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a b s t r a c t

The transcriptome-based GWAS approach, Associative Tran-
scriptomics (AT), which was employed to uncover the genetic basis
controlling quantitative variation of glucosinolates in Brassica
napus vegetative tissues is described. This article includes the
phenotypic data of leaf and root glucosinolate (GSL) profiles across
a diversity panel of 288 B. napus genotypes, as well as information
on population structure and levels of GSLs grouped by crop types.
Moreover, data on genetic associations of single nucleotide poly-
morphism (SNP) markers and gene expression markers (GEMs) for
the major GSL types are presented in detail, while Manhattan plots
and QQ plots for the associations of individual GSLs are also
included. Root genetic association are supported by differential
expression analysis generated from root RNA-seq. For further
interpretation and details, please see the related research article
entitled ‘Genetic architecture of glucosinolate variation in Brassica
napus’ (Kittipol et al., 2019).
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Specifications Table

Subject area Biology
More specific subject area Brassica secondary metabolite and genetics
Type of data Figure, Tables (MS Excel spreadsheets)
How data was acquired Glucosinolate measurements were obtained using HPLC on C18 reverse phase column. SNP

identification, transcript quantification, construction of the reference coding DNA sequence
and associative transcriptomic analysis platform were developed prior to this publication.

Data format Raw, processed, analyzed
Experimental factors Desulfoglucosinolates determined as glucosinolates from leaves and roots of genotyped B.

napus diversity panel. SNP- and GEM-trait association data were analyzed using R scripts.
Experimental features Transcriptome-based genome wide association
Data source location Glucosinolate data was collected at the University of York, York, UK.
Data accessibility Short read sequence data have been deposited at the Sequence Read Archive under

BioProject ID: PRJNA524101 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA524101).
Glucosinolate data are provided in Annex spreadsheets.

Related research article V. Kittipol, Z. He, L. Wang, T. Doheny-Adams, S. Langer, I. Bancroft, Genetic architecture of
glucosinolate variation in Brassica napus, J. Plant Physiol. 240 (2019) 152988. https://doi.org/
10.1016/j.jplph.2019.06.001 [1].

Value of the data
� This data provides comprehensive leaves and roots glucosinolate profiles across a diversity panel of 288 Brassica napus

(oilseed rape) genotypes with information on the population structure. Glucosinolate trait data can benefit oilseed rape
agribusinesses and researchers of this field in the selection of genotypes with desirable profiles or manipulation of profiles
to modulate plant-pest interactions.

� The GEM and SNP markers identified in the region of the genome that controls the variation in glucosinolate contents can
help accelerate breeding of oilseed rape by marker-assisted selection

� This data could be used for comparison or replication of genetic association markers for the natural glucosinolate vari-
ations in other populations and other plant tissues.
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1. Data

The data contains information on leaves and roots glucosinolate (GSL) profiles of 288 Brassica napus
genotypes (Fig. 1). The relatedness of the accessions was analyzed and visualized by the dendrogram
(Fig. 1A). The seven assigned crop types shows the expected clustering (Fig. 1B) with the highest
likelihood of two differentiated subpopulations (k ¼ 2), which separated into the spring or winter
oilseed rape crop types or a mixture of the two (Fig.1C). Full dataset of the GSL profiles are presented as
mean from four biological replicates of each accessions (Appendix 1) with distribution of the data
displayed as histograms (Appendix 2) and analysis of GSL contents by crop types (Appendix 3).

These phenotypic data were used to generate association data identifying single nucleotide poly-
morphism (SNP) markers and gene expression markers (GEMs) in transcriptome-based genome wide
association studies, Associative Transcriptomics (AT) [2,3]. The Manhattan plots for these associations
are shown in Appendix 4 for root traits and Appendix 5 for leaf traits. The significance of the trait
associations, shown as elog10P value, passing both false discovery rate (FDR) threshold at 5% and
threshold for Bonferroni significance of 0.05 suggested that the surrounding genomic region has a
strong association with the trait. To assess how well the model accounts for population structure and
familial relatedness, quantile-quantile (QQ) plots from SNP association analyses have been generated
(Appendix 6 & Appendix 7). Appendix 8 summarizes the optimal algorithm showing calculated group
kinship matrix, 2*log likelihood function and the estimated heritability for all GSL traits.

