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SUMMARY

Developing therapeutic monoclonal antibodies (mAbs) for the subcutaneous
administration requires identifying mAbs with superior solubility that are
amenable for high-concentration formulation. However, experimental screening
is often material and labor intensive. Here, we present a strategy (named solPre-
dict) that employs the embeddings from pretrained protein language modeling
to predict the apparent solubility of mAbs in histidine (pH 6.0) buffer. A dataset
of 220 diverse, in-house mAbs were used for model training and hyperparameter
tuning through 5-fold cross validation. solPredict achieves high correlation with
experimental solubility on an independent test set of 40 mAbs. Importantly, sol-
Predict performs well for both IgG1 and IgG4 subclasses despite the distinct sol-
ubility behaviors. This approach eliminates the need of 3D structure modeling of
mAbs, descriptor computation, and expert-crafted input features. The minimal
computational expense of solPredict enables rapid, large-scale, and high-
throughput screening of mAbs using sequence information alone during early
antibody discovery.

INTRODUCTION

Therapeutic monoclonal antibodies (mAbs) represent the fastest growing class of therapeutics on the mar-

ket, with around 100 antibody drugs approved to treat a wide spectrum of human diseases (Leavy, 2010),

including cancer (Dean et al., 2021; Weiner et al., 2010), inflammatory, and autoimmune diseases (Chan and

Carter, 2010). Subcutaneous injection has emerged to be the preferred delivery route of mAbs drug prod-

ucts especially in the treatment of chronic diseases, because they can be self-administered at home and

therefore enhances patient adherence and compliance (Anselmo et al., 2019). Given limited injection vol-

ume (<2 mL) and high dose requirement (�500 mg), mAbs must be soluble enough to achieve high-con-

centration formulations (>100 mg/mL) (Kingsbury et al., 2020). Furthermore, mAbs must remain soluble

at high concentrations during the manufacturing process which can cause protein precipitation. Therefore,

superior solubility is vital for developing liquid formulation of therapeutic mAbs (Makowski et al., 2021;

Shire et al., 2004; Wolf Pérez et al., 2022).

A practical hurdle is that poor solubility behavior often manifests at higher mAb concentrations (>50 mg/mL)

(Chai et al., 2019). Early experimental screening is often challengedby the large number of antibody candidates

andthe limitedpreparationqualityavailable (i.e.minuteamounts, lowconcentrations,and lowpurity) (Chaietal.,

2019; Wolf Pérez et al., 2019). In silico solubility prediction appears to be a convenient alternative owing to its

capability of rapid high-throughput screening without material requirement (Han et al., 2022; Hebditch et al.,

2017; Sormanni et al., 2015, 2017). Current computational approaches rely on molecular descriptors extracted

either from protein sequence (sequence-based predictors (Hebditch et al., 2017; Sormanni et al., 2017)) or

from structures (structure-based predictors (Chan et al., 2013; Han et al., 2022; Sormanni et al., 2015)).

Sequence-based predictors often neglect tertiary structure information, which distinguishes poorly soluble res-

idues driving protein folding from the ones that are exposed to the solvent and may elicit aggregation (Wolf

Pérezet al., 2022). Structure-based tools canbeusedonlywhen the structureor a high-qualitymodel is available.

This limits the throughput and application to large number of early-stagemAb candidates. Furthermore, some

of the computational methods only output a binary classification (e.g. soluble/insoluble) (Hebditch et al., 2017;

Smialowski et al., 2012; Trainor et al., 2017) instead of a numerical value.

The lack of quantitative solubility dataset of large, diverse mAbs at pharmaceutically relevant formulation

further hinders the generalizability of computational predictors. Previous developability related work has
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been performed with non-mAbs proteins (Hebditch et al., 2017), limited mAb datasets (Sormanni et al.,

2015, 2017), closely related mAbs with varying mutations (Sormanni et al., 2015, 2017), or mAbs belonging

to the same subclass (Sharma et al., 2014). Furthermore, mAb solubility is highly dependent on formulation

condition (Chai et al., 2019). Histidine and pH 6.0 (H6) buffer system has emerged as a common buffer/pH

system for mAb-based products, because at pH 6.0 chemical degradation of proteins is minimized which

makes liquid formulations feasible (Kingsbury et al., 2020). To the best of our knowledge, there are no

computational tools that can quantitatively predict the solubility at H6 condition for different subclasses

of mAbs using sequence information alone.

