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Abstract

We developed a novel cultivating system for hollow-type spherical bacterial

cellulose (HSBC) gel production without any molds or template. It consisted of

floating aqueous medium droplet containing Gluconacetobacter xylinus

(G. xylinus) at the boundary of two non-mixed silicone oil layers. The fibrils

of bacterial cellulose (BC) were produced at the interface of water and oil

phases. Fibril layers effectively thickened layer-by-layer and eventually formed

a shell structure. The size of the HSBC gel can be controlled by the volume of

dropped cell suspension. For cell suspensions of 50 mL and 10 mL, HSBC gels

of approximately 4.0 mm and 2.5 mm were obtained, respectively. The shell of

the HSBC gel is the gelatinous membrane formed by well-organized fibril

networks; they comprised type-I crystal structure of cellulose. Additionally, we

studied release profile of the fluorescein isothiocyanate-dextran (FITC-Dex) and

observed that it released rapidly from the HSBC gels compared to from the

BC gels obtained by the static culture method. The release behavior from

HSBC gel agreed satisfactorily with Higuchi model. Therefore, the shell of
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HSBC gel is surely a thin gelatinous membrane of BC, and would be useful as a

drug release device.

Keywords: Materials chemistry, Pharmaceutical chemistry, Natural product

chemistry

1. Introduction

The most abundant renewable biopolymer is cellulose, a polysaccharide consisting

of linear b-1,4-D-glucose units. Cellulose derivatives have many important applica-

tions in the fiber, paper, membrane, and polymer industries. Purified cellulose can be

obtained from the isolation of plant cellulose or through the biosynthesis of different

types of microorganisms, such as algae (Vallonia (Finkenstadt and Millane, 1998)),

fungi (Saprolegnia (Frka�s, 1979)), and bacteria (Acetobacter, Agrobacterium,

Rhizobium) (Matthysse et al., 1981; Napoli et al., 1975). Bacterial cellulose (BC)

biosynthesized by Acetobacter xylinum was first discovered (Brown, 1886) and

has been used in practical applications for several decades (Nishi et al., 1990;

Okiyama et al., 1992; Gupta and Gupta, 2005; Watanabe et al., 1993). BC has

good mechanical properties including tensile strength and modulus, high water-

holding capacity, high porosity, high crystallinity, and good biocompatibility

(Klemm et al., 2005). In addition to different microorganisms, pure BC is also

produced by a cell-free system with improved structural, physico-mechanical, and

thermal properties (Ullah et al., 2015, 2016).

To obtain BC, several culture methods can be applied using Gluconacetobacter

xylinus; the most common method is static culture, which produces gelatinous

cellulose mass at the interface between the air and the liquid culture media. In

Indonesia and the Philippines, BC obtained by static culture is manufactured in large

quantity as food called Nata de coco. However, its shape depends on that of the cul-

ture container.

Another method is agitated culture, using which, cellulose having a fibrous structure

dispersed throughout the medium was synthesized (Chao et al., 2000; Watanabe

et al., 1998). Under certain agitated culture conditions, Acetobacter xylinum strain

NQ5 (ATCC 53582) produced isolated sphere-type cellulose (Czaja et al., 2004).

Czaja et al. proposed that the cellulose ribbon was only produced at the surface of

sphere-like celluloses, and the continuous shear force during agitation caused the

cellulose ribbons to intertwine with each other to form the spherical structure.

As unique shape of the BC gel, tubular BC is reported by two different methods. In

the first technique, a cylindrical glass matrix is immersed in a larger volume of the

culture medium (Klemm et al., 2001, 2003). Tubular BC gel is produced at the air-

culture medium interface that exists between the outer and inner matrices. In the
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static culture, a prolonged time of about 3e4 weeks is necessary for obtaining a thick

BC gel of 20e30 mm (Yano et al., 2008); furthermore, the production of long

tubular BC gel was difficult using this technique. The second technique uses poly-

dimethylsiloxane (PDMS) as the mold of the BC gel (Bodin et al., 2007;

Nimeskern et al., 2013). The PDMS, also called silicone, demonstrates a high oxy-

gen penetration. Putra et al. (2008) reported a simple technique to biosynthesize

tubular BC gel, and they could obtain tubular BC gel with desired length, inner

diameter, and thickness. The tubular BC gel has excellent mechanical properties

and its use as a vascular graft (B€ackdahl et al., 2011; Li et al., 2017) or soft tissue

material (Lin and Dufresne, 2014) in medical and pharmaceutical applications

was proposed.

