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Background: Early diagnosis of skin cancer lesions by dermoscopy, the gold standard in dermatological imaging,
calls for a diagnostic upscale. The aim of the study was to improve the accuracy of dermoscopic skin cancer diag-
nosis throughuse of novel deep learning (DL) algorithms. An additional sonification-derived diagnostic layerwas
added to the visual classification to increase sensitivity.
Methods: Two parallel studies were conducted: a laboratory retrospective study (LABS, n= 482 biopsies) and a
non-interventional prospective observational study (OBS, n=63 biopsies). A training data set of biopsy-verified
reports, normal and cancerous skin lesions (n=3954), were used to develop a DL classifier exploring visual fea-
tures (System A). The outputs of the classifier were sonified, i.e. data conversion into sound (System B). Derived
sound files were analyzed by a second machine learning classifier, either as raw audio (LABS, OBS) or following
conversion into spectrograms (LABS) and by image analysis and human heuristics (OBS). The OBS criteria out-
comes were System A specificity and System B sensitivity as raw sounds, spectrogram areas or heuristics.
Findings: LABS employed dermoscopies, half benign half malignant, and compared the accuracy of Systems A and
B. SystemA algorithm resulted in a ROCAUC of 0.976 (95%CI, 0.965–0.987). Secondarymachine learning analysis
of raw sound, FFT and Spectrogram ROC curves resulted in AUC's of 0.931 (95% CI 0.881–0.981), 0.90 (95% CI
0.838–0.963) and 0.988 (CI 95% 0.973–1.001), respectively. OBS analysis of raw sound dermoscopies by the sec-
ondarymachine learning resulted in a ROCAUCof 0.819 (95%CI, 0.7956 to 0.8406). OBS image analysis of AUC for
spectrogramsdisplayed a ROCAUCof 0.808 (CI 95%0.6945 To0.9208). By applying a heuristic analysis of Systems
A and B a sensitivity of 86% and specificity of 91% were derived in the clinical study.
Interpretation: Adding a second stage of processing, which includes a deep learning algorithm of sonification and
heuristic inspection with machine learning, significantly improves diagnostic accuracy. A combined two-stage
system is expected to assist clinical decisions and de-escalate the current trend of over-diagnosis of skin cancer
lesions as pathological.
Fund: Bostel Technologies.
Trial Registration clinicaltrials.gov Identifier: NCT03362138
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1. Introduction

Malignant melanoma (MM) is a cancer claiming about 55,000
deaths worldwide annualy [1]. The gold standard for diagnosis of skin
cancer is dermoscopy [2] which results in a limited diagnostic accuracy
due to the complexity of visual inputs embedded in a dermoscopy
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

We searched in Pubmed and arXiv for prospective Clinical Trials
using the search terms of “deep learning” or “artificial intelligence”
and “melanoma” or “skin cancer”. Search was conducted on Dec
15, 2017 and repeated with addition of term “prospective obser-
vational study”, on Dec 18, without any finding. Laboratory stud-
ies on computer-aided diagnosis of skin cancer were published in
the last years, as well as a few articles comparing retrospective
laboratory data with dermatologist performance, but none was a
prospective observational study or clinical trial as reiterated in an
editorial on 31 Oct 2018, Dermatol Pract Concept. No study
used Sonification (data conversion to sound) and deep learning
in investigation of skin cancer or melanoma diagnosis.

Added value of this study

To our knowledge, this study is first to successfully test and vali-
date in a prospective observational study the diagnostic ability of a
dual Deep Learning analysis system to identify skin cancer. It is, as
well, the first employment of sonification, a novel second layer of
detection, in both laboratory and clinical studies, and demon-
strates its additive role in improving sensitivity of detection.

Implications of all the available evidence

Although dermoscopy is the most commonly method used to in-
spect cancerous skin lesions, its use in the hand of clinicians
calls for further improvements in sensitivity and specificity of the
technique. Combining Classifier and Sonification algorithms indi-
cate a potential clinician decision support system to be used in of-
fice or through telemedicine.
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image, and its dependency on physician skills. For example, in blinded
tests dermatologists achieve at the lower end of human performance a
mean sensitivity for MM detection of 40% [3] and for more complex
melanoma images detection is not better than chance. In clinical trials,
the number of biopsies that need to be excised in order to identify one
melanoma at ages b50 is 58:1 [4], and 28:1 at all ages [5].