A powerful approach is transfer learning which distills the knowledge learned from protein language

models trained on very large unlabeled protein sequences and builds a downstream model supervised

with limited data (Bepler and Berger, 2021). Previous studies have shown that using the representations

from pretrained protein language models as input features to fine-tune a supervised model can improve

a wide variety of protein-relevant tasks, including secondary structure prediction, contact prediction,

and remote homology detection (Rao et al., 2019; Rives et al., 2021). However, such methods have not

been fully explored to predict attributes that are essential to antibody developability.

Here, we propose an end-to-end sequence-to-function model, solPredict, to predict the quantitative sol-

ubility of mAbs at H6 using only antibody sequences. To develop a general predictor of antibody solubility,

we constructed a large and diverse set of 260 in-house mAbs, consisting of 112 IgG1, 140 IgG4, and 8 IgG2.

The quantitative solubility was measured at histidine pH 6.0 buffer condition using PEG-induced precipi-

tation method due to the advantages of high-throughput screening and minimal material requirement

(Chai et al., 2019). To overcome the limitation of expert-crafted descriptors, and the necessity to obtain

high-quality 3D structures, we represented antibody sequences as embeddings, fixed-length vectors ex-

tracted from a pretrained protein language model (ESM1b) (Rives et al., 2021). We show that pretrained

protein embeddings are informative for mAbs property prediction. Supervised learning using simple ma-

chine learning models and small labeled dataset suffice to enrich the signals and learn the sequence-to-

solubility relationship. We also find that mAb solubility behavior differs among different IgG subclasses.

solPredict can predict IgG1 and IgG4 reliably, but more IgG2 data are needed to be generalizable to

IgG2. In this work, we provide a systematic framework for the study of antibody developability when limited

data are available, which can be used for high-throughput screening of mAbs during early antibody

discovery.

RESULTS

Dataset construction

We sought to construct a large, diverse dataset with quantitative measures of solubility behavior. We used

polyethylene glycol 3350 (PEG 3350) with concentration ranging from 4% to 36% to assess the relative sol-

ubility of 260 mAbs (see STAR Methods for details). We chose the PEG-induced approach due to its capa-

bility of robust, high-throughput screening withminimal material consumption (Chai et al., 2019). Out of the

260 mAbs, 112 are IgG1, 140 are IgG4, and 8 are IgG2 molecules. Measurements were made in a 0.4 M

L-histidine (pH 6.0) buffer condition, which has emerged as a popular choice for mAb-based products

(Kingsbury et al., 2020). To investigate the intrinsic experimental noise, we examined two control mAbs

with known solubility behaviors (mAb239: IgG1, good solubility; mAb240: IgG4, poor solubility) (Table 1).

The two control mAbs were measured under histidine buffer pH 6.0 (H6) condition for 47 times. The sum-

mary statistics are shown in Table 1 and the distribution of solubility measurements is reported in Figure 1A.

The measurement of the well-behaved control (mAb239) is 35.81 G 0.72 PEG % while the measurement of

the poorly behaved control (mAb240) is 10.63 G 1.46 PEG %, demonstrating the robustness of the PEG-

induced approach to differentiate mAbs by their solubility.

Table 1. Summary of solubility behavior of two control mAbs at H6

mAb Subclass Solubility behavior

H6 (PEG %)

mean SD

mAb239 (control 1) IgG1 Good solubility 35.81 0.72

mAb240 (control 2) IgG4 Poor solubility 10.63 1.46
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Next, we explored the contribution of antibody subclass to solubility behavior (Figures 1B and S1). Previous

developability studies focused on the variable domains due to the sequence and structural homology be-

tween IgG subclasses (Jain et al., 2017; Raybould et al., 2019). However, our results suggest IgG1 and IgG4

exhibit divergent solubility behavior. A broad range of solubility was observed in IgG4 molecules (median

of 140 molecules is 23.6 PEG %), whereas IgG1 mAbs tend to be highly soluble (median of 112 molecules is

36.0 PEG %) under H6 condition. Similarly, previous study reports that IgG1 and IgG4 mAbs show totally

Figure 1. mAb solubility dataset

(A) The solubility distribution of two controls at histidine buffer pH 6.0 (H6). For each control, the solubility measurements

were repeated for 47 times.

