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In hypertension, the presence of left ventricular (LV) strain pattern on 12-lead electrocardiogram (ECG) carries adverse
cardiovascular prognosis. The underlying mechanisms are poorly understood. We investigated whether hypertensive
ECG strain is associated with myocardial interstitial fibrosis and impaired myocardial strain, assessed by multi-paramet-
ric cardiac magnetic resonance (CMR).

A total of 100 hypertensive patients [S0 + 14 years, male: 58%, office systolic blood pressure (SBP): 170 + 30 mmHg,
office diastolic blood pressure (DBP): 97 + 14 mmHg) underwent ECG and 1.5T CMR and were compared with 25
normotensive controls (46 + 14 years, 60% male, SBP: 124 + 8 mmHg, DBP: 76 + 7 mmHg). Native T1 and extracel-
lular volume fraction (ECV) were calculated with the modified look-locker inversion-recovery sequence. Myocardial
strain values were estimated with voxel-tracking software. ECG strain (n = 20) was associated with significantly higher
indexed LV mass (LVM) (119 + 32vs.80 + 17 g/m% P < 0.05) and ECV (30 + 4 vs. 27 + 3%, P < 0.05) compared with
hypertensive subjects without ECG strain (n = 80). ECG strain subjects had significantly impaired circumferential strain
compared with hypertensive subjects without ECG strain and controls (—15.2 + 4.7 vs. —17.0 + 3.3 vs.
—17.3 + 2.4%, P < 0.05, respectively). In subgroup analysis, comparing ECG strain subjects to hypertensive subjects
with elevated LVM but no ECG strain, a significantly higher ECV (30 + 4 vs. 28 + 3%, P < 0.05) was still observed. In-
dexed LVM was the only variable independently associated with ECG strain in multivariate logistic regression analysis
[odds ratio (95th confidence interval): 1.07 (1.02—1.12), P < 0.05).

In hypertension, ECG strain is a marker of advanced LVH associated with increased interstitial fibrosis and associated
with significant myocardial circumferential strain impairment.
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Introduction

The American Joint National Committee on Prevention, Detection,
Evaluation, and Treatment of High Blood Pressure’ and the 2013
joint European Society of Hypertension/European Society of Cardi-
ology” advise that a 12-lead electrocardiogram (ECG) be routinely
performed in all patients with arterial hypertension. In hypertension,
left ventricular (LV) ECG strain is a powerful predictor of myocar-
dial infarction (MI) and cardiovascular death.? It is also a significant
independent predictor for the development of, and death from,
congestive cardiac failure.* Furthermore, the development of ECG
strain in the context of anti-hypertensive therapy is independently
associated with cardiovascular death, Ml, stroke, sudden cardiac
death, and all-cause mortality.> However, the mechanisms of the
characteristic ST-segment and T-wave changes in hypertensive
ECG strain are unknown.

Interstitial myocardial fibrosis has been documented histologi-
cally in hypertensive subjects at post-mortem® and at biopsy.’
Native T1 mapping is a non-contrast, non-invasive cardiac magnetic
resonance (CMR) technique that can determine whether myocar-
dial structural changes exist at the intracellular and/or extracellular
level2? Using both native and post-contrast T1 mapping, such myo-
cardial changes can be localized to the myocardial interstitium by
calculating the myocardial extracellular volume fraction (ECV).
CMR T1 mapping sequences have been histologically validated in
ex vivo human hearts following cardiac transplantation,'® and the
techniques can reliably detect and quantify myocardial interstitial
fibrosis.

The pathophysiological association between myocardial intersti-
tial fibrosis, as assessed with CMR T1 mapping, LV mechanics and
ECG strain in hypertensive patients, remains poorly understood
and was investigated in the present study. We hypothesized that
ECG strain would be associated with diffuse myocardial interstitial
fibrosis and with myocardial systolic dysfunction.

Methods

Study subjects

Patients with hypertension were prospectively recruited from the Bris-
tol Heart Institute tertiary hypertension clinic between February 2012
and January 2016. The local research ethics committee confirmed
that the study conformed to the governance arrangements for research
ethics committees. Written consent was provided. Demographic and
clinical characteristics were documented. Exclusion criteria consisted
of evidence of any concurrent myocardial pathology (e.g. moderate—
severe valvular heart disease and inherited/acquired cardiomyopathies)
and severely decreased estimated glomerular filtration rate (eGFR)
<30 mL/min/1.73 m?, precluding the use of gadolinium-chelate contrast
agent. Normotensive healthy volunteers acted as a control group.