Additional monitoring techniques are either experimental, expen-
sive or require prolonged training periods, therefore unavailable to
most dermatologists and primary care providers [6]. National skin can-
cer screening programs are beneficial only at a low evidence level [7],
rendering accurate skin cancer diagnosis an imperative social and eco-
nomical task. A Deep Learning (DL) classifier can be utilized in order
to interpret complex visual data through image feature extraction and
pattern analysis, such as to diagnose diabetic retinopathy of retinal fun-
dus [8] and identifying head CT scan abnormalities [9]. DL classifiers in
dermatology use can achieve a diagnostic performance equal or
superior to dermatologists' accuracy [10,11].

We report on a DL classifier (System A) developed and trained to vi-
sually analyze dermoscopy images, in order to identify cancerous skin
lesions, either pigmented (MM or dysplastic nevi, a clinical mimicker
of MM) or skin carcinomas. Classification of a lesion is dichotomous,
as malignant or benign, and enables a clinical decision support system
indicating the requirement for a biopsy. This single-stage DL system is
an effective diagnostic aid, on its own. Diagnostic accuracy was further
boosted by a novel analysis technology (System B), in which output
from the DL classifier is systematically converted into sound
(“sonification” [12]), and then the sound file is classified as indicating
a malignant or benign lesion.
The aim of this study was to test the diagnostic ability of a novel
two-stage bedside skin cancer diagnosis system. Lesion images were
captured by a dermoscope attached to a mobile phone and submitted
via a purpose-built application to the classifier operating in the cloud.
Instantaneous diagnosis was returned to bedside from Systems A and
B. Diagnostic performancewas tested by comparing SystemsA and B di-
agnostic output to ground truth biopsies, in both a retrospective labora-
tory study and a prospective observational study.

2. Methods

2.1. Analysis approach

We utilized a convolutional neural network (CNN) architecture
(System A) based on the Inception V2 network [13] to classify
dermoscopic images into malignant vs. benign (binary classification)
and obtain a feature representation for subsequent use in sonification.
The network maps an input image into an output feature map that
encodes the visual features which were found to be discriminative in
classifying lesions.

2.2. Datasets and deep learning training approach

The System A DL classifier was developed using publicly-available
datasets: the International Skin Imaging Collaboration (ISIC) 2017
dataset [14] (2361 images), and the Interactive Atlas of Dermoscopy
[15] (IAD) dataset (2000 dermoscopy images and 800 context images,
i.e. non-dermoscopic regular photos). Images in each of these datasets
are labeled as either a melanoma or benign lesion based on pathology
report. As a consequence, our DL lesion analysis method is predicting
the primary finding from histopathology based solely on the lesion
image. Caffe library [16] was employed to train the Inception V2
model parameters using stochastic gradient descent. Data augmenta-
tion was used to expand the available training images, i.e.transforma-
tions at random for each image were selected prior to forming each
minibatch. The transformations were flips, rotations, and crops, which
are meant to encourage translational and rotational invariance. Flips
were either horizontal or vertical, around the midline of the image. Ro-
tation angles were chosen at random. The centerpoint for cropping was
selected at random, but was constrained so that it always contained the
lesion. Training beganwith a pretrained Inception V2model which was
trained on the ImageNet dataset [17].We then performed fine tuning of
themodel using 800 context images from the IAD dataset. Since context
images can provide useful discriminative cues for dermoscopic image
analysis multi-task learning was performed, which has been shown to
improve the performance of deep network models [18].

