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Metaphors of Computation and Information tended to detract attention from the intrinsic
modes of neural system functions, uncontaminated by the observer’s role in collection,
and interpretation of experimental data. Recognizing the self-referential mode of function,
and the propensity for self-organization to critical states requires a fundamentally new ori-
entation, based on Complex System Dynamics as non-ergodic, non-stationary processes
with inverse-power-law statistical distributions. Accordingly, local cooperative processes,
intrinsic to neural structures, and of fractal nature, call for applying Fractional Calculus and
models of Random Walks with long-term memory in Theoretical Neuroscience studies.
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INTRODUCTION
Conceptual frames in which we ordinarily think and interact are,
in general, fundamentally metaphorical in nature (Lakoff and
Johnson, 1980): familiar patterns are sources of organizing the
understanding of novel situations, offer convenient locutions for
application to less defined or ill understood circumstances, and
assist with selecting decisions and actions (Ortony, 1993). In Sci-
ence, metaphors have traditionally influenced the formation of
scientific concepts and theories, and supplied evocative terms for
their formulation (Harre, 1995). They are also often credited with
stimulating novel ideas and generalizations, and suggesting useful
experimental approaches (Paton, 1996). Yet, caution is in order:
beware the bearers of false gifts! The correspondence between a
given situation or problem area, as the target, with the source of
a metaphor thought to offer a suitable metaphoric relation, is in
general based on surface appearance. At a deeper level, the source
may derive its validity from underlying assumptions and embed-
ded conditions that diverge from, and may in fact conflict with, the
conceptual structure of your target domain. You may find your-
self now unwittingly applying the conceptually deep structure of
your source to the target: you imported a deep structure for which
you did not bargain. In Werner (2004), I illustrated errors and
constraints that can thereby arise for the interpretation of obser-
vations in certain neurophysiological experiments. In the least,
commitment to the metaphor may lead one to overlooking or dis-
regarding more pertinent alternatives. In this spirit, Eliasmith and
Anderson (2003) called for “moving beyond metaphors,” citing
symbolicism, connectionism, and dynamicism as three pervasive
metaphoric domains of traditional System Neuroscience. In the
following, I will at first briefly review my own list of metaphoric
obstacles (partly divergent from Eliasmith), with emphasis on their
historical origin, and the nature of constraints they have imposed
on conceptualizing System Neuroscience. I will then review what

I believe we have learned in the last 20 years by recognizing the
brain as a self-organizing complex dynamical system in a state of
criticality.

THE METAPHORICAL BRAIN OF CYBERNETIC ORIGIN
This section’s heading is also title of Arbib (1972) seminal book
which presented authoritatively the range and scope of Cybernet-
ics’ impact on thinking in the Neuroscience. Those old enough
to have witnessed the rise and consolidation of Cybernetics in
the decades of the 1940s and 1950s will recall the excitement,
fervor of novelty, and the promise of new horizons for concep-
tualizing the nervous system. In a short span of time, Wiener’s
Cybernetics with the notions of feedback and control, Shannon’s
information theory, the concept of the Turing machine and the
Church–Turing thesis, and von Neumann’s invention of program-
mability of electronic computers appeared as the goldmines that
would allow making sense of the activity of spiking neurons for
the brain’s information processing strategies, and ultimately sug-
gest generalizations of societal import. For exploring the scientific
and social implications of these innovations, the Macy Founda-
tion sponsored the annual conferences of the“Cybernetics Group,”
beginning in 1943 and extending over 10 consecutive years. Com-
position of the group varied from year to year, ensuring the
inclusion of a wide array of disciplines. A principal mover of these
meetings was Warren McCulloch, to whom I will return later.
The fascinating story of this group’s wide ranging and often con-
tentious deliberations is told in books by Heims (1991), Dupuy
(1994), and in sections of Hayles (1999) book. Transcripts of the
proceedings were finally published by Pias (2003).

We owe the Metaphorical Brain two specific Metaphors: one
concerning computation in and by the brain, the other consider-
ing the brain as an information processor. The next two sections
will address them, in this order. While this essay is, sadly, in part
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an account of “sic transit gloria mundi,” it also aims to show the
role of the Cybernetics movement in the dialectic to the next steps
of conceptualizations.

