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Objective. Osteoarthritis (OA), also known as joint failure, is characterized by joint pain and, in severe cases, can lead to loss of
joint function in patients. Immune-related genes and immune cell infiltration play a crucial role in OA development. We used
bioinformatics approaches to detect potential diagnostic markers and available drugs for OA while initially exploring the immune
mechanisms of OA. Methods. *e training set GSE55235 and validation set GSE51588 and GSE55457 were obtained from the
Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified by the limma package. Gene
set enrichment analysis (GSEA) was performed on the GSE55235 dataset using the cluster profiler package. At the same time,
DEGs were analyzed by gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, protein-
protein interaction (PPI) analysis was performed on the commonDEGs of the three datasets using the STRING database. Proteins
with direct linkage were identified as hub genes, and the relation of hub genes was subsequently analyzed using the GOSemSim
package. Hub genes’ expression profiles and diagnostic capabilities (ROC curves) were analyzed and validated using three datasets.
In addition, we performed RT-qPCR to validate the levels of hub genes. *e immune microenvironment was analyzed using the
CIBERSORTpackage, and the relationship between hub genes and immune cells was evaluated. In addition, we used a linkage map
(CMAP) database to identify available drug candidates. Finally, the GSEA of hub genes was used to decipher the potential
pathways corresponding to hub genes. Results. *ree hub genes (CX3CR1, MYC, and TLR7) were identified. CX3CR1 and TLR7
were highly expressed in patients with OA, whereas the expression of MYC was low. *e results of RT-qPCR validation were
consistent with those obtained using datasets. Among these genes, CX3CR1 and TLR7 can be used as diagnostic markers. It was
found that CX3CR1, MYC, and TLR7 affect the immune microenvironment of OA via different immune cells. In addition, we
identified a potential drug for the treatment of OA. Altogether, CX3CR1, MYC, and TLR7 affect the immune response of OA
through multiple pathways. Conclusion. CX3CR1, MYC, and TLR7 are associated with various immune cells and are the potential
diagnostic markers and therapeutic targets for OA.

1. Background

Osteoarthritis (OA) refers to a common arthritic disease
worldwide, featured by several changes such as synovial
inflammation, cartilage degeneration, and subchondral bone
sclerosis [1]. It affected more than 500 million people
worldwide (∼7% of the global population), with excep-
tionally high prevalence in those of advanced age (>65 years

of age) [2]. Factors contributing to OA include joint trauma,
age, obesity, joint shape, and alignment [3]. However, re-
cently, more and more research has demonstrated the
crucial function of immune molecules in the pathogenesis of
OA, such that OA is gradually recognized as a chronic
inflammatory response [4]. At present, OA is routinely
diagnosed according to clinical presentations and a com-
bination of imaging technologies [5]. Unfortunately, an
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early, accurate OA diagnosis remains impossible, and there
exists no effective drug for its treatment. *erefore, it is
highly crucial to explore early diagnostic biomarkers that
can also serve as drug targets to enhance the prognosis and
treatment of patients undergoing OA.

Due to the development of bioinformatics technology,
high-throughput platform-based gene chips have emerged
as an effective tool to study gene expression profiles and
explore molecular mechanisms underlying several diseases
[6]. *is approach is considered an efficient method for
identifying diagnostic markers and therapeutic targets.
CIBERSORT, an algorithm used to depict the immune cell
constitution within complicated tissues using the corre-
sponding gene expression patterns, is extensively adopted
for assessing the relative abundances of 22 immune cells in
multiple diseases [7]. *us, it can be applied for analyzing
infiltration degrees of immune cells within OA, which can
thus facilitate to development of novel diagnostic bio-
markers and immunotherapeutic targets.