2.3. Sonification of data

Sonification is the representation of data using non-speech [19]. The
data here were the weighted activations of all of the 1024 nodes in the
penultimate layer of the DL classifier, which were used to generate
sounds in several distinct ways. In the sonification design discussed
here, a k-means clustering algorithm [20] was used to cluster the
1024 node activations into groups of related observations. The
K-means algorithmwas initialized by randomly choosing N data points
without replacement to constitute the initial cluster centers, where N is
the number of clusters. In order to address the sensitivity to initializa-
tion, K-means was run 100 times, each with a different random starting
point. The clustering solution with the lowest error (i.e. the one that
maximizes the likelihood of the data) was chosen as the final model.
Cluster centroids represented by individual pitches and malignant
“alert” sounds were mapped onto loudness, timbre, and duration of a
sonification, thus an audio signal for each of the centroids of data was
derived, providing for an audio output that acoustically differentiated
the malignant from benign lesions. The overall effect of this particular
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sonification approach is to provide global information about the image,
and also about how it compares diagnostically to clusters of known im-
ages that are already in the database.

2.4. Classification by sonification and secondary machine learning

The sonification algorithms are designed to allow a listener to
differentiate the sound of different classes of lesions. This “diagno-
sis-by-ear” has been successful in our developmental stages, and
we anticipated that it could become a powerful diagnostic tool,
akin to the widely used stethoscope. In clinical settings, however,
ambient noise can preclude the use of audio output and this
Fig. 1. Visual representations o
motivated our development of an alternative quantification method-
ology. Thus, we developed a method to systematically inspect the
sonification output visually for lesion diagnosis. A secondary
machine learning system was developed to diagnose lesions by an-
alyzing FFTs and spectrograms derived from the sonification output.
Dermoscopy images (n = 482, half benign, and half malignant, all
randomly selected) from the database of images that the System A
classifier is built on were used to generate audio files using the
k-means sonification algorithm (Supercollider v. 3.8.0). For each
audio file, visual plots were produced (Sigview software, v.3.1.1.0;
SignalLab,e.K., Germany) of the audio amplitude, the FFT of the
audio, and the spectrogram (see Fig. 1).
f sonification audio files.
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Three separate versions of this secondary classifier, each with iden-
tical CNN architectures, were employed in order to explore the auto-
mated diagnosis of skin cancer based on the audio, FFT or spectrogram
derived from the sonification. All three classifiers were trained against
the ground truth diagnosis in the database, using a 80% random single
split of the samples (training set).The remaining 20% of the set were
held back and later used for validation (test set). All three classifiers nor-
malize the input (zero-mean and divide by standard deviation), and
dropout is used for regularization.

Raw audio classifier, LABS: each raw WAV file is single-channel
(mono) audio, produced via the sonification algorithm, with sample
rate of 44,100 Hz and a duration of 5 s, for a total of 220,500 data points
per file. By averaging each 10 consecutive samples, we reduced the
input size to 22,050 values. We used a 1-dimensional CNN, with input
size 22,050, first convolutional layer with 32 filters of size 1 × 5; max-
pooling layer with size 10; second convolutional layer with 64 filters;
max-pooling layer with size 10; a fully connected layer with 128 neu-
rons; and output softmax layer with 2 neurons. This model obtained a
validation accuracy of 86.6%.

Raw audio classifier, clinical study: methodology was similar, with a
sample duration of 3 s, a total of 132,300 data points per file, a reduced
the input size 13,230 values. The 1-dimensional CNN was identical
obtaining a validation accuracy of 80.8%.

FFT classifier, LABS: The image files were visual depictions of the FFT
of the audio files. We used 2 convolutional layers, the first with 32 fil-
ters, and the second with 64 filters. Each convolutional layer was
followed by a max-pooling layer of size 2 × 2. The two convolutional
layers were followed by a fully connected layer with 128 neurons, and
output softmax layer with 2 neurons. This model obtained a validation
accuracy of 82.3%.

Spectrogram classifier, LABS: An identical CNN architecture to the
one used for FFT was deployed, with the input files being images of
the spectrograms, yielding a validation accuracy of 92.8%.

2.5. Laboratory retrospective study (LABS)

To compare and quantitatively evaluate the three secondary classi-
fiers, we completed a laboratory study using an=482 sample of images
from the database. For each image, the SystemAmodelwas applied and
an audio file was generated from its output representation using the
sonification algorithm; then, for each audio file an FFT and a spectro-
gram were produced. These resultant files were then submitted to the
secondary machine learning classifiers described above. Performance
of the classifiers was quantified by the area under the curve (AUC) of
the receiver operating characteristic curve (ROC). This LABS study
would serve as a retrospective assessment of the effectiveness of the
sonification plus secondary classification approach and compare it to
the initial DL classifier (System A).