THE COMPUTATION METAPHOR
This topic was reviewed in some detail at an earlier occasions
(Werner, 2007a,b) and I will therefore limit myself here to a few
essential aspects that bear on the specific objective of this essay.
There are two aspects to the computation metaphor: programma-
ble Symbolic computation on Turing machines on the one hand,
and Connectionism, on the other. The former lost its glamor
for the practicing Neuroscientist fairly quickly: Turing machine
computation (like any other form of programmable computa-
tion) transforms abstract objects by syntactic rules. Both, rules
and semantics, must be supplied by the user. Hence, this form of
computation is not part of a natural (i.e., user–observer indepen-
dent) Ontology (Hayes et al., 1992). Moreover, almost all of physics
is framed in Real Numbers which, due to computing errors by
rounding and truncation, are not materially executable with the
advertised accuracy (Landauer, 1999; see also Cartwright, 1983)
“Why the laws of Physics lie.” Most importantly, this form of
Computationalism raised the uncomfortable question of repre-
sentation: in Artificial Intelligence applications, and in many areas
of Cognitive Science, the semantic (propositional) content is sup-
plied by the user (Scheutz, 2002). The Neuroscientist, on the other
hand, needs to account for a natural origin of the representations
on which neural systems would perform computational trans-
formations. An “Internalist’s Semantics” would be required for
conferring semantic import to neural states, appealing exclusively
to mechanisms internal to the brain. Failing, there may be a way
around this: drawing on constructs from Control Theory and Sig-
nal Processing, Grush (2004, 2009) suggests that the organism’s
sensorimotor engagement could deliver the functionality required
for Computationalism to work. This seems of importance for
generating Internal representation in Artificial Intelligence and
Robotics for which Neurophysiology and Cognitive Theory are
expected to provide useful heuristics (see for instance: Shanahan,
2005). But for the Neurophysiologist interested in the principles
of brain function, representations pose a major hurdle: ultimately
they must originate from the sensory signals the brain receives,
whether by sensorimotor activity or simply by receiving sensory
signals. Under the heading of “Neural coding,” this subject will be
addressed in the context of the Information Metaphor.

Neural Networks seemed to offer a new perspective on com-
putation in the brain: Connectionism’s appeal for the Neurophys-
iologist are due to its sharing -at least on a superficial level- some
basic features of neural systems: a densely interconnected network
of processing units (“neurons”) that interact with one another
by sending and receiving signals modulated by the weights associ-
ated with the connections between them. Two signal contributions
have set tone and problematic of computation in these stylized
Neural Networks (Hertz et al., 1991): considering simple model
neurons as binary threshold units for computing weighted sums of
their inputs, McCulloch and Pitts (1943) proved that an asynchro-
nous assembly of such elements performs, in principle, Universal
Computation (given certain choices of weights). Forty years later,
Hopfield (1982) initiated the burgeoning era of Neural Network

computation which, ultimately, rests on the definition of energy
as a state function over a network of threshold elements; together,
they display emergent collective computational abilities. Not only
can networks of more realistic (e.g., spiking) neurons of various
formal properties realize any Turing computable function (Siegel-
mann and Sonntag, 1995); under certain conditions, they can even
outperform them (Siegelmann, 2003).

Broadly speaking, the thrust of the virtually incessant stream
of publications on Neural Network Computation falls into two
categories: one, to conceptualize a however tenuous connection to
the Symbolic Computation paradigm. Smolensky (1987) “on the
proper treatment of Connectionism”is a valuable repository of the
attempts to align symbolic and neural computation, introducing a
subsymbolic paradigm as a kind of half-way measure: rather than
hard syntactic rules, cooperation among “soft constraints” would
collectively deliver inferences by a kind of parallel relaxation, con-
ceivably emulating some features of cognitive processes. Cognitive
Science has made extensive use of this principle’s elaboration and
extension (see, for instance: Feldman and Ballard, 1982). The
other, neurobiologically more important category takes its direc-
tive from Hopfield’s original conceptual alignment with Statistical
Mechanics: it stresses the cooperative behavior and emergent com-
putational properties of connected networks of simple processors
(e.g., Amit, 1980; Sompolinsky, 1981), including their propen-
sity for forming stable attractor states (Rolls, 2010), and attractor
networks (Albantakis and Deco, 2011). The capacity of such net-
works for self-organization (Linsker, 1988; Hoshino et al., 1996),
phase transitions (Opper and Kinzel, 1996; Kinzel, 1997), and their
natural interpretation as vector-to-vector transformers places the
resources of dynamical systems at their disposal (Pellionisz and
Llinas, 1982). Endowed with plastic synapses for changing synap-
tic weights, and capitalizing on the representational capacity of
State Spaces, such vector spaces provide the required flexibility for
multiple processing layers and recurrency. In this perspective, and
at a higher level of abstraction, the entire pattern of the network’s
neuron activity is represented as a point in state space; activity pat-
terns generated by an input vector that the network has learned
to group together cluster to a circumscriptive cloud in the state
space; and learning traces a trajectory in state space along the
error dimension. Representations (concepts) can be portrayed as
State Space partitions (Churchland, 1987, 1989, 1995).