(B) The solubility distribution of different IgG subclasses. The IgG subclass composition for (C) training dataset (n = 220)

and (D) test dataset (n = 40). The solubility distribution for (E) training dataset (n = 220) and (F) test dataset (n = 40). See

also Figures S1 and S2.
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different behavior in terms of viscosity, opalescence, thermostability, and solubility (Bailly et al., 2020; Han

et al., 2022; Kingsbury et al., 2020; Starr et al., 2021). To identify the underlying molecular determinants of

antibody solution behavior, Kingsbury et al. compiled a diverse dataset of 59 mAbs and 23 molecular de-

scriptors spanning colloidal, conformational, charge-based, hydrodynamic, and hydrophobic properties

(Kingsbury et al., 2020). The authors reported similar distribution of many characteristics among IgG1s,

IgG2s, and IgG4s (i.e. solution charge, hydrophobicity indices, and Fv-CSP). The major difference is the

charge at the constant regions. The calculated charge of the IgG4 Fc dimer at pH 6.0 is negative

(�1.92), whereas the constant regions of IgG1s (+6.50) and IgG2s (+5.22) are positively charged. The Fv re-

gion at pH 6.0 is generally positively charged. It is possible that the repulsion of positive charges between

Fv and Fc leads to the higher solubility of IgG1s compared with IgG4s. Additionally, the authors suggest

that mAbs with higher isoelectric points (pI) values exhibit better solution behavior. A strong positive cor-

relation is also observed between experimental solubility and pI (Pearson’s r = 0.8 for all IgGs, Pearson’s r =

0.7 for IgG1s, Pearson’s r = 0.6 for IgG4s) (Figure S2). Generally, mAbs with higher pI exhibit better solubility

behavior.

Therefore, a dataset consisting of different subclasses is critical to the development of computational pre-

dictors that can be generalizable to diverse mAbs. To ensure the similar subclass composition of train/test

dataset, we randomly split the dataset into train and test group (85/15) for each subclass (Figures 1C–1F).

The train dataset contains 220 mAbs, consisting of 95 IgG1, 6 IgG2, and 119 IgG4 (Figure 1C). The test data-

set contains 40 mAbs, composed of 17 IgG1, 2 IgG2, and 21 IgG4 (Figure 1D). The final solubility distribu-

tion is similar between train and test set (Figures 1E and 1F).

Pretrained protein language model embeddings enable the use of small, labeled dataset and

simple architecture for mAbs solubility prediction

While the current dataset of 260 mAbs is already larger than previous mAbs developability studies (Bailly

et al., 2020; Coffman et al., 2020; Han et al., 2022; Jain et al., 2017; Kingsbury et al., 2020; Lai et al., 2021a,

2021b; Raybould et al., 2019; Zhang et al., 2020), it is still smaller than most machine learning projects in

which millions of data points were used for training (Altae-Tran et al., 2017). To overcome the data scarcity,

we propose an end-to-endmachine learning framework for solubility prediction with transfer learning from

pretrained protein language model (ESM1b) (Rives et al., 2021) (Figure 2). ESM1b model was trained on 86

billion amino acids across 250 million unlabeled protein sequences in an unsupervised manner. The

learned representations contain rich information about biological properties, ranging from biochemical

properties of amino acids to the secondary and tertiary structure. Our proposed framework is mainly em-

powered by the informative protein representation from ESM1b, which captures the general sequence se-

mantics in the protein universe. At first, we extracted embeddings for both heavy and light chains from the

last layer of ESM1b. Second, we used the concatenated embeddings (2560-dimensional feature vector,

1280 for each chain) as input and trained various downstream regression models for solubility prediction.

Figure 2. The solPredict architecture

First, full IgG sequences were converted into fixed size embeddings (1280 for each chain) through protein language

model pretrained using large, unlabeled protein sequence database. Next, the heavy chain and light chain embeddings

were concatenated into 2560-dimensional feature vectors and used as the input of a downstream regression model that

predicts mAb solubility. Quantitative solubility data measured by PEG-induced precipitation method were used to

supervise the training of the regression model.
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We compared traditional machine learning models (support vector machine regressor (SVM), random for-

est regressor (RF)) to neutral network models (multilayer perceptron (MLP) with 1 fully connected hidden

layer (MLP1Layer), MLP with 2 fully connected hidden layers (MLP2Layer)). For SVM and RF, the input em-

beddings were first compressed into 23-dimensional vectors using principal component analysis (PCA) to

explain >90% variance. ForMLP1Layer andMLP2Layer, the input embeddings were directly used as the first

layer of the network. 5-fold cross validation of the training dataset of 220 mAbs was used for hyperpara-

meter tuning for all models. Once the optimal hyperparameter set was determined, the final models for

SVM and RF were trained on the whole training set using these hyperparameters. For MLP1Layer and

MLP2Layer model, Spearman correlation coefficient on validation set was used to select the best check-

point during training. The average Spearman correlation coefficient was used to select the optimal com-

bination of hyperparameter and the resulting five models. Instead of refitting with the whole training

set, the mean of five models was used for prediction. The hyperparameter search range and the selected

combination of hyperparameter are shown in Table S1 and Figure S3. Full one-hot protein encoding

(14,343-dimensional vector per mAb which is around 5.6-fold larger than ESM1b embedding)-based

SVM and MLP2Layer models were used as two baseline models.