Average office systolic (SBP) and diastolic blood pressures (DBP)
were obtained with an appropriately sized brachial cuff in all subjects
after seated rest from both arms, assessed using standard automated
sphygmomanometry."’

Electrocardiographic analysis

A 12-lead ECG (scale: 10 mm = 1 mV, speed: 25 mm/s) was acquired
supine during gentle respiration in all hypertensive subjects. ECG strain
was defined as >1 mm concave down-sloping ST-segment depression

and asymmetrical T-wave inversion in the lateral leads, as previously de-
scribed.™ Complete bundle branch block or digoxin confounded ana-
lysis, necessitating exclusion. ECG interpretation was performed by an
experienced clinician, blinded to both other clinical and CMR data.

CMR cine protocol and analysis

CMR was performed at 1.5T (Avanto, Siemens, Erlangen, Germany).
Steady-state free precession (SSFP) short-axis cines for the LV (slice
thickness: 8 mm, no inter-slice gap, temporal resolution: 38.1 ms,
echo time: 1.07 ms, in-plane pixel size: 1.5 x 0.8 mm) were used to cal-
culate LV mass (LVM) and volumes, which were subsequently indexed
to body surface area as previously described.’ As per the Society for
CMR guidelines,"* a validated™ threshold-detection software
(CMR42, Circle Cardiovascular Imaging Inc., Calgary, Canada) was
used, enabling papillary muscles and LV trabeculae to be included in
the estimation of LVM. Left ventricular hypertrophy (LVH) was defined
as indexed LVM >95th percentile of widely used CMR normal ranges
(men: 89—93 g/m? and women: 77—78 g/m* depending on age)."”® The
CMR-derived mass-to-volume ratio (M/V), akin to the echocardio-
graphic measure of relative wall thickness,'® was documented. Patterns
of LVH were defined as concentric LVH where there was elevated in-
dexed LVM but normal indexed EDV and eccentric LVH where there
was an elevated indexed LVM and concomitant elevated indexed EDV
relative to normal reference ranges,"® in a manner similar to previously
described echocardiographic’” and CMR™® studies of LV phenotypes.
The CMR volumetrics were performed by an experienced CMR reader,
who was blinded to all other data.

CMR late gadolinium protocol and analysis

Replacement myocardial fibrosis was assessed by late gadolinium en-
hancement (LGE)."® An inversion-recovery fast gradient recall echo se-
quence performed, in two phase-encoding directions where necessary,
was used 10—15 min after the administration of 0.1 mmol/kg gadobutrol
(Gadovist, Bayer Pharma AG, Germany) intravenously. The inversion
time was optimized to achieve nulling of normal myocardium. LGE
assessment was visual consensus between two expert CMR readers,
blinded to clinical and ECG data. Any patients exhibiting any type of
LGE were excluded to avoid confounding effects of replacement
fibrosis. Normotensive control subjects did not receive intravenous
gadolinium-chelate.

CMR T1 mapping protocol and analysis

Myocardial T1 mapping was performed using the modified look-locker
inversion-recovery (MOLLI) sequence [flip angle: 35°, minimum time to
inversion (TI): 100 ms, Tl increment: 80 ms, time delay: 150 ms, heart
beat acquisition scheme: 5-(3)-3]."° Regions of interest (ROI) were
drawn within the mid-septum on short-axis, motion-corrected native
T1 maps and copied onto corresponding 15-min post-contrast maps,
with minor adjustments to minimize partial volume artefact, as previous-
ly described.?® T1 analysis was performed with Argus software
(Siemens, Erlangen, Germany), as previously described.”! The T1 values
were the mean of all pixels within the ROI. Analysis was performed by
an experienced CMR reader, blinded to all other data. The ECV was
calculated as™: ECV = (AR ocardium/ AR Thiood-poot) X (1 — haemato-
crit), where AR1 = (1/post-contrast T1 — 1/native T1). Myocardial
cell volume fraction was defined, as pr-’::viously,22 as 1 — ECV and
multiplied by indexed myocardial volume (indexed LVM divided
by 1.05 g/mL, the myocardial specific gravity). Indexed interstitial
volume was defined as ECV x indexed myocardial volume. This T1
technique analysis has previously been demonstrated to yield high
reproducibility.*"*3
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CMR strain imaging