We first downloaded three OA microarray datasets in
Gene Expression Omnibus (GEO) database, and differen-
tially expressed genes (DEGs) were analyzed. Afterward, the
common DEGs in the two datasets were used for protein-
protein interaction (PPI) studies for selecting and deter-
mining diagnostic markers for OA. In addition, this study
identified drugs that acted on the product of these genes. We
used CIBERSORT to explore the differences in immune
infiltration degrees within OA compared with healthy tissue
samples of 22 immune cell types. Apart from that, this work
also investigated the association of diagnostic markers with
infiltration degrees of immune cells. Finally, a single-gene
Gene Set Enrichment Analysis (GSEA) was conducted to
identify immune pathways related to diagnostic markers to
better understand molecular immune mechanisms related to
OA occurrence and progression.

2. Methods

2.1. Data Collection. To identify genome-wide gene ex-
pression datasets comparing gene expression in OA tissues
and normal tissues, we searched and selected the GSE55235,
GSE51588, and GSE55457 datasets for subsequent analysis
using the Gene Expression Overview (GEO) database. We
used GSE55235 as the training set, whereas GSE51588 and
GSE55457 as validation sets.

2.2. Screening of Differentially Expressed Genes. Using the
information obtained from the GPL96 platform, the probe
identification number was first converted to a traditional
gene symbol, and the maximum value was assigned to
multiple probes of the same gene as the gene expression.
Datasets were normalized and differentially expressed using
the limma software package.*e criteria for screening DEGs
were adjusted P< 0.05 after correction; |log FC|> 1.5, FC
refers to the fold of difference.

2.3. Gene Set Enrichment Analysis. GSEA detects changes in
expression in the sets of genes rather than individual genes.

*erefore, subtle changes in the expression can be found,
and better results can be obtained. To identify the biological
processes and GO terms, together with KEGG pathways
associated with OA, we performed GSEA on the GSE51588
dataset with cluster profiler R package, with P< 0.05 indi-
cating statistical significance.

2.4. Functional Annotation of DEGs. Gene Ontology (GO) is
classified into three types, namely, biological process (BP),
cellular component (CC), and molecular function (MF). It is
a broad and highly efficient method to interpret gene
products and their functional characteristics. *e KEGG
analysis provides a data resource about known metabolic
pathways to understand higher-level functions of genes and
biological systems. As a package for annotation, visualiza-
tion, and integrated discovery, a cluster profiler can be
adopted for extracting meaningful biological information
about genes. DEGs from the training set were examined with
a cluster profiler software package, and a P< 0.05 threshold
was considered significant.

2.5. Protein-Protein Interaction Network (PPI and Hub Gene
Selection). We extracted DEGs from the GSE55235 dataset
and intersected them with those from GSE51588 and
GSE55457 datasets, respectively, to obtain the common
DEGs between the two datasets. *e online tool VennDetail
was used to construct the common DEGs between two
datasets, respectively. STRING database (https://string-db.
org) was adopted to retrieve interacting genes/proteins,
including approximately 24.6 million proteins and over 3.1
billion interactions in 5.09K organisms. In the STRING
database, we selected “multiple proteins,” entered co-up-and
down-regulated differential genes, selected “Homo sapiens”
as the organism, and set the significant threshold to the
lowest interaction score >0.4 (low confidence). Subse-
quently, the Cytoscape software the PPI network was
constructed using. We analyzed the key genes using the
GOSemSim package to analyze their functional similarity.
*is analysis was based on the assumption that if two gene
products are functionally similar, they tend to be located
together in the GOtree.

2.6. Expression-Level Validation of Hub Genes. *e genes in
the GSE55235 dataset were extracted, and their expression
was analyzed and verified using the GSE51588 and
GSE55457 datasets.