The test dataset of 40 mAbs was used to compare these six models (Table S2, Figures 3, S4, and S5). We

reported a variety of performance metrics for systematic comparisons: Spearman correlation coefficient,

Pearson correlation coefficient, R2, and root-mean-square error (RMSE). As shown in Table S2, ESM1b

embedding improves overall performance for both SVM and MLP2Layer models. The improvement is

most significant for SVMmodel, with Spearman correlation coefficient increases from 0.60 to 0.80, Pearson

Figure 3. Performance of different regression models on test dataset (n = 40)

The correlation between the predicted (y axis) and experimentally measured solubility (x axis) on the test dataset for (A)

SVM, (B) RF, (C) MLP1Layer, and (D) MLP2Layer models. The dashed black line refers to the perfect correlation: y = x. The

statistics of four evaluation metrics are shown in legend. The outlier (mAb11, IgG2) is annotated for each model. See also

Table S2, Figures S4–S7.
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correlation coefficient increases from 0.62 to 0.79, R2 increases from 0.38 to 0.61, and RMSE reduces from

6.20 to 4.89. For the MLP2Layer model, ESM1b embedding improves Spearman correlation coefficient

from 0.82 to 0.86, Pearson correlation coefficient from 0.82 to 0.84, R2 from 0.66 to 0.69, and reduces

RMSE from 4.60 to 4.40. It is important to note that the simple ESM1b-based SVM model is comparable

with full one-hot protein encoding-based MLP2Layer model (Spearman correlation coefficient: 0.80 versus

0.82, Pearson correlation coefficient: 0.79 versus 0.82, R2: 0.61 versus 0.66, and RMSE: 4.89 versus 4.60)

(Table S2). This suggests that pretrained embeddings are effectively informative that simple machine

learning models supervised with a small annotated experimental dataset suffice to predict antibody solu-

bility with high performance. As MLP2Layer model performs the best based on all four evaluationmetrics, it

was selected as the downstream regression model for solPredict.

To evaluate whether the high performance of solPredict (ESM1b-based MLP2Layer model) is due to

chance, Y scrambling was performed for five times where training data labels were shuffled to create

fake feature-label pairs (Figure S6). The original average Spearman correlation coefficient during training

is 0.86 (Figure S3). However, the average Spearman correlation coefficients for all five Y scrambling exper-

iments drop to �0.2 (Figure S6A). No statistically significant correlations were observed between the new

predictions and experimental solubility on the 40 test molecules (Figures S6B–S6F). Overall, this suggests

that the high performance is due to the learned sequence-to-solubility relationship instead of pure chance.

To further investigate the effect of training sample size on the performance of solPredict (ESM1b-based

MLP2Layer model), we varied the training sample size ratio from 0.1 to 1 of the original 220 training mol-

ecules and evaluated the model performance on the 40 test molecules (Figure S7). With increasing training

sample size, all four evaluation metrics improve and gradually converge around training sample size ratio =

0.7 (154 trainingmolecules). This suggests that a smaller training sample size may be sufficient when using a

protein languagemodel. Taken together, we show that protein languagemodel pretrained on general pro-

tein sequences can provide a powerful signal for antibody-related downstream task with limited labeled

dataset.

solPredict can predict both IgG1 and IgG4 accurately

Next, we investigated how performance varies among different isotypes (Figure 4). Our analysis shows that

solPredict can predict both IgG1 (n = 17) and IgG4 (n = 21) with high performance (Figures 4A, 4B, and

Table S3). The performance on the IgG1 test set is the best with Spearman correlation coefficient =

0.84, Pearson correlation coefficient = 0.93, R2 = 0.87, and RMSE = 2.36. The performance on the IgG4

test set is slightly worse than IgG1 with Spearman correlation coefficient = 0.69, Pearson correlation coef-

ficient = 0.77, R2 = 0.58, and RMSE = 3.48. This is due to the different solubility behavior between IgG1 and

IgG4 molecules. Most IgG1s exhibit high solubility (>30 PEG %), while IgG4s exhibit a bell curve distribu-

tion, with the bulk showing medium solubility (�25 PEG %) (Figures 1B, 4A, 4B, and S1). The relationship

between sequence and solubility is therefore simpler to learn for IgG1 compared with IgG4 molecules.