Herein, we attempted to prepare the spherical BC gel by the formation of Water-in-

Oil type droplets without any molds or template. The water phase contains Gluco-

nacetobacter xylinus (G. xylinus) and culture medium, whereas, the oil phase can

supply oxygen to support its culture. Preparation of spherical BC gels was predicted

by culturing G. xylinus in medium droplets. Moreover, we hypothesized that it

would be hollow-type spherical BC (as HSBC), that can have thin gelatinous mem-

brane composed of cellulose networks, which would be produced at the interface of

water and oil phases. Until now, to the best of our knowledge, there is no report

about such HSBC gel and the culturing method. These HSBC gels are expected

as a seamless capsule for drug delivery applications.
2. Experimental

2.1. Materials

Hestrine-Schramm’s medium (HS medium) (Hestrin and Schramm, 1954) was used

for incubation of the bacterial strain. It consisted of the mixture of 30 g D-glucose

(Kanto Chemical Co. Inc.), 5.0 g mannitol (Kanto Chemical Co. Inc.), 5.0 g peptone

(HIPOLYPEPTONETM, Nihon Pharmaceutical Co. Ltd.), 5.0 g BactoTM yeast

extract (BD Biosciences), and 1.0 g magnesium sulfate heptahydrate

(MgSO4$7H2O; Kanto Chemical Co. Inc.) in 1000 mL MilliQ water. Fluorescein

isothiocyanate-labeled dextran (FITC-Dex, 10,000 g/mol) was purchased from

Merck Co. Silicone oils (KF-56 and KF-54) were obtained from Shin-Etsu Chemical

Co., Ltd. Other reagents were purchased from Kanto Chemical Co. Inc., and used as-

received.
2.2. Preparation of hollow-type spherical BC gels

Fig. 1 shows the schematic representation of production of the HSBC gel. The HS

medium was sterilized by autoclaving andG. xylinus (IFO13772) was cultured in the

HS medium at 30 �C for 3 days. The cultured cell suspension was diluted with the
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Fig. 1. Schematic representation of production of the HSBC gel.
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same medium and dropped aseptically into 100 mL mixture silicone oils (Volume

ratio; KF-56:KF-54 ¼ 1:1) and incubated at 30 �C for 14 days by keeping the drop-

lets floating.

The droplet size was controlled by the amount of drop (10e50 mL). The HSBC gel

thus obtained was purified by soaking in a large quantity of distilled water for 1 day

followed by washing in a 1% (w/v) aqueous solution of NaOH at room temperature

for 1 day to remove the bacterial cell debris and alkali-soluble components. Then, it

was washed several times with large quantity of distilled water and stored in distilled

water at room temperature.

As a comparative sample, the conventional BC gel obtained by the static culture

method. G. xylinus were grown under static conditions in a glass test tube (ID

14.5 mm, OD 16.5 mm, and height 165 mm, respectively) at 30 �C for 14 days.

First, the solution became turbid, and a BC gel appeared on the air-culture medium

interface. The gel thickness increased gradually, reaching 10e20 mm after 14 days.

Purification of conventional BC gel was carried out by the same method as the

HSBC gel.
2.3. Preparation of HSBC aerogel using supercritical CO2

After HSBC gel swelled in water, it was put in a large quantity of methanol and

washed thoroughly and swelling solvent was changed from water to methanol

completely. The gel was dried by supercritical CO2 (scCO2) technique without dis-

integrating its microstructure (Buchtov�a and Budtova, 2016). The drying was carried

under conditions of 40 �C, 20 MPa, CO2 flow rate 2.0 mL/min, and 5 h. The drying

apparatus consisted a CO2 delivery pump (SCF-Get, JASCO, Japan), 50 mL pres-

sure vessel, a gas pressure regulator (SCF-Bpg, JASCO, Japan), and a constant tem-

perature water bath (BK33, Yamato Scientific Co. Ltd., Japan).
2.4. Characterization of HSBC gels

The microstructure of HSBC aerogels was observed using a field-emission scanning

electron microscope (FE-SEM: Hitachi High-Technologies Corporation S-4500)

with an acceleration voltage of 10 kV. For the pretreatment to FE-SEM observation,
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deposition of Pt-Pd was performed by ion sputtering (Hitachi High-Technologies

Corporation E-1010).