As shown in Fig. 1, aliphatic GSLs is the most abundant class of GSL in B. napus leaves. SNP-based
associations of leaf aliphatic GSL revealed strong associations with markers in the defined regions of
chromosome A2, A9, C2, C7 and C9 (Appendix 9). Within these data tables, details of trait associations
for genome-assigned markers are provided, including polymorphism, significance of association and
the frequency of the minor allele in the population. The same associated regions were shown for total
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Fig. 1. Population structure and Glucosinolate variation from 288 B. napus accessions of the Renewable Industrial Products
from Rapeseed (RIPR) Panel. (A) Relatedness of accessions in the panel based on 355 536 scored single-nucleotide polymorphisms
(SNPs). (B) Main crop types, color coded: orange for spring oilseed (SpOSR); green for semi-winter oilseed rape; light blue for swede;
dark blue for kale; red for winter oilseed rape(WOSR); black for winter fodder and gray for crop type not assigned. (C) Population
structure for highest likelihood k¼2. Variation for glucosinolates content (D) leaf and (E) root of 288 B. napus accessions. Individual
glucosinolates were grouped according to their structural class as aliphatic (dark blue), indole(margenta) and aromatic(light blue).
Panel A, B and C reproduced from Havlickova et al 2018.
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seed GSL in B. napus (Appendix 10). As presented in [1], orthologues of HAG1 (AT5G61420), a tran-
scription factor that positively regulated aliphatic GSL biosynthesis, have been discovered within all of
these SNP-based associated loci (Appendix 9). In addition, the six GEMs detected above the threshold
for the false discovery rate (FDR) at 5% are shown to be involved directly in aliphatic GSL biosynthesis,
with orthologues of HAG1 as the top GEMs (Appendix 11). Presence of GEM association peaks on
chromosome A9, C2 and C9 for aliphatic GSL suggested structural genome variation via homoeologous
exchange where neighboring genes displayed the same directionality of one genome over-expressed
and other genome under-expressed (Appendix 12). The Transcriptome Display Tile Plots [4] was
used to visualize the homoeologous exchanges in these regions (Appendix 13).

In B. napus roots, aromatic GSL is the dominant GSL class and revealed a clear SNP association peak
on chromosome A3 (Appendix 4). As described in [1], an orthologue of HAG3 was identified in close
proximity to the top associated SNP markers within in this region (Appendix 14). To support gene
expression analysis in roots, differential expression analysis from root transcriptome-sequence was
performed, which compared the expression patterns of 4 accessions with high root aromatic GSLs and
4 accessions with low root aromatic GSLs (Appendix 15). Within the SNP associated region of chro-
mosome A3, Bna.HAG3.A3 showed the highest significant log2 fold-change (Appendix 15) with higher
expression of Bna.HAG3.A3 observed in high-root aromatic GSL genotypes and vice versa in the low-
root GSL genotypes. To limit potential confounding effect between GSL pathways, further stringent
analysis of differential root expression (p� 1�10�10) was performed between accessions which differs
in root aromatic GSLs but are low in aliphatic GSLs (Appendix 16). This analysis revealed insight into
genes that had been identified in aliphatic GSL pathway but could have potential roles in the aromatic
GSL pathway. This is shown by the significant positive correlations between their expression levels and
levels of aromatic GSL (Appendix 17).
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To investigate the relationship of GSLs between vegetative tissues and seeds, seed GSL data from [5]
was added to the dataset. Correlation analysis between levels of aliphatic GSLs and the transcript
abundance of GSL transporters, GTR1 (AT3G47960) and GTR2 (AT5G62680), was conducted to inves-
tigate the role of transporters on GSL accumulation pattern (Appendix 18), as described in [1]. Finally,
correlations between leaf and seed GSLs was analyzed to investigate the basis for the accumulation
pattern of GSLs in these tissues (Appendix 19).

2. Experimental design, materials, and methods

2.1. Growth of plant material for glucosinolate content

A subset of 288 B. napus accessions from the Renewable Industrial Products from Rapeseed (RIPR)
diversity population [2] was grown in long day (16/8 h, 20 �C/14 �C) under controlled glasshouse
conditions (University of York, UK).Within this panel, there are 56ModernWinter OSR, 65Winter OSR,
6 Winter Fodder, 121 Spring OSR, 26 Swede and 14 Exotic varieties (Appendix 1). Four biological
replicates of each accession were grown in root trainers with Terra-Green for ease of root harvesting,
supplemented weekly with a half concentration of Murashige and Skoog growth medium [6] adjusted
to pH6.5 with KOH. The experiment was arranged as randomized four-block designwith one plant per
lines in each block. Four weeks after sowing, the third true leaf and the whole root system were
harvested from each plant. At harvest, leaves were cut at the base, wrapped in a labelled aluminum foil
and immediately frozen in liquid nitrogen. Plants were removed from the tray, had the roots washed,
dried with paper towel and cut. All samples werewrapped in labelled aluminum foils and immediately
frozen in liquid nitrogen and stored at �80 �C.

2.2. Glucosinolate quantification

As per the recommended quantification method previously tested [7], frozen tissue samples were
lyophilized before homogenized to fine powder for 10 min at a frequency of 30 Hz (TissueLyser II,
Qiagen). To 50 mg of homogenate, 1975 ml of 80% (v/v) methanol and 25 ml of 5 mM internal standard
glucotropaeolinwas added. The sample was mixed and left to stand for 30 min at 20 �C and further
mixed with orbital shaker (Vibrax, IKA) at 1200 rpm for 30 min before centrifugation at 8000 rpm for
10 min. Supernatant methanol extract was then transferred to the pre-conditioned Sephadex column
in purification step. Purification and desulfation of GSLs was according to [8]. Columns were prepared
with 0.5 ml ion-exchange resin (DEAE Sephadex beads in 1:1 ratio with 2 M acetic acid), conditioned
with 2 ml imizadoleformate (6 M) and washed twice with 1 ml water. One ml of the extract was
transferred to a prepared column and gently washed twice with 1 ml 20 mM sodium acetate (pH 4)
before adding 75 ml of purified sulfatase (5 U/ml). Columns were incubated for 24 h and desulfoglu-
cosinolates were eluted with two 1 ml portions of water.