For IgG2 (n = 2), there is an outlier, mAb11, whose solubility was overestimated by all four models

(Figures 3A–3D and 4C). The experimental solubility for this IgG2 molecule is 8.20 PEG %, whereas all

four models consistently predicted it around 30 PEG %. We sought to understand why mAb11 cannot

be reliably predicted. We first compared the embeddings of mAb11 against all 220 training molecules

and selected the top 10 mAbs that are closest to mAb11 based on the Euclidean distance (Figure 4D

and Table 2). 7 out of the 10 closest neighbors are IgG4 and the closest neighbor is mAb5, an IgG4 mole-

cule with high solubility (31.80 PEG%). Only 1 out of the 10 closest neighbors is IgG2, which also shows high

solubility (36.00 PEG%). It appears that solPredict predicts mAb11 to bemuchmore soluble than the exper-

imental measurement because it reasons with the mapping relationship learned from IgG4 molecules. It

suggests that the sequence-to-solubility mapping relationship for IgG2 is different from IgG1 and IgG4,

and solPredict could not learn the sequence-to-solubility mapping for IgG2 due to the limited IgG2 mol-

ecules (n = 6) in the training set. To sum up, solPredict can serve as an accurate predictor of IgG1 and IgG4

mAb solubility, while more IgG2 data are needed to ensure the generalizability to IgG2 prediction.

Pretrained protein embeddings are informative for antibody solubility behavior

To interrogate how solPredict learns to predict mAb solubility, we projected the embeddings into two dimen-

sions with t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008). We performed the

analysis both for the raw embeddings from ESM1b (Figure 5A) and for the final hidden layer of the MLP2Layer
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network after training (Figure 5B). The key hyperparameter (perplexity) was optimized for t-SNE construction

(see STAR Methods for details). All t-SNE representations in Figure 5 were created using 5000 iterations,

PCA as initialization, and Euclidean distance as similarity metric. The perplexity was set as 10 for the raw rep-

resentation and 30 for the last hidden layer representation. As a baseline comparison, the same methodology

and hyperparameter were used to construct two-dimensional t-SNE representations of one-hot encoding (per-

plexity = 10) and the last layer (perplexity = 30) of one-hot encoding-basedMLP2Layer model (Figures S5E and

S5F). First, the t-SNE representations were colored according to their experimental solubility at H6 (Figures 5,

S5E, and S5F). Although never trained, the raw embeddings appeared to capture some information aboutmAb

solubility, with diffuse organization of small communities sharing similar solubility behavior (Figure 5A). After

training, the network learned the sequence-to-solubility relationship and showed clear structure of representa-

tion space with the diagonal corresponding to the variation in solubility (Figure 5B). The outlier mAb11 was

incorrectly placed in the middle of high-solubility mAbs, further verifying our previous hypothesis that the rela-

tionship of IgG2 was not well learned yet. Similar patterns were observed for raw one-hot encoding and trained

one-hot encoding-basedMLP2Layer model (Figures S5E and S5F). This may suggest that mAbs with similar se-

quences tend to exhibit similar solubility behavior and neutral network can learn the complex sequence-to-sol-

ubility relationship.

To evaluate whether ESM1b embeddings learned a biologically meaningful representation of antibody se-

quences, the t-SNE representations of raw embeddings and one-hot encoding were annotated based on

Figure 4. Performance of solPredict (MLP2Layer as downstream regressor) on different IgG subclasses

The correlation between the predicted (y axis) and experimentally measured solubility (x axis) for (A) IgG1 test dataset (n =

17), (B) IgG4 test dataset (n = 21), and (C) IgG2 test dataset (n = 2). The dashed black line represents the perfect

correlation: y = x. The values of four evaluation metrics are shown in legend for IgG1 and IgG4. Due to the limited sample

size of IgG2 (n = 2), no evaluation metric was computed. The outlier (mAb11, IgG2) is highlighted in (C).

(D) Visualization of 10 training molecules closest to mAb11. The x axis represents the Euclidean distance of embeddings

between mAb11 and the other mAbs. The y axis represents the experimentally determined solubility. Each data point is

colored based on the experimentally determined solubility and annotated by the mAb index and subclass. See also

Table S3.
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heavy chain and light chain V gene segments (Figure S8). In contrast to the one-hot encoding (Figures S8C

and S8D), ESM1b embeddings naturally separate according to the underlying V gene segments

(Figures S8A and S8B). This suggests that ESM1b embeddings captured functionally important information

about antibodies and ESM1b embeddings can serve as a better representation of antibodies compared

with one-hot encoding. This may explain why the simple ESM1b-based SVM model is comparable with

one-hot encoding-based neutral network model (MLP2Layer). Together, it shows that pretrained protein

embeddings contain meaningful representations of antibody sequences and further supervised learning

with a small dataset suffice to reorganize the embeddings for specific task.