To analyze the composition and the crystal structure of the obtained HSBC aerogels,

wide angle X-ray diffraction (WAXD) and attenuated total reflection Fourier trans-

form infrared (ATR-FTIR) measurement were carried out. WAXD experiments were

performed at 20 �C using an X-ray diffractometer (PANalytical X’Pert PRO MPD).

The Cu-Ka radiation (wavelength, l ¼ 0.154 nm) was generated at 40 kV and 200

mA. The sample was scanned at a rate of 3�/min between 10� and 40� in transmit-

tance mode. The ATR-FTIR spectra were measured using a FTIR spectrophotometer

(Perkin Elmer Spectrum One) equipped with universal ATR sampling accessory. All

measurements were carried out with a nominal spectral resolution of 1 cm�1 in trans-

mittance mode and 24 scans.
2.5. Drug loading and release study

To evaluate the drug release behavior from the obtained HSBC gel, FITC-Dex

(Mw ¼ 10,000) was used as the model drug. The HSBC gel was immersed in a 1

mg/mL FITC-Dex aqueous solution and kept in a dark place at 4 �C for one day,

and permeation of FITC-Dex into the HSBC gel was observed (Fig. 2). The release

behavior of FITC-Dex from within the HSBC gel was evaluated by UV-Vis spec-

trometer (JASCO Corporation, V-530). The absorbance at the fixed wavelength of

490 nm was measured every 10 seconds at 25 �C continuously under stirring condi-

tions at 500 rpm.
3. Results and discussion

3.1. Formation of cell suspension droplets

To form the floating cell suspension in silicone oil phase, at first, the density of the

cell suspension at 30 �C was measured to be 1.02 g/cm3 using the Baume hydrom-

eter. Since silicone oil with the same density is not commercially available, we tried

to adjust the density of silicone oil by two methods. The first method was to mix sil-

icone oil and a miscible organic solvent having a density of >1 g/cm3 such as o-
Fig. 2. Photographs of a) HSBC gel and b) FITC-Dex loaded HSBC gel.
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dichlorobenzene. In this method, however, although density control of the silicone

oil was easy, the organic solvent inhibited the growth of G. xylinus, and hence, cel-

lulose was not produced. The other was density adjustment by mixing silicone oils

which have different specific gravities. Essentially, the two kinds of silicone oils,

KF-56 (0.96 g/cm3) and KF-54 (1.07 g/cm3), are used in this method. Although these

oils were immiscible and become cloudy when mixed (Fig. 3a), after they were left

undisturbed, they separate into a transparent phase and a white turbid phase

(Fig. 3b). When the cell suspension was added to the separated oil, spherical droplets

were formed at the transparent-turbid phase interface (Fig. 3c). These droplets

moved easily by slight shaking and fused into larger droplets by contact. To control

HSBC gel size, it was necessary to suppress the contact between the droplets. There-

fore, we focused on the kinematic viscosity of silicone oil. KF-56 with different ki-

nematic viscosities are available. The same experiment was carried out using the KF-