The bulk of recent and current studies with neural networks
emphasize a dual allegiance, true to their name: to neural (or
neuron-like) elements on the one hand, and to network dynamics,
on the other. Pursuing this latter avenue has uncovered sur-
prising results. Consider, for instance that neural networks can
self-organize to critical states (Bornholdt and Rohl, 2003; Levina
et al., 2007a) display avalanche dynamics (Levina et al., 2007b);
and how synaptic plasticity can drive self-organizing neural net-
works toward criticality (Meisel and Gross, 2009). In another
series of studies, de Arcangelis and Herrmann (2010) showed that
avalanches formed in self-organizing neural networks can learn
complex rules at phase transition, as result of a collective process.
Vogels et al. (2005) direct attention to various forms of network
dynamics and complex patterns of signal propagation with interre-
lations between stimulus driven and internally sustained network
activity. These and similar phenomena violate the intent of the
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“framers” of the Computation Metaphor for whom computation
was discrete (and generally synchronous) in the programmable
case, and continuous in Neural Networks. Aspects of non-linear
dynamics which are the reason for these violations will be dis-
cussed in later sections. They invite forcefully the timely question
“Are biological systems poised at criticality” (Moran and Bialek,
2010)? In any case, it appears amply justified to extricate Con-
nectionism from its affiliation with the Computation Metaphor,
and resurrect it in the perspective of “Computation on Networks,”
or “message-passing on graphs” (Mezard and Mora, 2009). How-
ever, as “old soldiers never die,” it behooves one to be alert to
the fact that the Computation Metaphor continues to influence,
often subliminally, thought, and speech patterns among practic-
ing Neuroscientists. Viewing Connectionisms in the framework
of the Computation Metaphor lets you forget its most distinctive
features: propensity for discontinuous state transitions and self-
organization. For the engineer, they are dreaded like the plague,
and must be avoided. For the brain, they may the essential mode
of operation. Accordingly, Connectionism in Neurophysiology
should more appropriately viewed as a stage in the“Dynamic Turn”
of a later section in this essay.

THE INFORMATION METAPHOR
Information was among the most embattled and controversial
topics in the discussions of the Cybernetics Group. As is well-
known, Shannon (1948) developed the mathematical theory of
communication (MTC) which delivers a quantitative measure of
the accuracy (and correspondingly, of uncertainty) with which a
message from a sender can be received by a receiver. It is based
on the selection by the receiver of one of the elements in a prede-
fined ensemble. Shannon also established the formal equivalence
of the uncertainty with physical Entropy in closed thermodynamic
systems. Studying control system, Wiener (1948) arrived indepen-
dently at the same mathematical result. In sometimes acrimonious
deliberations of the Cybernetics Group, MacKay (1969), proposed
to complement Shannon’s “selective information” with a “struc-
tural information” which would capture the stepwise accretion
of elements to a composite (like viewing a picture in a sequence
of scans), and “semantic information” as the selective operation
which a signal performs on the recipient’s set of possible states of
behavioral readiness (MacKay, 1954). For a more detailed discus-
sion Werner (1989, 2007a). However, Shannon carried the day in
the Group’s deliberations: the neat quantification of selective infor-
mation was just too seductive to compete with “muddy” meaning
and semantics (Adams, 2003).

The one aspect of these debates that continues to be particu-
larly relevant for Neuroscience pertains to “Neural Coding”: for
the Computationalist of the programmable version, this was to
be the source of internal representations; for the connectionist, it
provided the input to the neural nets. As indicated before, activity
in individual nerve fibers or neurons can be considered binary. It
was then virtually irresistible to view the relation between input
and output of a neuron in the framework of Shannon’s informa-
tion transmission from a sender to a receiver. This became what
one may call the “hegemony of the digital doctrine” in Neuro-
science. Interestingly and with a twist of irony, R. Gerard, the only
Neurophysiologist of the Group, most strenuously objected to this

notion, despite the fact that he and Li were in fact the first to record
single neuron spikes from cortex. He argued that undue emphasis
on patterns of single neuron activity would defeat appreciating the
genuine nature of brain events.