DISCUSSION

We propose that incorporating high-capacity protein language model pretrained on 100s of millions of se-

quences stored in protein databases (e.g. UniProt (The UniProt Consortium, 2021)) will be the key to alle-

viate both the data scarcity and feature engineering challenges for antibody developability prediction. As a

proof-of-concept, we applied the pretrained protein language model to predict mAb solubility through

transfer learning. We represented full IgG sequences using embeddings extracted from the pretrained

protein language model. Using the embeddings as input, we trained four simple machine learning models

(SVM, RF, MLP1Layer, and MLP2Layer) with a diverse set of 220 mAbs. Methods were compared using an

independent test set of 40 mAbs. We find that all four models show high correlation with experimental

measurements despite the simplicity of models. MLP2Layer model performs the best with Spearman cor-

relation coefficient = 0.86, Pearson correlation coefficient = 0.84, R2 = 0.69, and RMSE = 4.40. Furthermore,

MLP2Layer model can predict both IgG1 and IgG4 mAbs with high performance despite their distinct sol-

ubility behavior. Our results suggest that pretrained protein embeddings are powerful representations for

sequence-to-property mapping for mAbs. Further supervised learning with small, labeled dataset can

enhance the signal for specific task, solubility prediction in this case. We anticipate that transfer learning

and massive protein language models can also be used to predict other developability properties, such

as viscosity, aggregation propensity, and stability.

solPredict can reliably predict antibody apparent solubility from sequence information alone, which makes

it suitable for screening the solubility of a large library of mAbs during early antibody discovery. In general,

PEG% 19% is used as guideline for flagging mAbs with poor solubility in the screening assay. With 19 PEG

% as threshold, solPredict achieves a successful classification rate of�90% on the test dataset (Figure S9A).

The errors mainly come from false positives. 4 out of 40 mAbs were misclassified as high soluble (1 IgG1, 2

IgG4, and 1 IgG2 molecules) while none of them was misclassified as low soluble (Figure S9). It suggests

that solPredict will be less likely to eliminate otherwise highly soluble mAb candidates, which is more costly

and consequential than false positive error.

In summary, our work confirms the value of pretrained protein language models on antibody properties

and demonstrates a new framework for rapid and high-throughput antibody developability prediction us-

ing only sequence information. We anticipate that this new framework will facilitate the early developability

screening of antibodies and minimize the cost and time needed for the selection of lead mAb candidates.

Table 2. Top 10 mAbs in the train dataset closest to mAb11 ranked by the Euclidean distance

mAb Euclidean distance Subclass H6 (PEG %)

mAb11 0 IgG2 8.20

mAb5 0.56 IgG4 31.80

mAb73 0.61 IgG4 12.80

mAb96 0.62 IgG2 36.00

mAb112 0.63 IgG4 24.40

mAb127 0.64 IgG4 21.50

mAb124 0.64 IgG4 17.15

mAb256 0.64 IgG1 36.00

mAb200 0.64 IgG4 18.30

mAb257 0.64 IgG1 36.00

mAb203 0.64 IgG4 26.20

ll
OPEN ACCESS

8 iScience 25, 105173, October 21, 2022

iScience
Article



Limitations of the study

There are three major limitations of this study. The first limitation is the generalizability to new molecules

which are very different from the training dataset. For example, the current model overestimates the sol-

ubility of one IgG2 molecule due to the limited IgG2 molecules (n = 6) in the training set (Figure S4). A po-

tential solution is constantly updating the solubility model with the continuous incoming streams of data.

Another limitation of this study is the interpretability of the model. The extracted embeddings from pre-

trained protein language model capture multiscale properties of the protein, ranging from biochemical

properties of amino acids to remote homology of proteins. Therefore, it is challenging to offer mechanistic

insights into the mAb solubility behavior. Future work involving descriptor analysis will be needed to un-

derstand the key contributors to poor solubility behavior. Finally, current model is not sensitive to predict

the impact of single mutants on solubility (Figure S10). Shan et al. reported the apparent solubility of 16

mAb-J variants under similar buffer condition (25 mM histidine/histidine HCl, 5 mM arginine HCl, pH 6.0

buffer) (Shan et al., 2018). The full-length sequences of 16 molecules were fed into the solPredict model

and the predictions were compared against the reported experimental value (Figure S10). However, no sta-

tistically significant correlation was observed between predicted and experimental results. This may be

because only protein level embedding (average of all amino acid features) was used in this work, which

will cause the loss of amino acid level information.
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Figure 5. Visualization of embeddings along two dimensions using t-SNE

The representation of all 260 mAbs using (A) raw embeddings and (B) last hidden layer of MLP2Layer model after training.