2.7. Experimental Validation of Hub Gene Expression. We
obtained rat articular chondrocytes fromWuhan Procell Life
Science and Technology Co., Ltd. Cells were cultured using
DMEM/F12 medium containing 10% fetal bovine serum.
*e inflammation model group was stimulated with a
medium containing IL-1β at a concentration of 10 ng/ml for
24 h. Total RNAwas extracted with RNAeasy™ Animal RNA
Extraction Kit (Beyotime Biotechnology, China), and quality
control was conducted by NanoDrop one spectrophotom-
eter. *en, reverse transcription was performed to produce
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cDNA.*e extracted RNA was reverse transcribed to cDNA
using PrimeScript™ RT Master Mix (TAKARA, Japan).
cDNAwas extracted using PowerUp™ SYBR® GreenMaster
Mix (Applied Biosystems, USA) and ABI 7500Real-
TimePCR System. RT-qPCR was performed to detect the
expression of differential genes. GAPDH was used as an
internal reference. *e relative mRNA expression level was
calculated with the 2−ΔΔCt method, and P< 0.05 indicated a
significant difference. *e primer sequences are shown in
Table 1.

2.8. ROC-Level Validation of Hub Genes. In the GSE55235
database, the total RNA was extracted from patients un-
dergoing OA and healthy controls. *e ROC curves were
drawn. At the same time, the area under the curve (AUC)
was computed using “proc” software to evaluate the ability of
the selected genes, aiming to discriminate between patients
with OA and controls. Both GSE51588 and GSE55457
datasets were used to validate their ROC levels.

2.9. Correlation Analysis of Hub Gene with Immune Cells.
*is work employed R package CiberSort to process the
GSE55235 gene expression matrix data. Besides, samples
satisfying P< 0.05 were chosen for obtaining the infiltration
matrix of OA immune cells. For visualizing the proportions
of 22 immune cell infiltrations within patients with OA, the
cumulative histogram was plotted using the “ggplot2”
software package. Correlations between 22 immune cells
were analyzed and visualized using the “corrplot” software
package.*is study drew violin plots with “ggplot2” package
for visualizing different infiltration degrees of immune cells
in OA compared with normal groups.

2.10. Correlation Analysis of Hub Gene with Infiltration De-
grees of Immune Cells. *is work conducted Spearman’s
correlation on immune cells and hub genes, and immune
cells satisfying P< 0.05 were chosen. *e ggplot2 software
package was used to visualize the results.

2.11. Small Molecule Drug Analysis. As an experimentally
validated drug database, the CMAP database can be used to
predict the potential molecular compounds acting on OA.
CX3CR1, MYC, and TLR7 were submitted to the CMAP
website to identify small-molecule drugs against OA. *e
correlation between the drug and the target is represented by
a score of −1 to 1, with negative scores indicating that the
drug has the potential to inhibit OA. *erefore, enrichment
<0 and P< 0.001 were used for screening.

2.12. GSEA of Hub Genes. To further explore the potential
functions of CX3CR1, MYC, and TLR7 in OA, GSEA was
performed on CX3CR1, MYC, and TLR7. In the GSE51588
dataset, according to the expression of CX3CR1, MYC, and
TLR7, Spearman’s analysis was used to calculate their
correlation coefficients with other genes. *ey were treated
as an ordered gene list. *e R package “cluster profile” was

used to select hall.v7.4.sytmbols.gmt from the Molecular
Signature Database (MSigDB) as the reference genome for
GSEA, and a P -adjustment value< 0.05 was used as the
screening criterion.

3. Results

3.1. Screening Results of DEGs. *e limma software package
analysis revealed 343 standard-compliant DEGs from the
GSE55235 dataset, among which 167 showed up-regulation
while 176 showed down-regulation (Figure 1(a)). In the
GSE51588 dataset, 272 standard DEGs were discovered, in-
cluding 108 with up-regulation, replaced by 164 with down-
regulation (Figure 1(b)). In addition, we discovered 109
qualifiedDEGs from theGSE55457 dataset, including 26with
up-regulation and 83with down-regulation (Figure 1(c)).*e
respective top 15 up-regulated and down-regulated genes in
the GSE55235, GSE51588, and GSE55457 datasets are shown
in the heatmap (Figures 1(d) and 1(f)).