Nevertheless, “Neural Coding” prevailed and has triggered a
flood of theoretical and experimental studies. This field was most
competently reviewed by Rieke et al. (1997) but the stream of new
investigations still persists incessantly. In the foundational context
of Information Theory, Neural Coding, Representation, and Infor-
mation Processing came to constitute a closely interrelated nexus
of investigative targets (Borst and Theunissen, 1999). Two ques-
tions are directive: one, which feature of a neural spike train (rate,
interval statistics, correlations, etc) carries (encodes) the message
(in Shannon’s sense)?; and second, how do downstream neurons
“evaluate” (decode) a putative message that may be encoded in a
spike pattern (see, e.g., de Charms and Zador, 2000; Jacobs et al.,
2009) or in time-dependent signals (Bialek et al., 1991)?. Concern-
ing the first issue, Perkel and Bullock (1968) listed 15 aspects of
neural spike trains that could conceivably function as codes.

Failing to obtain in the short run any conclusive answer to both
question, some investigators turned to an alternative approach:
comparing neural activity elicited by natural stimuli with known
behavioral or psychophysical measures, the idea being that what-
ever measure of neural spike trains compares best with cor-
responding perceptual–cognitive activity is then presumably a
“neural code.”For illustration of the basic pattern of this approach:
an early study of this type, involving cutaneous touch receptors
and using firing rate as response measure, determined that the
spike count (rate code) in peripheral efferent fibers suffices for
reliably distinguishing eight different stimulus intensities (Werner
and Mountcastle, 1965). This amounts to a capacity for trans-
mitting three bits of information, which is also equal to the limit
of cognitive processing in human subjects (Miller, 1956). For a
review of numerous comparable studies examining correspon-
dences between scales of neural activity and Psychophysics for
different sense modalities, see Werner (1968). The same principle
of seeking correlations between neural and perceptual–cognitive
activity became also the target of innumerable investigations
with the 60-Hz cycles in sensory neurons, extending over sev-
eral decades. For a recent summary and overview, see: von der
Malsburg et al. (2010).

What matters for the principal thesis of this essay is, how-
ever, that the views regarding the Coding Problem diverged in
time into two radically different directions: one, applying math-
ematical approaches of increasing sophistication to analysis, and
generation, of spike trains in individual, or ensembles of, neurons;
the other, calling the very notion of “neural code” in question.
One recent example of the former category is the elegant work of
Haslinger et al. (2009): their approach determines a spike train’s
causal state model (i.e., a minimal hidden Markov model) that
generates time series which are statistically identical with the orig-
inal spike trains. This enables a novel view to the coding issue, for
it is then possible to relate the covariates to the causal states as
generators of the spike train, rather than to the spike train itself.
There was then also the question whether groups of discharging
neurons might carry a message: for instance, Yu et al. (2010) were
interested in the information delivery rate from a population of

www.frontiersin.org September 2011 | Volume 2 | Article 60 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Werner The brain speaking

neurons, with attention to redundancy of information within and
between functional neuron classes. It also turned out that ongoing
network states are effective determinants of an individual neu-
ron’s spiking activity (e.g., Harris, 2005; Shlens et al., 2006; Tang
et al., 2008), and Truccolo et al. (2009) reported that the ensem-
ble history is a better predictor for a neuron’s spiking than is the
ensemble’s instantaneous state. These few recent and representa-
tive examples are indicative of the efforts to characterize statistical
properties of spike trains, but they do not by themselves con-
tribute to the question of message transfer on afferent pathways.
However, the frequently applied measure of “Mutual Information”
is an effective way for determining the degree of independence of
two data sets; it is independent of the underlying distributions
and requires minimal assumptions about dynamics and coupling
of systems (Schreiber, 2000; Tkacic, 2010).

The second branch of the Coding Problem’s history takes an
entirely different view. Its origin can be traced to debates and con-
troversies among the member of the original Cybernetics Group:
the pivotal point was the contentious issue of the observer. As
a paradigmatic situation, consider the usual experimental condi-
tion for studying “coding”: typically, one applies stimuli whose
metric one chooses as plausible, and then evaluates the neural (or
behavioral) responses they evoked by a metric one chooses, such
that one obtains a statistically valid (or otherwise to the exper-
imenter meaningful) stimulus–response relationship. One then
claims that the metric of the neural response “encodes” the stim-
ulus, being tempted to conclude that the organism is “processing
information” in the MTC paradigm. But recall that this paradigm
deals with selective information; that is: the receiver needs to have
available a known ensemble of stimuli from which to select the
message. Moreover, this procedure does not permit one to know
whether any of the metrics applied is of intrinsic significance to
the organism under study: the observer made the choices on prag-
matic grounds (Werner, 1988). In reality, once triggered by an
external input, all that is accessible to the nervous system are the
states of activity of its own neurons; hence it must be viewed as
self-referring system.

