensitivity of patients in both risk groups to PD1 and CTLA4 treatments. (F) KM survival curves for both risk groups
in the NSCLS immunotherapy cohort. (G) KM survival curves for the two risk groups in the IMvigor210 cohort. (H) The correlation between risk
score and neoantigens in the IMvigor210 cohort; (I) The correlation between risk score and TMB in the IMvigor210 cohort. **P < 0.01, ***P <
0.001, ****P < 0.0001.
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validation datasets, with OS reduced greatly in high-

risk patients.

In this study, we confirmed that biological pathways differed

significantly between patients in different Cuproptosis

subgroups, and we found significantly increased activity of cell

cycle pathways, glycolytic pathways, and tricarboxylic acid cycle

pathways in the high-risk group patients. It was demonstrated

that excessive cell cycle hyperactivity is closely associated with

cancer cell proliferation (29, 30), and proliferating tumor cells

are heavily dependent on glycolysis and the tricarboxylic acid

cycle for energy supply (31, 32). Conversely, the low-risk group

patients had increased activity of immune-related pathways,

particularly the HLA and Type 2 IFN pathways. To gain more

insight into the differences in immune activity, we then studied

the variations in the immune microenvironment of the two

subgroups. The Estimate algorithm showed a higher tumor

purity in the high-risk group and higher immune scores in the

low-risk group. In addition, M1 macrophage abundance, PRF1,

CTLA4, and TBX2 were elevated in the low-risk group.

According to studies, M1 macrophages are central anti-tumor

cells and can act as therapeutic vectors (33, 34). The activity of

memory immune cells was increased in the high-risk group;

however, the increased Tregs may have contributed to the

immunosuppressive microenvironment in the high-risk group

patients (35, 36). Furthermore, CXCL10 is upregulated in the

high-risk group and may be able to act as a molecular target for

activating antitumor immunity in patients in the high-risk

group (37).

As per the reports, TMB can be a biomarker of

immunotherapeutic response, and higher TMB suggests

better immunotherapeutic response (38, 39). However, the

predictive efficacy of TMB often shows heterogeneity across

cancer types (40). We discovered that the TMB was greater in

the high-risk group of patients. However, as mentioned

above, the high-CuRS group patients exhibited lower

immunoreactivity, showing that high TMB doesn ’t

necessarily predict high immunogenicity. Additionally, prior

research has demonstrated that TMB is not a perfect predictor

of immunotherapy in NSCLC (41, 42), so we propose

that Cuproptosis-related risk models can better identify

“hot” tumors with an immune activation phenotype and

guide immunotherapy.

We predicted that the high-risk group patients would show

higher sensitivity to chemotherapy, especially Docetaxel;

however, patients with LUAD at advanced stages often

dev e l op r e s i s t anc e to chemothe r apeu t i c a g en t s .

Immunotherapy is a new therapy for many cancers, like

NSCLC, and exploring the patient types that immunotherapy

can help with is still a challenge. Further, we evaluated the

efficacy of risk models in predicting immunotherapy in patients

with LUAD from different perspectives. Patients with higher risk

scores were shown to be more responsive to anti-PD1 treatment

in TIDE and subclass mapping studies, and this finding was
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supported by data from an external validation cohort. By

analyzing a small cohort of NSCLC patients receiving

immunotherapy, we found a significant increase in survival

time for patients with low-risk scores. More convincingly, we

demonstrated in a large immunotherapy cohort IMvigor210 that

patients with low-risk scores survived better in comparison with

those having high risk. The current findings showed that the

genomic variation of tumor cells often leads to a larger number

of tumor-specific mutant peptides, which could be used as

neoantigens for the immune system to recognize. The

recognition of new antigens is the main factor of clinical

immunotherapy activity (43, 44). Therefore, more neoantigens

and TMB in the low-risk group may result in the increased

response of patients with low risk scores to immunotherapy. In

conclusion, we propose that a strategic optimization scheme for

Cuproptosis-based chemotherapy and immunotherapy may

be effective.

This study has several limitations. First, the data utilized in

our work were taken from public databases, like the TCGA and

GEO databases. Therefore, it is not possible to assess the quality

of the data, and multi-center validation is still needed before

applying it to clinical practice, especially for large prospective

studies. Second, our data are Bulk-seq data, which only consider

inter-patient heterogeneity and not intra-tumor heterogeneity.

Finally, additional in vivo as well as in vitro experiments to

explore the specific biological mechanisms of Cuproptosis in

LUAD are needed.

In summary, our work presents a novel Cuproptosis-related

prognostic model for LUAD that has shown excellent

performance in multiple datasets. Functionally, low-risk

patients suggest active antitumor immunity and immune

activation of “hot” tumors. In addition, we determined that

the model could be used for predicting the sensitivity of

chemotherapy and immunotherapy in individuals with LUAD.

These results advance the understanding of Cuproptosis and the

clinical management and precise treatment of LUAD.
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SUPPLEMENTARY FIGURE 1

External validation of CRGs-related deep learning models. (A) KM survival

curves of the high-risk and low-risk groups in the (A) GSE30219, (B)
GSE42127, and (C) GSE72094 cohorts. (D) Patients’ survival status in the

GSE30219, (E) GSE42127, and (F) GSE72094 cohorts. (G) ROC curves of
risk score at 1 year, 3 years, and 5 in the GSE30219, (H) GSE42127, and (I)
GSE72094 cohorts.

SUPPLEMENTARY FIGURE 2

Subgroup Cox analysis of FRS. Subgroup Cox regression analysis of risk
score in (A) TCGA cohort, (B) GSE30219, (C) GSE42127, and (D)
GSE72094 cohorts.

SUPPLEMENTARY FIGURE 3

CRGs-related deep learning model for treatment decision. (A) Predicted
IC50 values of the five commonly used drugs in the two risk groups in the

(A) GSE30219, (B) GSE42127, and (C) GSE72094 cohorts. Differences in
immunotherapy response predicted by the TIDE algorithm between both

risk groups in the (D)GSE30219, (E) GSE42127, and (F)GSE72094 cohorts.
Differences in immunotherapy response between both risk groups were

predicted by subclass mapping in the (G) GSE30219, (H)GSE42127, and (I)
GSE72094 cohorts.
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