3.2. GSEA. Gene set enrichment analysis revealed that
compared with controls, the gastrointestinal system’s
smooth muscle contraction, glycosphingolipid catabolic
process, response to UV-A, and glycolipid catabolic pro-
cesses were enriched in BP (Figure 2(a)). *e major his-
tocompatibility complex (MHC) class II protein complex,
immunoglobulin complex, banded collagen fibrils, and fi-
brillar collagen trimer were enriched in CC (Figure 2(b)). In
MF, platelet-derived growth factor binding, immunoglob-
ulin receptor binding, peptidoglycan binding, and immu-
noglobulin binding were mainly enriched (Figure 2(c)). *e
KEGG analysis revealed enrichment in asthma, autoimmune
thyroid disease, N primary immunodeficiency as well as
intestinal immune network for IgA production
(Figure 2(d)).

3.3. DEGs Functional Enrichment Analysis Results. GO as
well as KEGG enrichment analysis was conducted with the
cluster profiler package in R for exploring DEGs’ biological
functions. In the BP group, we enriched DEGs in neutrophil
degranulation, neutrophil activation, as well as neutrophil
activation involved in immune response (Figure 3(a)). In the
CC group, DEGs were majorly concentrated in secretory
granule lumen, vesicle lumen, and cytoplasmic vesicle lumen
(Figure 3(b)). In the MF group, DEGs were associated with
glycosaminoglycan binding, extracellular matrix structural
constituents, and heparin-binding (Figure 3(c)). In KEGG,

Table 1: | Primer sequences.

Gene Primer (5′-3′)
GAPDH Forward GACATGCCGCCTGGAGAAAC
GAPDH Reverse AGCCCAGGATGCCCTTTAGT
CX3CR1 Forward CACCAAAGCCAGCACATAGGAGAG
CX3CR1 Reverse GTCTGCGGATCTTGGACAAACAAATG
MYC Forward AGCAGCGACTCTGAAGAAGAACAAG
MYC Reverse GGATGACCCTGACTCGGACCTC
TLR7 Forward GTATGCCACCGAATCTAACGACTCTC
TLR7 Reverse GCCAATCTCGCAGGGACAGTTG
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DEGs were enriched in neutrophil extracellular trap for-
mation, viral protein interaction with cytokines or their
receptors, and Staphylococcus aureus infection (Figure 3(d)).

3.4. PPI Network Construction and Key Gene Screening.
Two up-regulated DEGs (CX3CR1 and TLR7) and two
down-regulated DEGs (MYC andNFIL3) were shared across
the three datasets (Figure 4(a)). *e PPI results indicated a
direct link between CX3CR1,MYC, and TLR7 (Figure 4(b)).
*e functional similarity results showed a functional con-
nection between CX3CR1, MYC, and TLR7, with TLR7
occupying the most important position, followed by
CX3CR1 and MYC (Figure 4(c)).

3.5. Hub Gene Verification and Efficacy Evaluation. In the
GSE55235 dataset, CX3CR1 and TLR7 levels increased,
whereasMYC levels notably decreased, with a P-value <0.05
(Figures 5(a)–5(c)). In the validation datasets GSE51588
(Figures 5(d)–5(f )) and GSE55457 (Figures 5(g)–5(i)), the

expression of the three genes was the same as that in the
GSE51588 dataset, all of which were significant.

3.6. RT-qPCR Validation. *e experimental results showed
significantly increased expression of CX3CR1 and TLR7 in
the OA group (Figures 6(a), 6(b)) and significantly decreased
expression of MYC in the OA group (Figure 6(c)). *e
experimental results were in line with those obtained from
the analysis of the three microarray datasets, demonstrating
the reliability of our bioinformatics analysis results.