In a broader context, self-reference and self-organization
became the rallying point of a successor to Cybernetics, gener-
ally known as “Second-order Cybernetics,” with Heinz von Foer-
ster as leading proponent. Closely related is Maturana (1970)
idea of Autopoiesis: in some ways a premonition of things that
needed another 50 years to mature, as the Section on Non-analytic
Dynamics will show. In this view, and in contrast to the route of
coding, stimuli from the periphery are thought to perturb the cen-
tral nervous system’s structure and internal organization according
to its own internal dynamics (see also: Maturana and Varela, 1980).
Coding and representing have in this framework lost legitimacy.

The application of MTC in Neurophysiology is also vulner-
able on other grounds. MTC and its generalizations to Infor-
mation Theory and “information processing” are predicated on
the assumption of normalcy of data distributions, and ergod-
icity of the data generating process. But the abundant evidence
for fractal patterns and structures, and self-similarity at all levels
of neural organization violates this assumption (Werner, 2010).
More about this in the section on Non-analytic Dynamics. For
different reasons, the Neuronal Group Selection theory takes the

view that the complexity, variability, and unpredictability of the
world precludes the notion of preexisting information, applicable
to all situations, which the selective information paradigm of MTC
requires (Edelman and Finkel, 1984).

At the time of its conception, MTC blended beautifully with
the theory of programmable computation to forge an alliance
that has molded an immensely influential Metaphor; the col-
loquial “Information” of prevailing linguistic use undoubtedly
fostering its ready acceptance. This entailed forgetting that Infor-
mation (technically speaking) and Computation (of the Turing
type) are observer constructs. Lacking an intrinsic ontology, Infor-
mation refers to a description of reality, and Computation to an
user-relative semantics. Nevertheless, bearing this in mind, both
metaphors can serve useful purposes (Cox, 1946; Knuth, 2010).
Information and computation metaphor are valuable constructs
in the service of neurocomputational engineering developments
(Eliasmith and Anderson, 2003): in these applications, You are the
master in your house: You design and build an object whose Ontol-
ogy is therefore transparent to You, and to which You can choose
the epistemic access to suit your purpose. But as Neurophysiolo-
gist, you face an unknown Ontology; the best you can do is to try
finding an epistemic access that, by some criterion of your choice,
is optimal: a kind of inverse problem. As I tried to show before:
metaphors are likely to be treacherous guides in this endeavor.

ANALYTIC BRAIN DYNAMICS
The starting point was W. Freeman’s insight that electrical activ-
ity recorded from aggregates of neurons (neuron masses, in his
originally terminology) can be interpreted as meaningful spatio-
temporal patterns, related to sensory perception and learned
behavior: from electroencephalographic records of the olfactory
bulb in rabbits, he identified odor specific, stable activity patterns
which reflected odor discriminations acquired by prior training.
For each discriminated odorant, a learned limit cycle attractor
is formed, differentiated from others by its basin and its spa-
tial amplitude pattern. This ground-breaking conceptualization
(and its multiple implications and extensions) was summarized in
Freeman and Skarda (1985), Skarda and Freeman (1987) as the
result of some 12 years of work, and is also splendidly reviewed
by McKenna et al. (1994) in the broader context of viewing the
brain as a physical system. This initial work introduced non-linear
dynamic analysis of neuronal system. Based on this work, Freeman
confronted the Information Metaphor head on: here are some
excerpts from Freeman and Skarda (1985): “context and mean-
ing of representations are invariably in the brain of the observer
and not of the observed..... In the language of representations, the
olfactory bulb extracts features, encodes information, recognizes
stimulus patterns, . . .These are seductive phrases, ... but in animal
physiology they are empty rhetoric.”

In the following years, Freeman’s work continued in this vein
with ever more sophisticated applications of non-linear dynamics
to characterizing records of human Electroencephalogram (EEG),
which led to identifying the role of chaotic phase transitions
(Freeman, 2000) and, eventually, to proposing that the non-linear
brain dynamics is a macroscopic manifestation of a many-body
field dynamics (Freeman and Vitiello, 2006). But this gets ahead
of some developments in Physics with far reaching implications
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for virtually every field of knowledge, including, of course, the
Neurosciences.