56 of 100, 350, and 500 cps; at a low kinematic viscosity of 100 cps, the phase sep-

aration speed was higher, and hence, contact between the droplets occurred

frequently. On the contrary, at 350 and 500 cps, it was possible to slow down the

phase separation and suspend the droplets at the phase interface for 14 days with

a good stability.
3.2. Preparation of hollow-type spherical BC gels

Fig. 4 shows the result after 14-day culture by using a mixture of KF-56 (350 cps)

and KF-54 oils. The size of the HSBC gel can be controlled by the volume of drop-

ped cell suspension. For cell suspensions of 50 mL and 10 mL, HSBC gels of approx-

imately 4.0 mm and 2.5 mm were obtained, respectively. In the static culture using

test tube, the cellulose gel membrane produced at the air-medium interface sank

gradually and cellulose was always produced at the air-medium interface. Hence

the film thickness of the pellicle increased. When the cell suspension used in this

study was static-cultured at the air-liquid interface for 14 days, the thickness of

the pellicle was >1 cm. On the other hand, the thickness of the HSBC gel was

extremely low (Fig. 4c), despite culturing for 14 days. This was due to the fact

that the droplets were small, the amount of glucose was less, and hence, the amount

of cellulose produced was eventually less. The direction of growth of the cellulose
Fig. 3. Photographs of a) mixed silicone oil immediately after mixing, b) phase-separated silicone oil,

and c) formed cell suspension droplets.
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gel film was considered to be another factor. Unlike the static culture using test tube,

in the suspended droplet culture, since cellulose was produced at the silicone oil-

culture interface, the produced cellulose gel film grew towards the center of the

droplet. The swelling cellulose gel film contracting towards the center, where the

radius decreases, is unlikely. Therefore, it can be inferred that the thickness of the

cellulose gel film would not increase. By extension of the culture duration, the cel-

lulose fiber density, rather than the thickness of the gel film, is likely to increase.
3.3. Structural analysis of the HSBC gel after supercritical
drying

Fig. 5 shows the scanning electron microscopy (SEM) image of a BC gel aero-gelled

by scCO2 drying. The cross-sectional structure of the HSBC gel film was found to be

a multilayered structure (Fig. 5a) and the inner surface was found to be a network

formed by cellulose microfibrils (Fig. 5b). Since G. xylinus produced cellulose
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ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00873
http://creativecommons.org/licenses/by/4.0/


Fig. 5. Scanning electron microscopy images of hollow-type spherical BC aerogel.

8 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00873
microfibrils while undergoing repeated cell division, they form a fine in-plane micro-

fibril network. In static culture, since this production activity took place on the sur-

face of the medium (air-medium interface), microfibril networks were produced

layer by layer, thus forming a laminated structure that increased in thickness

(Staiger et al., 2007). The cellulose in the HSBC gel formed a gelatinous membrane

composed of microfibril networks at the silicone oil-culture interface in the same

way as cellulose production at the air-medium interface, thus forming a laminated

gelatinous membrane structure.

The WAXD profile of HSBC gel after scCO2 drying is shown in Fig. 6. The scCO2

dried HSBC gel had a very weak crystal peak intensity because it has a small size and

it is extremely light at about 80 mg. The WAXD pattern of HSBC gel had three char-

acteristic peaks of cellulose I crystal structure at 2q ¼ 14.4� (110), 16.4� (110), and
22.7� (200), and the peak of cellulose II crystal structure at 2q ¼ 20.1� (110) could
not be confirmed (Yue et al., 2013). This result implied that the crystals in the cel-

lulose fibrils constituting the HSBC gel were cellulose type I structure.
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The ATR-FTIR spectra of the HSBC gel after scCO2 drying is shown in Fig. 7. As a

comparative sample, the BC gel obtained from the test tube was presented. It was

dried by scCO2 in the same procedure. Both the samples showed nearly identical

spectra and the absorptions at 1429 cm�1 (CH2 bending), 1163 cm�1 (C-O-C

stretching), and 897 cm�1 (b-glucosidic linkage) that are specific to cellulose type

I crystals (Yue et al., 2013), were confirmed.

By WAXD profile and ATR-FTIR spectra, we could confirm that the crystals in the

cellulose fibrils constituting the HSBC gel were cellulose type I, which was same as

that from airemedium interface.
Fig. 7. ATR-FTIR spectra of hollow-type spherical BC aerogel and conventional BC aerogel. Left: wide

range spectrum, Right: enlarged spectrum.
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3.4. Drug release behavior from HSBC gel

As described above, HSBC gel is like a seamless capsule. These walls comprise of

cellulose fiber networks. To investigate its feasibility as a drug delivery device, the

release behavior of FITC-Dex (Mw ¼ 10,000) from within the HSBC gel (diameter:

3.50 mm) was studied by UV-Vis spectroscopy. For comparison, we used the con-

ventional BC gel obtained from the static culture, which had almost the same surface

area of the HSBC gel. The HSBC gel showed rapid release initially due to a thin

gelatinous membrane as compared to the conventional BC gel, and the release

rate gradually decreased (Fig. 8). At 3000 seconds or more, it reached a constant

value. The loading weight of FITC-Dex determined by MN was 22.6 mg.