3.7. ROC Level Validation of Hub Genes. In the GSE55235
dataset, the trueAUCsofCX3CR1andTLR7were greater than
0.9, and the true AUC ofMYCwas lesser than 0 (Figure 7(a)).
In the validation datasets GSE51588 (Figure 7(b)) and
GSE55457 (Figure 7(c)), the true AUCs of CX3CR1 and TLR7
were also greater than 0.9, and the true AUC of MYC was less
than 0. CX3CR1 and TLR7 exhibited a strong ability to dis-
tinguish patients with OA from those without OA.
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Figure 1: Analysis of EDGs (a): Volcano Plot of GSE55235 dataset:(b): Volcano Plot of GSE51588 dataset; (c): Volcano Plot of GSE55457
dataset; Up-regulated differentially expressed genes are indicated by red dots; down-regulated differentially expressed genes are indicated by
blue dots; nonsignificant genes are indicated by gray dots. (d): Heat map of GSE55235 dataset; (e): Heat map of GSE51588 dataset (f ): Heat
map of GSE55457 dataset. Differential epigones that are highly expressed in the samples are marked in red, and differentially expressed genes
that are low in the samples are indicated in blue.
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Figure 2: Gsea (a): BP; (b): CC; (c): Mf; (d): Kegg.
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3.8. ImmuneCell Infiltration. To deeply study the differential
expression of immune components in OA and normal
groups, the CIBERSORT algorithm was adopted for eval-
uating the relationship of OA phenotype with immune cell
infiltration. *e relative proportions of immune cell sub-
types are shown in cumulative histograms (Figure 8(a)). *e
results showed that activated mast cells, CD4 näıve T cells,
resting NK cells, and neutrophils accounted for a major
proportion. *e correlation heat map for 22 immune cell
types (Figure 8(b)) showed a significant positive correlation
between monocytes and eosinophils, a positive correlation
between neutrophils and monocytes, and a negative asso-
ciation between resting and activated NK cells, and between
eosinophils and resting dendritic cells. Besides, the violin
plot regarding the difference in immune cell infiltration
(Figure 8(c)) presented significantly more naive CD4 Tcells,
resting dendritic cells as well as activated NK cells compared
to the normal control group.

3.9. Correlation Analysis of Hub Genes with Infiltration De-
grees of Immune Cells. According to correlation analysis,
CX3CR1 exhibited a positive correlation with activated mast
cells, NK cells, gamma delta Tcells, and M1 macrophages. It

was adversely related to resting CD4 memory T cells, acti-
vated CD4 memory T cells, neutrophils, and activated
dendritic cells (Figure 9(a)). TLR7was in positive correlation
with M2 macrophages, activated NK cells, M1 macrophages,
gamma delta T cells, and resting dendritic cells. It was
negatively related to activated dendritic cells and resting NK
cells (Figure 9(b)). MYC was positively associated with
resting CD4 memory T cells, eosinophils, neutrophils, ac-
tivated dendritic cells, monocytes, and activatedmast cells. It
showed a negative correlation between activated mast cells
and CD4 naive T cells (Figure 9(c)).

3.10. Drug Analysis Results. We used three mRNAs
(CX3CR1, MYC, and TLR7) in the connectivity map
(CMAP) database to predict potential drugs against OA. We
found a variety of drugs for the treatment of OA, including
*apsigargin, Meteneprost, Naftifine, Trimethobenzamide,
and Fludrocortisone (Table 2).

3.11. GSEA of Hub Gene. *e GSEA was used to identify a
complete list of gene sets enriched inCX3CR1 (Figure 10(a)),
TLR7 (Figure 10(b)), and MYC (Figure 10(c)). Next, we
selected immune-related gene sets from the complete list for
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Figure 3: GO Enrichment Analysis (a): BP; (b): CC; (c): MF; (d): KEGG. *e size of the circle represents the number of genes; darker red
means a smaller corrected P -value, and darker blue means a larger corrected P -value.
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further analysis. Six groups of genes were enriched in
samples for CX3CR1, including “interferon-alpha response,”
“allograft rejection,” “PI3K-AKT-MTOR signaling,” “in-
flammatory response,” “IL2-STAT5 signaling,” and “TNFA
signaling via NF-KB” (Figure 11(a)). Similarly, “interferon-
alpha response,” “allograft rejection,” “IL2-STAT5 signal-
ing,” and “TNFA signaling via NF-KB” were enriched in
TLR7-related samples (Figure 11(b)). Furthermore, the
genomes of “interferon-alpha response,” “allograft rejec-
tion,” “inflammatory response,” “IL2-STAT5 signaling,” as
well as “TNFA signaling via NF-KB” were enriched in MYC-
related samples (Figure 11(c)).