In the wake of the opening moves by Nicolis and Prigogine
(1970) and Haken (1975, 1983), the study of non-equilibrium
dynamic systems in Physics yielded a massive body of knowledge
and experiences that eventually came to constitute the modern
theory of critical phenomena. Stanley (1987, 1999) offers succinct
accounts of the key concepts, as are the comments on theoret-
ical foundations of particular relevance to neurobiology by Le
Van Quyen (2003). Recall that a phase space is a mathematical
construct: it is understood as abstract space with independent
coordinates representing the dynamic variables needed to spec-
ify the instantaneous state of the system, which is represented
as a point in that space. A system’s state may be described at a
microscopic level in terms of its constituent elements. It can also
be characterized at a macroscopic level: that is how it appears to
an observer who “coarse grains” the microscopic state by lumping
elements to larger aggregates. Non-linear dynamic evolution equa-
tions determine the trajectory’s motion in phase space. At certain
points along the trajectory, singularities (discontinuities, bifurca-
tions) of the evolution equations may be encountered which cause
the system to undergo abruptly a phase transition to a qualita-
tively new and different state. This may occur spontaneously, or in
response to external perturbation. For applying this framework to
Neuroscience, it must be understood that the differential equations
for describing the state space dynamics stand in actual reality for
the local physical and chemical processes that are in effect between
neuronal elements; they are thought of as cooperative and collec-
tive interactions. In this spirit, the underlying neuronal dynamics
is entirely internal to the modeled system, involving merely local
collective processes among the constituting elements. If compu-
tational simulations adequately correspond to actual observations
with real neural system, it is then thought that the dynamics of the
real system is also sustained by system-intrinsic processes, safe of
course for perturbations of external origin.

The plausibility of the dynamic view of brain function received
forceful support from the discovery of spatially irregularly occur-
ring patterns of propagated neuron discharges sequences in neural
tissue: on the basis of detailed quantitative–statistical analysis,
Beggs and Plenz (2003, 2004) identified these patterns with the
“avalanches,” characterized by Bak et al. (1987, 1988) as evidence
for a physical system having attained by self-organization a per-
sistent critical state. Such avalanches are bursts of activity with
size and duration obeying power-laws, created by spontaneous
(intrinsic) fluctuations of local activity (Chialvo, 2004, 2008).
The principles underlying this claim are supported by numerous
theoretical and experimental studies, and detailed aspects of the
dynamics have been clarified by, for instance, Dickman et al. (2000)
and summarized in Sornette (2000). Criticality signifies here that
minor perturbations, possibly spontaneous random noise, will
trigger avalanches that correspond to (continuous) phase transi-
tions in the Theory of Critical Phase Transitions, referred to earlier.
Plenz and Thiagarajan (2007) propose to view such avalanches as
dynamic cell assemblies in neural tissue. Numerous investigations
of human fMRI under various conditions, summarized recently by
Chialvo (2010) and Tagliazucchi and Chialvo (2011) also solidly
affirm the evidence for the type of complex emergent phenomena

in brain that are typical of systems poised near to or at a critical
state of (second-order) phase transitions. Physics of condensed
and excitable matter provides the theory of this phenomenon
(e.g., Kadanoff et al., 1989; Sethna, 2006), with the well-known
Ising model serving as one of the physical prototypes: there, the
critical state is evident as long-range correlation links in scale-free
networks, with the same characteristic features that are observed
with functional magnetic imaging in brains (Fraiman et al., 2009;
Kitzbichler et al., 2009; Expert et al., 2010). Thus, the notion of
brain criticality rests on relatively solid grounds, not as a Metaphor,
but as the result of intrinsic physical mechanism. However, it is
then also important to be aware that the mathematical tools for
describing criticality in statistical systems is in general quite differ-
ent from the language used when working with dynamical systems
(Moran and Bialek, 2010). This will be pursued in the Section on
non-analytic Dynamics.