2.6. Prospective observational study

2.6.1. Study population
An open, prospective, non-interventional prospective observational

study (OBS) was conducted in a dermatologic clinic (AD, Tel Aviv, IL).
The clinical trial was approved by the institutional review board of
Maccabi Healthcare, Israel (protocol Aq 16,842/2017), clinicaltrials.gov
Identifier: NCT03362138. Enrollment occurred between 18th Dec
2017 and 23thAug 2018. Inclusion criteria were: age 18 years and
older, a suspected malignant lesion identified by a dermatologist
through dermoscopy resulting in clinical management of referral to bi-
opsy, and patients' consent to participate in the study. Exclusion criteria
were a non-intact skin, N15 hairs per dermoscopic field, performance of
an unsolicited biopsy by surgeon (shave), and lesion location within
1 cmof the eye ormucosae surfaces. A total of 68 consecutive biopsy re-
ports were received, 63 being eligible by inclusion criteria.
2.6.2. Prospective observational study design
Subsequent to a clinical decision to biopsy, patient was referred to

surgeon and asked to participate in the study by signing the consent
form. A dermoscope (DL4, 3 Gen, TX, US) attached to a smartphone
(iPhone 6) was used through a purpose-built application (HopLabs,
Atlanta, GA, US) for acquiring a dermoscopic image of a suspected lesion
whichwas transmitted securely to a server (HopLabs, Atlanta, GA, USA)
via a mobile network. Participant ID was transferred as consecutive
numbers, without other patient details. Images were processed on the
server by the DL algorithm (System A), and the DL outputswere further
processed by the sonification algorithm (System B), as previously de-
tailed. A clinical diagnosis, benign or malignant, appears on the
smartphone screen within 6–8 s from acquiring the dermoscopic
image, alongside controls to play the sonification audio.

2.6.3. Validation of sonification output
Raw sound files were derived for each dermoscopic image and

analyzed by a secondary learning machine for discerning malignancy.
Audio files were turned into spectrograms and the AUC of each patient
spectrogramwere determined (ImageJ, v 1.51j8, NIH) to be further plot-
ted versus biopsy reports.

During the LABS study (results discussed below), clear visual differ-
ences for FFT and spectrogram plots were evident for malignant versus
benign lesions (Fig. 1 c-f). The obviousness of the features, visually,
suggested that a set of diagnosis rules or heuristics may be determin-
able, so that a human could make the diagnosis without the need for a
secondary machine learning algorithm.

Therefore, the sonification procedure was completed again with the
new images from the OBS: for each image a sonification audio file and a
spectrogram were produced. For each of these images, the frequency
range, number of frequency components above 3000 Hz, and the num-
ber of saw-tooth wave components was determined. As a result of this
systematic evaluation, malignancy was defined for the OBS as: [1] a
spectrogram with components of N3000 Hz frequency; and/or [2] four
or more saw-tooth wave spikes (typically with declining peak heights).
These diagnostic heuristics are used to define the System B classifier
based on “heuristic inspection” in which a human expert makes a diag-
nosis using the sonification-derived heuristics, following on the auto-
mated System A classifier output.

“Success” for the new system would be detection of malignancies at
a Sensitivity of at least 75% for SystemA and 85% for System B results, as
validated by biopsy (Sensitivity is the percentage of correctly diagnosed
malignancies, i.e., true positive/positive diagnoses). Sensitivity metrics
are based on the performance of dermatologists with “easy to recog-
nize” class dermoscopies [3], a 72%± 11 endpoint, and our Deep Learn-
ing Sonified output was a 85% sensitivity endpoint (N1 SD of first
endpoint). An additional metric of success was a Specificity of at least
33% for Classifier and Sonification, as compared to biopsy (Specificity
is the percentage of correctly identified normal nevi, i.e., true nega-
tive/negative diagnoses). Specificity value are identical to a previous
field test study [21].