Strain imaging was performed with voxel-tracking post-processing
software (Tissue Tracking, CMR42, Circle Cardiovascular Imaging Inc.,
Calgary, Canada) on two-chamber, four-chamber, and short-axis stack
SSFP cine images by defining endocardial and epicardial borders (ex-
cluding papillary muscles and trabeculae) and the mitral valve annular
plane at end-diastole. Global longitudinal strain was the averaged strain
from four-chamber and two-chamber analysis. Circumferential and ra-
dial strain were calculated as mean values of mid-myocardial segments
from the short-axis cine two-dimensional (2D) strain model, in order to
minimize partial voluming and through-plane motion at the base and
apex. The software tracks every myocardial voxel through the cardiac
cycle in 2D. It is based on a previously described algorithm.**** Strain
data from hypertensive subjects were compared with data from normo-
tensive controls. All strain analysis was performed by an experienced
CMR reader blinded to all other data.

Statistical analysis

Statistical analysis was performed using SPSS v.21 (IBM Corp., Armonk,
NY, USA). Categorical variables were analysed using the Fisher’s exact
test. Continuous variables were expressed as mean + standard devi-
ation, and normally distributed variables were compared using one-way
analysis of variance with least significant difference post hoc correction
for multiple testing. Determinates of ECG strain were assessed by
univariate and multivariate logistic regression models. Significance was
defined as two-tailed P < 0.05.

Results

Demographics
Of the 130 eligible hypertensive subjects, 30 were excluded (Figure 1)

resulting in a final hypertensive sample size of 100 (age: 50 + 14 years,
male: 58%, office SBP: 170 + 30 mmHg, office DBP: 97 + 14 mmHg).

Hypertensive subjects
screened for eligibility
(n=130)

Twenty-five healthy control subjects were recruited (age: 46 + 14
years, male: 60%, office SBP: 124 + 8 mmHg, office DBP: 76 +
7 mmHg). There were no significant racial differences between the
study subgroups. On the basis of LGE, six hypertensive subjects
were excluded: one had subepicardial non-ischaemic LGE suggesting
previous myocarditis, two had subendocardial ischaemic LGE,
and three had mid-wall fibrosis and ancillary clinical/CMR findings
suggestive of concomitant hypertrophic cardiomyopathy.

Prevalence of ECG strain

ECG strain was present in 20% (n = 20) of hypertensive subjects
(Table 1). The prevalence of diabetes was higher in hypertensive
subjects with ECG strain compared with those without ECG strain
(25 vs. 9%, P < 0.05). Subjects with ECG strain were prescribed sig-
nificantly more anti-hypertensive agents (4 + 3vs. 2 + 2, P < 0.05).
There were no other significant demographic differences between
the subgroups.

Myocardial structural changes in ECG
strain

Those subjects with ECG strain had significantly higher indexed
LVM compared with those without ECG strain (119 + 32 vs.
80 + 17 g/m?, P < 0.05), which was a result of significant increases
in both indexed myocardial volume (82 + 21 vs. 56 + 12 mL/m?,
P < 0.05) and indexed interstitial volume (36 + 13 vs. 21 4+ 5 mL/m?,
P < 0.05) (Table 2, Figures 2 and 3).

Myocardial functional changes in ECG
strain

Despite no significant differences in left ventricular ejection fraction
(LVEF), subjects with ECG strain had significantly reduced

ECG
- Non-interpretable (n=5)
- Bundle branch block (n =2)

v

Lost to follow up
- Did not attend CMR (n = 10)

Hypertensive subjects

Patient factors
- Body habitus (n=1)

A

excluded

v

Hypertensive subjects
Included in study
(n=100)

- Claustrophobia (n = 4)

CMR
- Image artefact* (n=1)

Concomitant cardiac disease
HCM (n=3)
AVR (n=1)
Previous Ml (n = 2)
Previous myocarditis (n = 1)

Y

No ECG strain
(n = 80)

ECG strain

(n=20)

Figure | A flow chart describing the reasons for exclusion and final hypertensive sample size (n = 100). * Images degraded by implantable loop

recorder.