The implications of the dynamic conceptualization and criti-
cality in brain physiology are discussed and illustrated in Werner
(2007b, 2009a,b,c). Haken’s approach, cited above, spawned the
extensive investigations that eventually consolidated to the field
of Coordination Dynamics (Haken et al., 1985; Kelso et al., 1992;
Kelso, 1995). It established in different types of experiments and
with careful analytic methods the concurrence of phase transitions
in motor and perceptual–cognitive performance with brain elec-
trical activity. In the course of these investigations, Kelso arrived at
the view that the critical state in brain dynamics should be under-
stood as “a space for exploring competing, perhaps conflicting,
dynamic regimes” (Kelso and Engstroem, 2006). This may also
bear on the proposal by Bailly and Longo (2011) that a kind of
“extended criticality” should be considered, possibly reflecting an
entanglement of coexisting levels of order at the macroscopic. For
the sake of completeness, recall that a “dynamic turn” occurred
also in Cognitive Science, where it was essentially set in motion by
Port and van Gelder (1995) book “Mind in Motion.”

What is the significance of brain criticality? In the first place,
it is associated with the establishment of long-range correlation
for integration of activity across distant regions of neural tis-
sue, displaying conspicuous fractal properties. The nature of this
profound neuronal reorganization was ascertained under various
experimental conditions and in numerous human EEG and fMRI
studies (for detailed citations, see: Turcotte, 1999; Werner, 2010):
in this process, neurons assemble to new clusters whose size dis-
tribution scales with a power function of a negative exponent
smaller than two, and exhibits self-similarity. Accordingly, the ele-
ments of the system assume a fractal order which is associated with
entirely new properties: obeying, at the system’s macroscopic level,
new laws, and requiring new descriptors, which cannot be simply
deduced from the prior state (West, 2004). We say then that a new
ontology originates with phase transitions, which requires new
epistemic criteria for its description and interpretation (Werner,
submitted).

Here, then is the drastic difference to the cybernetic Infor-
mation Metaphor: neural systems do not process information;
rather, being perturbed by external events impinging on them,
neural systems rearrange themselves by discontinuous phase tran-
sitions to new ontic states, formed by self-organization accord-
ing to their internal dynamics. Internal to the system, these
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new ontic states are the “raw material” for the ongoing system
dynamics, by feedback from, or forward projection to other lev-
els of organization. Looking at the dynamics from the outside,
these dynamic states are objects to which the observer can do
no more than apply his/her observer-dependent interpretation
of accessible system observables. Clearly, if seen in this way, the
metaphors of cybernetic origin and the brain dynamics sketched
here are incommensurable: albeit interacting, inside and outside
are two worlds, apart. How to deal with the (fractal) dialect the
brain speaks in its own internal world is the subject of the next
section.

BRAIN COMPLEXITY WITH NON-ANALYTIC DYNAMICS
Following this path will require delving into the burgeoning field
of Complexity management (West, 1999). But first, a new look
at recent findings of neuronal brain dynamics, based on EEG
scalp records of normal subjects. Applying the time evolution of
a minimum spanning tree method (Kruskal, 1956) to analyzing
human EEG, Bianco et al. (2007) noted the intermittently occur-
ring abrupt changes of topology, designated as “events,” which
obeyed a renewal statistics. In the further course of the analysis,
these authors concluded that EEG reflects a non-ergodic, non-
Poisson, renewal process with a power-law index <2 (Bianco
et al., 2008). Comparing this observation with results of an ear-
lier study of the fluorescence intermittency in blinking quantum
dots, Bianco et al. (2005) suggested that the recorded events can
be attributed in both cases to a cooperative dynamics with emerg-
ing self-organized coupling of many interacting units (Grigolini,
2005; Bianco et al., 2008). In an independent series of experiments,
Allegrini et al. (2009) recorded coincidences of events, occurring
simultaneously among two or more scalp electrodes. The waiting
time distribution between consecutive events presented an inverse-
power-law index of approximately 2, corresponding to a perfect
1/f noise. These authors also proved that the coincidences are dri-
ven by a renewal process. Allegrini et al. (2010) carried this line of
research one step further by studying the rapid transition processes
(RTP) in EEG which Fingelkurts and Fingelkurts (2004) had exam-
ined in great detail. RTP’s are not only evidence for intermittent
global metastable transitions, but they also display multichannel
avalanches (see Beggs and Plenz, 2003) which appear as simulta-
neously occurring RTP’s at several EEG recording sites. Statistical
measures of multichannel avalanches exhibit inverse-power-law
statistics and, thus, attest to the state of self-organized criticality
of the entire cortex. Evidently, the units of activity underlying the
recorded events are in these cases clusters of neurons (neuronal
assemblies) whose dynamical interactions constitute networks.