4. Discussion

OA is the most common disease among the elderly and
causes irreversible bone erosion and cartilage destruction
[8]. Due to the lack of timely and efficient treatment, OA is
bound to greatly influence the functions of a patient’s joints.
Although multiple diagnostic methods are available for OA,
clinical outcomes have remained unsatisfactory. Further-
more, no drug therapy with convincing disease-modifying
effects has been approved by regulatory agencies [9,10].

We used three datasets and found three biomarkers
(CX3CR1, MYC, and TLR7), of which the AUC values of
CX3CL1 and TLR7 were greater than 0.9 in all three datasets
with good discrimination of OA capacity between patients of
OA and healthy individuals. CX3CL1 is the only member of
the CX3C chemokine class that has chemoattractant and

adhesion molecule properties. CX3CL1 activates c-RAF,
MEK, ERK, and NFκB through the MMP-3 promoter of
CX3CR1, thereby promoting the destruction of cartilage
during OA [11]. CX3CR1 regulates the Wnt/β-catenin
signaling, which consequently regulates the proliferation of
chondrocytes and apoptosis in osteoarthropathy [12]. Toll-
like receptor 7 (TLR7) is a single-stranded RNA pattern
recognition receptor, and extracellular miR-21 released from
synovial tissue mediates knee OA pain by activating the
activation of TLR7 in surgical OA rat models [13]. TLR7
recognizes the microbes and endogenous RNAs, and nu-
cleosides. Moreover, its aberrant activation has been im-
plicated in numerous autoimmune diseases, including
systemic lupus erythema (SLE) [14]. TLR7 detects viral RNA
and can also be inappropriately activated by self-RNA,
generating autoimmunity [15]. *e MYC gene consists of
three sub-branches, namely, C-MYC, N-MYC, and L-MYC,
and is one of the most common runaway driver genes in
human cancers [16]. *e proto-oncogene MYC regulates
several cellular processes, containing proliferation and
metabolism. Keeping the homeostatic levels of MYC is vital
for normal cell function; its overexpression is associated with
several cancers. MYC stability can be regulated by phos-
phorylation, and phosphorylation signals at *r58 degrade
it, whereas Ser62 phosphorylation generates its stabilization
and functional activation [17]. In addition, we used the
CMAP database to identify multiple therapeutics targeting
CX3CR1, MYC, and TLR7. However, their specific functions
in OA and consequent side effects require further clinical
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studies. In the dataset GSE55235, the expression of CX3CR1
and TLR7 was significantly increased, and the expression of
MYC was significantly reduced in patients with OA. *e
expression of the above three HUB genes was validated in
the other two datasets. We found that the results of RT-
qPCR validation for CX3CR1, MYC, and TLR7 were con-
sistent with all three datasets, demonstrating the reliability of
our results. Although the three studies used different gene
expression analysis platforms and were conducted in highly
distinct populations, the three gene levels remained unaf-
fected. Furthermore, the above three genes were commonly
expressed in different individuals. More investigations are
needed to explore their levels and associated activities.