2.7. Statistical analysis

Baseline and demographic characteristics were summarized by
standard descriptive summaries. All statistical tests used in this study
(SigmaPlot v10.0, Systat Software, SanJose, CA) were 2-sided and a p
value b.05 was considered significant. Receiver Operating Characteristic
(ROC) curveswere used to compare theDL results to ground truth biop-
sies. In the ROCs, sensitivity, the true positive rate, was plotted on the
y-axis versus [1-Specificity], the false positive rate, on the x-axis. AUC
for such a plot has a maximum value of 1.0, and is a standard perfor-
mance metric in the machine learning literature. A minimal clinical
sample size of 36 patients for estimating sensitivity is required assum-
ing a 0.40 proportion for clinician group (null hypothesis), a DL sensitiv-
ity of 0.75, a statistical power of 0.80 and alpha of 0.05 (Sigmaplot for

http://clinicaltrials.gov
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Windows, V 10.0, Systat Software, San Jose, Ca, USA). Idem, assuming a
0.10 proportion for clinician group, a DL sensitivity of 0.33, a statistical
power of 0.80 and alpha of 0.05 a sample size of 58 patients is required
for specificity measurement.
3. Results

3.1. Laboratory study results

A total of 482 dermoscopies were tested versus ground truth biop-
sies to determine the diagnostic abilities of secondary classifiers based
on raw sound, FFT, spectrograms and the DL classifier. For the classifier
operating on raw sound waves (Fig. 1 a, b), an AUC of 0.931 (95% CI
0.881–0.981), was achieved (Fig. 2a), yielding a remarkable automated
diagnostic ability.

Unlike the raw sound waves, FFT and spectrograms exhibit
visually-discernible differences between benign and malignant
dermoscopies, which is the result of the intentional sonification
design, for example using a saw-tooth wave to sonify images that
are classified by System A as malignant. FFT of benign and malignant
origins (Fig. 1 c, d) show a N 3000 Hz sound frequency, as well as a
larger area under the FFT curve. When it comes to the visual spectro-
grams, malignant biopsies (unlike benign biopsies; Fig. 1 e, f) often
also display a characteristic pattern of multiple saw-tooth peaks, de-
clining in amplitude over time.

Applying the secondary classifiers to diagnose malignancy for
FFT, spectrograms, and the original DL classifier (System A),
resulting ROC curve AUCs (Fig. 2) were 0.90 (95% CI
0.838–0.963), 0.988 (CI 95% 0.973–1.00), and 0.976 (95% CI,
0.965–0.987), respectively (Fig. 2 b, c, d). From the AUC of 0.99,
above, it is concluded that secondary classification of sonification
spectrograms possesses the most sensitive means of diagnostic ac-
curacy. This considerably attenuates the false negative results that
are typical of current skin cancer diagnosis.
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Fig. 2. Receiver OperatingCharacteristic Curves andAreaUnder theCurve for the SecondaryMac
(d).
3.2. Prospective observational study results

The OBS findings provide an independent field test of the LABS re-
sults for the classifiers. As shown in Table 1, a total of 63 biopsies were
analyzed. Fig. 3a depicts the smartphone application, which was used
for acquiring images (via an attached dermoscope) and for displaying
the System A diagnosis and sonification playback controls.

The LABS dermoscopies usedmelanomas as amajor training indicator
of pigmented nevimalignancy. The clinical testing, however, encountered
mostly dysplastic nevi (n=14) and only twoMM due to a small sample
size, which aremore of a diagnostic challenge as compared tomelanomas
due to fine details of malignancy, which mimic but are not MM. The de-
gree of clinical dermoscopic dysplasia of all lesions rendered amandatory
excision under suspicion ofmalignancy. See representative clinical exam-
ples of the dysplastic nevi excisedwhichwere identified (Fig. 3b-f) and of
those not recognized by System B (Fig. 3g).

Major markers of malignancy are shared between LABS and OBS im-
ages of dermoscopies: benign lesions (Fig. 4 a,b) display a low FFT y-axis
span and do not display a N 3000 Hz frequency, contrary to malignant
dermoscopies (Fig. 4 c,d). Spectrograms of benign (Fig. 4e,f) and malig-
nant skin lesions (Fig. 4 g,h) conform to the 3000 Hz threshold and
show the multiple saw-tooth pattern. The differences are obvious in
most, though not all, of the biopsied lesions.