Considering the case of two clusters of element (sub-networks)
embedded in a network, Bianco et al. (2008) found that cluster-to-
cluster interaction is facilitated if the clusters are self-organized.
Interactions occur then abruptly (designates as “crucial vents”),
with the statistics of inter-event times indicating a non-ergodic,
non-Poisson, renewal process (Turalska et al., 2009). West et al.
(2008) examined the conditions for maximizing information
exchange between two complex networks, taking into account
their characteristics as non-stationary processes with inverse-
power-law statistics. Viewing the power-law exponent as measure
of complexity, it turned out that information exchange is optimal

when the complexities of perturbed and perturbing network are
equal. Subsequently, it became apparent that perturbing and per-
turbed complex network must also share their respective temporal
complexities, i.e., their non-stationary, non-ergodic fluctuations at
the onset of phase transitions (Turalska et al., 2011). Obviously,
conditions for “information sharing” among complex systems are
quite stringent, and much more work will be required to iden-
tify all relevant parameters. Surprisingly, complex systems do not
respond to external stimuli at all unless they are not also complex
(Turalska et al., 2009; Aquino et al., 2011).

In the Complex Network literature, it is customary to speak
of “Information flow” or “Information exchange” in and between
complex networks with the clear understanding that what is under
discussion is NOT Shannon-type information, but rather Mutual
Information, at best. My own preference is to view the relationship
between complex networks as “perturbation,” with a perturbing
network affecting topology and dynamics of a perturbed net-
work, according to the latter’s internal dynamics. Note the drastic
difference between this outlook, and the notion of Information
transmission between neurons (and neuronal systems) by encoded
messages in the Cybernetic Information Metaphor.

An equally fundamental distinction is due to the complex webs
being fractal: this renders ordinary or partial differential equations
of motion no longer adequate for characterizing system dynam-
ics (West, 2006). Instead, long-term memory in the dynamics of
complex phenomena must be taken into account in the form of
deterministic or stochastic fractional Dynamics. Fractional Gauss-
ian noise was identified by Maxim et al. (2005) in fMRI records of
human brains, and Achard et al. (2008) traced the fractal con-
nectivity of long-memory networks. For other applications of
fractional calculus in Neurophysiology, see for instance: Scafetta
et al. (2009) work on postural control, and Lundstrom et al. (2008)
on fractional differentiation by neocortical pyramidal neurons.
Suitable texts for this area of Mathematics are, for instance: West
et al. (2003) and Miller and Ross (1993). Computational modeling
on this basis may correspond in the Physics of Brain to Random
Walks with long-term memory (Montroll and Shlesinger, 1984;
West and Grigolini, 2011; Ch. 4). Random Walks were used for
tracing pair-wise local interactions along fractal neuronal con-
nections by Sporns (2006), Fontoura Costa and Sporns (2006),
and Fontoura Costa et al. (2011). Bieberich (2002) advocated the
candidacy of the self-similar branching structure of recurrent frac-
tal neural networks for the brain’s local and global “Information
processing” (Sic !).

The observations and conclusions reported in this Section are
in accord with the brain being in a critical state (Chialvo, 2004,
2008, 2010; Chialvo et al., 2008). In addition, they underscore the
fractal nature of the critical state that results from the brain’s self-
organization. The brain’s critical state can thus be viewed as a
complex network of neuronal clusters on multiple scales: the clus-
ters (neuronal assemblies) being the network nodes whose links
enable coordinating their activity states. In virtue of the long-range
connections between clusters, all parts of the system act in the crit-
ical state as if they can potentially communicate with each other,
yet actual interactions are strictly local and constrained by seem-
ingly stringent conditions of complexity matching (West et al.,
2008).
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SUMMARY AND CONCLUSION
Based on tracing notable landmarks in the history of Theoretical
Neuroscience of the past six decades, evidence is presented that
the metaphors of Computation and Information have stood in
the way of gaining access to the intrinsic modes of neural sys-
tem operation. Connectionism, originally subsumed under the
Computation Metaphor, can more appropriately be viewed in
the framework of Complex Networks. More importantly, Neural
Dynamics must take into account the fractal nature of phase

transitions and criticality in complex systems, requiring the math-
ematical tools of Fractional Calculus and its physical models of
Random Walks with long-term memory: the overriding issue is
the fractality in the context of Complex System Dynamics. On
account of this, self-similarity in neural organizations and dynam-
ics poses one of the most intriguing and puzzling phenomenon,
with potentially immense significance for efficient management of
neural events on multiple spatial and temporal scales. Answering
the challenge posed in the title: “fractal spoken here.”
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