The partition coefficient in the diffusion of dextran in the BC membrane is equal to 1

(Sokolnicki et al., 2006). The results indicate that there is no physical interaction be-

tween dextran and BC fiber such as adsorption and dextran is present in the water

retained by the BC gel. The weight fraction of fibers of HSBC gel is 0.8 %; the

HSBC gel is almost composed of water. The loading weight of FITC-Dex calculated

from the volume of the sphere neglecting the volume of BC fiber with a significantly

small amount is 22.4 mg. This calculated value is approximately equal to the exper-

imental value. Hence, it is considered that all the FITC-Dex release occurred within

about 3000 seconds.

The release behavior was analyzed using the following Korsmeyer-Peppas model

Eqs. (1) and (2) (Korsmeyer et al., 1983).

Mt/MN ¼ k tn (Mt/MN < 0.6) (1)

Log (Mt/MN) ¼ Log k þ n Log t (2)
Fig. 8. Release behavior of FITC-Dex from within the HSBC gel (diameter: 3.50 mm) and conventional

BC gel. Mt: The cumulative amount of drug released at time, MN: The maximum release amount of drug.
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Here, Mt and MN are the absolute cumulative amount of drug released at time t and

infinite time, respectively; k is a constant incorporating structural and geometric

characteristics of the device, and n is the release exponent, indicative of the mech-

anism of drug release. From Eq. (2), the release exponent of the HSBC gel was n

¼ 0.48 and k ¼ �1.60 (Fig. 9a). If the release behavior is Fick-type, the release

exponent will be n ¼ 0.5 (Higuchi model) in the thin film and n ¼ 0.43 in the spher-

ical shape (Siepmann and Peppas, 2001). Additionally, R2 values of Korsmeyer-

Peppas model and Higuchi model are 0.926 and 0.950, respectively. Release

behavior of model drug from HSBC gel agrees very well with Higuchi model

(Fig. 9b). Such good fitting indicates that drug release mechanism would follow

Fickian diffusion for the thin films. Although it is understood that the release

behavior from the HSBC gel was close to that of a thin film, since it can also be re-

garded as spherical anomalous diffusion (0.43 < n < 0.89) (Siepmann and Peppas,

2001), and a more detailed analysis should be necessary.
4. Conclusions

We developed a cultivating system for HSBC gel production without any molds or

template. It consisted of floating aqueous medium droplets containing G. xylinus at

the boundary of two non-mixed silicone oil layers with different densities. The den-

sities of the oils used were precisely controlled to enable the floating of droplets at

the boundary for cultivating periods. The size of the HSBC gel can be controlled by

the volume of dropped cell suspension. After cultivation, the HSBC gels were puri-

fied and dried by supercritical drying techniques to characterize the morphology of

gels. Scanning electron microscopy proved the hollow structure and well-organized

fibril networks; they comprised type-I crystal structure of the cellulose by careful

measurement of infra-red spectroscopy. Thus, HSBC gels have thin gelatinous mem-

brane composed of cellulose networks, which were produced at the interface of
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water and oil phases. The model drug was rapidly released, and the profile agrees

satisfactorily with Higuchi model, which indicates that drug release mechanism fol-

lowed Fickian diffusion for the thin films.

Cellulose can modify various functional groups and functional polymers

(Gonçalveset al., 2015; Alosmanov et al., 2017; Singhsa et al., 2018). Modified

HSBC gels may be used as new biomedical materials such as slow drug release,

controlled release by stimulation. Thus, HSBC gel would contribute towards

designing new biomedical applications such as scaffolds for regenerative medicine

or bio-component container or drug delivery system.
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