Sonification diagnostic output was validated by three independent
methodologies: raw sound DL, area measurement and heuristics.

Fig. 4i represents the raw sound analysis by a secondary machine
learning algorithm. A ROC curve AUC of 0.819 (95% confidence interval
0.7956 to 0.8406) reconfirms the accuracy of sonification as a diagnostic
test.

Fig. 4j is based on measurements of each patient's spectrogram AUC
by image analysis and plotting its area versus ground truth pathology
reports. A ROC curve AUC of 0.808 (CI 95% 0.6945 to 0.9208) was de-
rived. It is concluded that SpectrogramsAUCs, although a staticmeasure
which disregards dynamic shifts in frequency and time, are a promising
objective criteria for identification of malignancy.
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Table 1
Epidemiologic data and characteristics of lesions.

Characteristics No. 63

Study population
Patients 63
Lesions 63

Age, mean (range) 50.4 ± 14.9 (18–87)
Sex
Male 34
Female 29

Race
Caucasian 100%

Anatomic Site
Face 11
Trunk 31
Extremities 11

Diagnosis
Benign Nevus 35
Skin Cancer 28
Dysplastic Nevus 14
Atypical Spitz Nevus 1
Melanoma 2
Basal Cell Carcinoma 5
Squamous Cell Carcinoma 6
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The study performance of System A (DL classifier) and System B
(sonification and heuristic inspection) were compared. System A
achieved a 91% specificity (classifier identified 32/35 of benign lesions),
accompanied by a drop in sensitivity up to 50% as compared to previous
LABS. System B achieved a sensitivity of 86% (heuristic inspection cor-
rectly identified 24/28 of all skin cancers) and a specificity of 69%. Sys-
tem B identified 11/11 skin carcinomas as opposed to only 7/11 to be
recognized by system A. The positive and negative predictive values of
the combined System A specificity and System B sensitivity were
88.9% for both values. Therefore, System A seems to excel in specificity;
System B excels in sensitivity and grossly replicates the LABS. The com-
bined use of System A and B as a 2-stage clinical assistance achieves a
superhuman accuracy. In conclusion, upon evaluating clinical results
of System B use by different methods, OBS sonification confirmed
LABS results under a field test, in spite of fewer available malignancy
clues.
Fig. 3. Prospective observation
4. Discussion

We report on a skin cancer detection system which evaluates two
different inputs derived from a dermoscopy image: visual features de-
termined via deep learning (System A); and sonification of deep learn-
ing node activations followed by human or machine classification
(System B). A laboratory study (LABS) and a prospective observational
study (OBS) each confirm the accuracy level of this decision support
system. In both LABS and OBS, System A is highly specific and System
B is highly sensitive. Combination of the two systems potentially facili-
tates clinical diagnosis.

All skin carcinomas should be excised and pigmented lesions de-
fined as atypical nevi, a clinical diagnosis, are removed out of concern
of melanomas due to diagnostic uncertainty. The pathological report
classifies nevi as either melanoma, dysplastic nevi (a heuristic grading
intomild,moderate or severe) or normal nevi. A posteriori, onlymoder-
ate or severe dysplastic nevi should be excised [22], a difficult clinical di-
agnosis, especially in view of the overlap between.

Our System A LABS specificity results are consistent with previously
published experimental data [23,24]. System A prospective clinical
testing achieved a heuristic specificity of 91%, a figure to be reiterated
by additional studies, which majorly improves on the 34% specificity
by a recently reported [21] medical device. A novel contribution of our
article is the use of sonification, which is rarely used as a diagnostic
tool [25]. System B prevails in sensitivity (86%, heuristics) and further
investigation will need to parse out exactly how sonification of a DL
classifier layer, followed by secondary classification of its raw sounds
and spectrogram analysis, can maximally improve accuracy diversified
from System A. Furthermore, sonification detected 11/11 non
pigmented skin cancers, a figure which seems to outperform recent re-
sults derived in an experimental artificial setup [26]. Accordingly, Sys-
tem B achieved both its primary outcomes of specificity and
sensitivity. Combining further both Systems might endow a clinician
with an impressive assistance tool, which surpasses presently reported
dermatologist performance.