To further analyze the infiltration degree of immune cells
within OA, a comprehensive evaluation of OA immune
infiltration was performed using CIBERSORT. *is study
observed higher regulatory T cell and mast cell infiltration
degrees, whereas reduced eosinophil, activated NK cell, and
resting CD4+ Tcell infiltration degrees, were associated with
OA occurrence. A prior study reported relatively high mast
cell infiltration in synovial tissues from OA cases and was
associated with structural damage [18]. M2 cells are closely
related to inflammation, such as having anti-inflammatory
activity, and being regulated by squid type II collagen,
thereby promoting cartilage repair under inflammatory
conditions [19, 20]. Cartilage proteoglycans located in the
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G1 region can induce T cell responses and promote the
degradation of cartilage in patients undergoing OA [21].
Apart from that, researchers have pointed out the abundance
of regulatory T cells within OA, with their levels being re-
lated to the levels of inflammatory molecules [22]. As re-
ported by Ezawa and colleagues, memory CD4+ T cells are
universally accumulated in the case of local inflammatory
response in joints, which are engaged in forming chronic OA
[20]. Using in vivo experiments confirmed the important
functions of neutrophils and NK cells in OA, and the in-
teraction between them is stimulated via CXCL10/CXCR3
axis [23]. Based on this background and our findings,
regulatory T cells, resting mast cells, activated NK cells, and
resting CD4+ memory T cells exert a vital effect on OA
pathogenesis, which will become a future research focus.
Nevertheless, no research currently exists regarding eosin-
ophils’ effect on OA, requiring deep experimental analysis.

Furthermore, our results revealed the infiltration degrees of
22 immune cell types within OA. Regulatory T cell and
activated mast cell infiltration degrees were intricately as-
sociated with activated NK cell and resting CD4+ memory
T cell infiltration. *e infiltration degree of activated den-
dritic cells was in close correlation with eosinophilic infil-
tration. Again, specific mechanisms of the above-mentioned
associations need the evidence of further experimental
evidence.

An analysis of the association of CX3CR1, MYC, and
TLR7 with immune cells revealed that CX3CR1 showed
obvious positive relation to activated M1 macrophages, NK
cells, gamma delta T cells, and activated mast cells, whereas
activated CD4+ memory T cells, neutrophils, resting CD4+
memory Tcell, and activated DCs were negatively correlated.
TLR7 was significantly positively correlated with M1 mac-
rophages, M2 macrophages, activated NK cells, resting
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dendritic cells, and gamma delta T cells, whereas notably
adversely related to DCs and activated resting NK cells.
MYC showed a significant positive relation with resting
CD4+ memory T cells, eosinophils, neutrophils, activated
DCs, monocytes, as well as activated mast cells, whereas it
was markedly adversely linked with activated mast cells and
CD4+ naive T cells. CX3CR1, MYC, and TLR7 are involved
in immune processes. For instance, CX3CR1 is essential in

airway inflammation and promotes the survival and
maintenance of T helper cells in the inflamed lungs [24]. In
addition, CX3CR1 modulates bacterial translocation, in-
testinal macrophage homeostasis, as well as colitis *17
responses in mice [25]. CX3CR1 mediates the access of
dendritic cells to the intestinal lumen and bacterial clear-
ance. TLR7 induces anergic human CD4+ T cells [26].
Plasmacytoid dendritic cells (pDCs) sense the viral RNA
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Figure 8: Immune cell infiltration analysis (a): Immune cell percentage chart; (b): Correlation diagram between immune cells; (c):
Expression of immune cells in OA group and Control group.
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through toll-like receptor 7 (TLR7), leading to the formation
of self-adhesive pDC–pDC clusters and yield type I inter-
ferons. Besides, such cell adhesion can enhance the pro-
duction of type I interferons [27]. Autophagy exerts a vital
function in TLR7-mediated activation of B cells to induce
SLE by delivering RNA ligands to endosomes, where innate
immune receptors are located [28]. *e MYC pathway not

only determines cancer cell pathophysiology but also sup-
presses host immune responses [29]. MYC is known to
regulate antitumor immune responses through CD47 and
PD-L1. In addition, c-Myc is required for maintaining
homeostasis and transient activation of regulatory T cells
[16]. Studies have reported significant functions of NK cells
and mast cells in OA. Because the polarization of M1
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Figure 9: Correlation analysis of Hub genes and immune cells (a): Correlation analysis of CX3CR1 and immune cells; (b): Correlation
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Table 2: mRNA was used to predict potential drugs for the treatment of OA.