Desulfoglucosinolates were separated by HPLC (Millipore 600E system, Waters) on a reverse phase
C18 column at 30 �C (Phenomonex, SphereClone 5m ODS(2), 150 mm � 4.6 mm) with mobile phase
solutions consisting of 100% diH2O and 30% (v/v) acetronitile, as detailed in [7]. Injection was at 10 ml
and flow rate was set to 1 ml/min. The absorbance of the eluates was monitored at 229 nmwavelength
within the UV spectrum. Samples were separated according to the program described in [7]. Through
standard injections, HPLC-MS identification, retention time and photodiode array (PDA) UV spectra,
the identity of all major GSLs were confirmed.

2.3. Statistical analysis

Statistical analyses were carried out with R statistical software [9]. One-way ANOVA and Tukey's
honest significant difference (HSD) post hoc test were performed on GSL content between crop types
(Appendix 3).
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2.4. Transcriptome sequencing, SNP identification and transcript quantification

Plant growth conditions, sampling of material, RNA extraction and Illumina transcriptome
sequencing was carried out and described previously in [4]. For each genotype, RNA-sequence datawas
mapped onto recently developed ordered Brassica A and C genome-based pan-transcriptomes as
reference sequences [10], using the methods described in [11]. SNP positions were excluded from the
alignment if they have a read depth below 10, a base call quality below Q20, missing data below 0.25,
and three alleles or more. After rigorous filtering and quality checking parameters to reduce errors in
SNP identification and assessment of linkage disequilibrium as detailed in [2], a set of 355 536 SNP
markers was generated, of which 256 397 SNP had a minor allele frequency (MAF) > 0.01. Transcript
abundance was quantified and normalized as reads per kb per million aligned reads (RPKM) for each
sample. Of the 116 098 coding DNA sequence (CDS) models, 53 889 CDS models was detected with
significant expression (>0.4 RPKM).
2.5. Associative Transcriptomics

An overviewof Associative Transcriptomics (AT) analysis is shown in Fig. 2. The use of transcriptome
sequencing in AT allows the discovery of SNP markers in tight linkage disequilibrium with causative
genes like conventional GWAS, with the additional feature of finding genes with expression patterns
(gene expression markers, GEM) that correlate with the trait variation.

ATwas performed using R [9] based on an adaption of the first ATmethods [3] withmodifications to
accommodate for larger dataset, as detailed in [2]. To reduce the risks of false positive associations from
undetected population structure that can mimic the signal of association, population structure infer-
ence using kernel-PCA and optimization (PSIKO; highest likelihood subpopulation k¼ 2) [12] was used
for Q-matrix generation to correct for population stratification. SNP-based analyses were performed
with Genome Association and Prediction Integrated Tool (GAPIT) R package using mixed linear model
that includes both fixed and random effects [13]. SNPmarkers withminor allele frequencies below 0.01
were removed from the SNP dataset leaving 256 397 SNPs for the associations [2]. SNPmarkers that can
be assigned with confidence to the genomic position of the CDS model are rendered dark points and
markers that could not be assigned with confidence were rendered pale points. For GEM-based ana-
lyses, fixed-effect linear model was calculated in R software, with RPKM values and the Q matrix
inferred by PSIKO as explanatory variables, and trait score as the response variable [2]. For each
Fig. 2. Overview of associative transcriptomic analysis.
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regression, coefficients of determination (R2), constant, F-value and significance P-values were pro-
duced. When genomic inflation factor (l) was >1, genomic control with P-value adjustment [14] was
applied to the GEM analysis to correct for false associations. False discovery rate (FDR) [15] and
threshold for Bonferroni [16] corrections were used to set significance threshold at P < 0.05. Quantile-
Quantile plots all association analyses are included as Appendix 6 for root data and Appendix 7 for
leaf data.

2.6. Differential expression analysis of root RNA-seq data

Differential gene expression was analyzed using root transcriptome sequences from four biological
replicates (i.e. using root RNA-seq from 4 separate plants of each plant type). The methods in Bio-
conductor package EdgeR [17] were used to identify the differential expressed genes. In multiple
comparisons, both fold change (FC) > 2 and false discovery rate (FDR) < 0.05 were used to flag a gene
being differentially expressed. Flags of “1”,“-1” and “0” were used to note positively, and negatively or
not significantly expressed genes in the data and can be filtered among comparisons.
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