Dysplastic nevi are considered to be of malignant potential, due to
their risk for developing into melanoma [27], and especially in light of
current publications casting doubt on pathologists' ability to discern
moderate from severe dysplastic nevi [28]. Our system was assessed
al study Example Images.



Fig. 4. Prospective observational study Output Examples.
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under severe field testing, performing diagnosis ofminimal dysplasia—a
delicate-features dermoscopy challenge—as part of the criteria of sensi-
tivity. We attribute System A fall off in sensitivity during OBS, as com-
pared to LABS, to its training with a dataset composed mostly of
melanomas, without fine features dysplastic nevi. A degree of caution
should be exercised with estimating accuracy levels of a DL classifier,
since it appears that sensitivity to malignancy are controlled by the
dataset input, producing reports of a clinical sensitivity from 29% [29]
to 87% [24]. These results further emphasize the high sensitivity of our
System B, which identified cancerous lesions smaller than 6 mm diam-
eter. An accurate operative telemedicine prototype as a tool for cloud-
directed diagnosis is a fieldwhichmight be further improved, rendering
this system as a candidate for use in the detection of unimaged skin can-
cer [30].

As part of the initial line of thought in this project, the clinician was
expected to evaluate nevi by supplementing System A by listening to
the sonification output. Due to the inconvenience of sound perception
at the clinic, and in order to increase accuracy, it was decided to develop
visual inspection heuristics (clinical study) and a secondmachine learn-
ing algorithm for analyzing the sonification output (LABS, transformed
into spectrograms), rendering clinician diagnosis-by-ear as optional.
Two heuristic criteria seem to be critical to malignancy recognition of
the spectrograms, both in the LABS and OBS: a frequency of N3000 Hz
and four or more spikes of audio intensity. Turning obvious heuristics
into an operative algorithm and comparison with the raw sonification
sounds is a challenging task to be implemented.

The study does imply limitations. It is known that pathology reports
of melanoma diagnosis are disputable in about 15% of reports [28].
Therefore, there is a potential bias of diagnosis, since all biopsies in
this study were diagnosed by single pathologists. The pathologic report
criteria did not disclose nevi as mild, moderate or of severe etiology, al-
though in view of the existence of a small melanoma clinical entity,
atypical features should not preclude a biopsy of irregular nevi. Mildly
dysplastic nevi are not a candidate for excision, but no a priori
technology can identify whether a suspicious atypical clinical lesion is
a mild, moderate or severely dysplastic nevus and even pathologists
are at dispute whether a nevus belongs to the spectrum of moderate
to melanoma in situ,Therefore, our Systems A and B, which decide by
a excise or not recommendation, include excision of all atypical nevi cat-
egories as possibly malign, This is in accordance to a 2% yield of mela-
noma of incompletely excised moderate dysplastic nevi at 5 years of
follow up [22] whichmay seem significant at long range.OBS is of mod-
est scale (n=63), thus larger studies should expand on the present re-
sults. The clinical trial was performed by a single specialist in
dermatology (AD), although this should not affect quality of data, espe-
cially themalignancy detection, since DL diagnosis was algorithmic and
based on dermoscopy of images. It might be argued that our claimed
high accuracy of melanoma detection remains to be proved. It is
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assumed, but not proved, that if the System B is sensitive enough to
identify fine details of pathology-diagnosed dysplastic nevi, its sensitiv-
ity will increase further with bigger melanomas which are endowed
with malignant features, to a degree comparable with LABS, which
was trained mostly with conspicuous melanomas.

In conclusion, a new diagnostic method for cancerous skin lesions
detection, a potential method of teledermoscopy, achieved a high accu-
racy in a prospective study. Sonification output is a highly sensitive ma-
lignant detector of both pigmented and non pigmented skin cancer
lesions as evaluated by deep learning, areameasurement and heuristics
identifiers. Combining sonification sensitivity with classifier might
evolve into a useful decision support system for use of all physicians.
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