Cmap name Mean N Enrichment P Specificity Non-null percent
*apsigargin −0.828 3 −0.977 0.00004 0.0129 100
Meteneprost −0.781 4 −0.853 0.00088 0 100
Naftifine −0.78 4 −0.884 0.0004 0 100
Trimethobenzamide −0.702 5 −0.779 0.00096 0.0067 100
Fludrocortisone −0.371 8 −0.648 0.00092 0.0493 50
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macrophages within synovium deteriorates OA [30], It can
be speculated that CX3CR1 elevated the number of NK cells
and naive CD4+ T cells or decreased the number of M1
macrophages, whereas MYC and TLR7 decreased the
number of mast cells related to OA occurrence. *ese hy-
potheses need future studies to elucidate the complicated
gene-immune cell interactions.

Furthermore, single-gene GSEA analysis revealed that
“interferon-alpha response,” “allograft rejection,” “PI3K-
AKT-MTOR signaling,” “inflammatory response,” “IL2-
STAT5 signaling.” and “TNFA signaling via NFK-B” were
involved in the OA immune process. Interferons can
induce or exacerbate autoimmune diseases due to their

immunomodulatory properties. For example, alpha-inter-
feron can induce severe immune thrombocytopenia in those
suffering from chronic hepatitis C. Moreover, probiotics that
modulate the mTOR/PI3K/Akt signaling pathway can ac-
tivate immune responses. PI3K and mTOR positively reg-
ulate the activation of immune cells of neutrophils and mast
cells. In addition, T-cell receptors regulate the expression of
Foxp3 through the PI3K/Akt/mTOR signaling network,
thereby participating in immune processes. Dying neutro-
phils are known to produce anti-inflammatory effects by
modulating surrounding cellular responses, especially
macrophages that release inflammatory cytokines. Several
cellular components of both adaptive and innate immune
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responses are present at the sites of tissue inflammation.
Targeted delivery of IL2 to the tumor stroma can enhance
the effects of immune checkpoint inhibitors by preferentially
activating NK and CD8+ T cells. Furthermore, the tetra-
merization of STAT5 is important for cytokine responses
and normal immune function, establishing its vital function
in vivo. TTP53 GOF mutants up-regulate the expression of
CC motif chemokine ligand 2 (CCL2) and TNFA via the
NFκB signaling pathway, thereby increasing microglia-and
monocyte-derived immunity cell infiltration. *e complex
functions of CX3CR1, MYC, and TLR7 and these pathways
in OA require elucidation.

Our study had certain limitations. First, the data used in
the current work were acquired from public databases, with

no way to validate the reliability of the data. Second, this
study explored the association of OA markers with immune
cells. Meanwhile, the reliability of this result in OA needs to
be experimentally verified. *ird, we did not deeply ex-
perimentally investigate the exact mechanism of the hub
gene identified in OA.

5. Conclusion

Our study identified three hub genes, their relationship with
the immune microenvironment, and certain functional bi-
ological pathways associated with immune response, in-
flammatory response, and cytokines related to O pathogenic
mechanism. In addition, potential drugs for the treatment of
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Figure 11: Immune-related pathways of Hub genes (a): Immune-related GSEA results of CX3CR1 (b): Immune-related GSEA results of
MYC (c): Immune-effective GSEA results of TLR7.
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OA were discovered. Although the obtained results offer
new insights into OA genesis and progression, the exact
molecular mechanism and functional pathway of HUB genes
in OA still require to be deeply investigated.

Data Availability

*edata used to support this manuscript are included within
this manuscript.

Additional Points

1. In this study, we discovered that CX3CR1, MYC, and
TLR7 could be used as a new diagnostic marker by bio-
informatics methods and RT-qPCR, which provides a new
direction for studying the pathogenesis of OA. 2. Using drug
information from the CMAP database, we have identified
multiple drugs that have effects on CX3CR1, MYC, and
TLR7, providing potential therapeutic options for the
treatment of OA. 3. Using GSEA, we have discovered
multiple pathways involved in CX3CR1, MYC, and TLR7 in
OA, further enriching our study of them.
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