The outlier (mAb11, IgG2) is highlighted in (B). Each point represents a mAb and each mAb is colored by the

experimentally measured solubility. See also Figures S5 and S8.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Qing Chai (chai_qing_qc@lilly.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The antibody sequence data used in this study cannot be deposited in a public repository because they

are confidential information.

d All original code has been deposited at https://github.com/JiangyanFeng-Lilly/solPredict_manuscript_

codes_2022 and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Antibodies

A total of 260 in-house mAbs, consisting of 112 IgG1, 140 IgG4, and 8 IgG2 subclass were used in this study.

They were all produced internally at Eli Lilly & Co using either HEK293 or Chinese hamster ovary cells

expression system. mAbs were purified using a standard antibody purification procedure (protein A cap-

ture followed by polishing steps). All reagents and excipients were commercially available from Hampton

Research, EM Chemicals, JT Baker, Sigma-Aldrich, and Mallinckrodt, and were of high purity (>98%).

PEG-induced precipitation for solubility measurement

The apparent solubilities of mAbs were measured using PEG-induced precipitation assays, as described in

a previous publication (Chai et al., 2019). Stock solutions of 0.4 M L-histidine, pH 6.0 were used for H6 buffer

matrices. Solutions with Polyethylene glycol 3350 (PEG 3350) levels varying from 4 to 36% were prepared

and were mixed overnight at 1200 RPM at 25�C. All mAbs were buffer-exchanged and diluted with water

to a target final concentration of 1 mg/mL. After mixing mAbs and stock solutions on each assay plate,

all assay plates were sealed with foil and incubated at 25�C on the bench for 24 hours. Finally, the plates

were read at 280 nm (with background subtraction at 320 nm) using a Tecan Infinite M1000 Pro UV/Vis

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python version 3.8 Python Software Foundation https://www.python.org/

ESM1b Rives et al., 2021 https://github.com/facebookresearch/esm

Scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/stable/

PyTorch Paszke et al., 2019 https://pytorch.org/

SciPy Virtanen et al., 2020 https://scipy.org/

t-distributed stochastic neighbor embedding (t-SNE) Maaten and Hinton, 2008 https://scikit-learn.org/stable/modules/

generated/sklearn.manifold.TSNE.html

Molecular Operating Environment (MOE) Chemical Computing Group, 2022 https://www.chemcomp.com/index.htm

Matplotlib Hunter, 2007 https://matplotlib.org/stable/index.html

seaborn Waskom, 2021 https://seaborn.pydata.org/index.html

Model codes Github https://github.com/JiangyanFeng-Lilly/

solPredict_manuscript_codes_2022
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Spectrophotometer. The absorbance data was de-convoluted and plotted using Excel. The onset of pre-

cipitation was determined visually based on the point of abrupt decrease in absorbance caused by the loss

of protein. The nearest PEG 3350 concentration (%) corresponding to the onset of precipitation was used as

the estimation of solubility. Therefore, the experimental measurement of solubility varies from 4 to 36 PEG

%. The higher the PEG %, the better is the solubility.

Protein embeddings computation

ESM1bmodel (Rives et al., 2021) was used as the pretrained protein languagemodel to extract the embed-

dings for mAbs. ESM1b model was trained on 86 billion amino acids across 250 million protein sequences

using unsupervised learning and improved a range of applications such as prediction of mutational effect,

secondary structure, and long-range contacts. These representations therefore contain both sequence

level and structural level signals. For each input sequence, ESM1b generates a 1280-dimensional vector

representation for each amino acid. In this work, the average of all amino acid features was used as a final

feature vector for each sequence (1280-dimensional vector per sequence). The full sequence of heavy chain

and light chain for each IgG was used to generate 1280-dimensional vector per chain. The heavy chain and

light chain embedding were then concatenated into a 2560-dimensional vector to represent each mAb.

Training details

For all four models, 220 mAbs were used for training and hyperparameter tuning through five-fold cross

validation. For support vector machine and random forest regressor, we used PCA to reduce the dimen-

sionality of the raw embeddings from 2560 to 23 to explain 90% of variance. Hyperparameters were opti-

mized using a grid search and five-fold cross validation (Table S1). Once the hyperparameters were opti-

mized, the whole training dataset of 220 mAbs was used to refit the support vector machine and

random forest regressor. Scikit-learn (Pedregosa et al., 2011) was used to implement support vector ma-

chine and random forest models.

The neutral network models (MLP1Layer and MLP2Layer) were trained in a mini-batch mode using Pytorch

(Paszke et al., 2019). MLP1Layer refers to multilayer perceptron with 1 fully connected hidden layer.

MLP2Layer refers to multilayer perceptron with 2 fully connected hidden layers. ReLU was used as the acti-

vation function. The training process takes 500 epochs on the training dataset of 220 mAbs using the Adam

optimizer and Xavier_uniform initialization. The hyperparameters (batch size, learning rate, and hidden

layer dimensions) were tuned using five-fold cross validation (Table S1). The training objective is to mini-

mize the mean squared error between predicted and experimental solubility values. To alleviate overfit-

ting, the Spearman correlation coefficient on the validation set (the held-out fold) was used to select the

best checkpoint during training. The average of Spearman correlation coefficient on validation sets was

used to select the best combination of hyperparameters and the final set of models. The selected hyper-

parameters for MLP1Layer model are hidden layer size = 256, batch size = 32, and learning rate = 0.01. The

selected hyperparameters for MLP2Layer model are hidden layer 1 size = 64, hidden layer 2 size = 32, batch

size = 8, and learning rate = 0.001.

Baselines

Full one-hot protein encoding was used as the baseline featurization. For each IgG molecule, the full-

length heavy and light chain sequence was first padded into target size (463 for heavy chain and 220 for

light chain), then one-hot encoded, and finally concatenated into a vector of dimension (463+220) * 21 =

14343, where 21 represents 20 amino acid tokens plus one padding token. Compared with the ESM1b rep-

resentation, the dimensionality of full one-hot protein encoding is around 5.6-fold larger. The same training

methodology (as described in the Training details section) was used to construct the downstream SVM and

MLP2Layer model. To eliminate the effect of hyperparameters, the same set of hyperparameters was used

for one-hot encoding based MLP2Layer model: hidden layer 1 size = 64, hidden layer 2 size = 32, batch

size = 8, and learning rate = 0.001.

Y scrambling

Y scrambling was used to evaluate whether the predictions made by the model are due to the chance. We

first shuffled the labels of the training dataset to create the fake feature-label training dataset and then fol-

lowed the same training methodology to train the MLP2Layer model using the fake feature-label pairs. The

same set of hyperparameters was used, which is hidden layer 1 size = 64, hidden layer 2 size = 32, batch
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size = 8, and learning rate = 0.001. We conducted five rounds of Y scrambling and evaluated the perfor-

mance of the new models on 40 test molecules.

Performance evaluations

The test set of 40 mAbs were never used for model training or hyperparameter tuning. The performance on

test set were evaluated using Spearman correlation coefficient, Pearson correlation coefficient, R2, and

RMSE. Spearman and Pearson correlation coefficient were implemented using SciPy python package (Vir-

tanen et al., 2020). Both correlation coefficients vary between�1 and +1 with 0 implying no correlation. The

difference is that Pearson correlation assumes that data is normally distributed whereas Spearman corre-

lation is a nonparametric measure without assuming that datasets are normally distributed. Considering

the solubility data distribution is skewed in the dataset, Spearman correlation was used as the main eval-

uation metric. Scikit-learn (Pedregosa et al., 2011) was used to compute R2 (sklearn.metrics.r2_score) and

RMSE (square root of mean squared error: sklearn.metrics.mean_squared_error). R2 (coefficient of deter-

mination) measures how well the regression predictions approximate the real data points with 1 indicating

the perfect fit. R2 can be negative if the model performs worse than a constant model (R2 = 0). RMSE is a

measure of the difference between predicted and actual values, with 0 indicating the perfect fit between

predicted and actual data points. The lower the RMSD, the better the regression model. All figures in

this work were generated using Matplotlib (Hunter, 2007) and seaborn (Waskom, 2021).

t-SNE construction

To project the high-dimensional embeddings on to two-dimensional space, we used the t-distributed sto-

chastic neighbor embedding (t-SNE) algorithm (Maaten and Hinton, 2008) implemented in Scikit-learn (Pe-

dregosa et al., 2011). Perplexity parameter was varied from 5 to 100 with a step size of 5. Similarity metric

was based on Euclidean distance. PCA was set as initialization and 5000 iterations were performed. In the

end, the perplexity was selected as 10 for the raw representation and 30 for the last hidden layer

representation.

Computation of antibody isoelectric point (pI)

Full-length homology models of all IgG molecules were generated and structure-based protein pI (Pro pI

3D) was computed using MOE software (Chemical Computing Group, 2022). The Pro pI 3D descriptor was

calculated using PROPKA method to determine residue pKa values which are then used in the sequence-

based pI formula (Li et al., 2005; Meireles Ribeiro and Sillero, 1991; Thorsteinson et al., 2021).
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