444

J.C.L. Rodrigues et al.

Table | Demographic data for hypertensive subjects and normotensive controls

Controls (n = 25)

Hypertensive subjects (n = 100)

Age (years)
Gender (% male)
Ethnicity (% Caucasian)
BMI (kg/m?)
Diabetes (%)
Heart rate (bpm)
Office SBP (mmHg)
Office DBP (mmHg)
ESH/ESC office BP grade®
Controlled (%)
High normal (%)
Grade 1 (%)
Grade 2 (%)
Grade 3 (%)
Isolated systolic HTN (%)
No. of anti-hypertensive medications
ACEi/ARB (%)

81
30+ 6
9
72+ 12
166 + 30
97 + 14

85

31+ 4
25°¢
66 + 11
186 + 27°
97 £ 12

25
20
50

443
85

“Controls vs. ECG strain, P < 0.05.
EControls vs. all other subgroups, P < 0.05.

°ECG strain vs. all other subgroups, P < 0.05.

9ECG strain vs. no ECG strain, P < 0.05.

®European Society of Hypertension/European Society of Cardiology (ESH/ESC) Office BP grade: controlled SBP: 120—129 and/or DBP: 80—84; high normal SBP: 130-139 and/or
DBP: 85—89; Grade 1 SBP: 140—159 and/or DBP: 90—99; Grade 2 SBP: 160—179 and/or DBP: 100—109; Grade 3 SBP: > 180 and/or DBP: >110; isolated systolic hypertension SBP:

>140 and DBP: <90.

Table2 CMR volumetric, T1 mapping, and myocardial strain data for hypertensive subjects and normotensive controls

Controls (n = 25)

Hypertensive subjects (n = 100)

LV volumetrics
Ejection fraction (%)
Indexed EDV (mL/m?)
Indexed ESV (mL/m?)
Indexed SV (mL/m?)
Indexed LVM (g/m?)
Mass-to-volume ratio (g/mL)
T1 mapping
Native T1 (ms)
Extracellular volume fraction (%)
Myocardial cell volume fraction (%)

Indexed interstitial volume (mL/m?)

Indexed myocardial cell volume (m L/mz)

Myocardial strain function
Peak circumferential strain (%)
Peak longitudinal strain (%)
Peak radial strain (%)

64+5
79 + 18
29 +8
50 + 11
61+ 11°
0.80 + 0.12°

1026 + 41

—173+24
—178+26
28.6 + 5.7

67 +8
75+ 17
26+ 12
50+ 11
80 + 17

1.11 + 0.30°

1035 + 37
27 + 3
73+ 3
21+5
56 +12

—170+33
—168 1+ 128
29.0 + 8.6

66 + 13
84+ 18
30+ 16
58 +10*
119 + 32°
144 + 0.35°

1070 + 46°
30+ 4°
70 + 4°
36 +13*
82+ 217

—152 4 47¢
—15.9 + 4.5¢
25.6 + 11.1

?ECG strain vs. no ECG strain, P < 0.05.
PControls vs. all subgroups, P < 0.05.
“ECG strain vs. all subgroups, P < 0.05.
9ECG strain vs. controls, P < 0.05.
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Figure 2 Representative example of a hypertensive subject with ECG strain. (A) Evidence of ECG strain. (B) SSFP short-axis cine image at end-
diastole. Indexed LVM = 153 g/m% (C) LGE image showing no replacement fibrosis. (D) Native T1 map. Mean T1 relaxation time of
myocardium = 1081 ms and of blood pool = 1595 ms. (E) Post-contrast T1 map. Mean T1 relaxation time of myocardium = 433 ms and of

blood pool = 319 ms. ECV = 32%.

circumferential strain (—15.2 + 4.7 vs. —17.0 + 33 vs. =173 £+
2.4%, P < 0.05, respectively) compared with both hypertensive
subjects without ECG strain and normotensive subjects. Similar
nonsignificant trends were demonstrated for longitudinal and radial
strain between the cohorts (Figure 4).

Hypertensive ECG strain subjects vs.
hypertensive subjects without ECG strain
but with elevated indexed LVM

In this hypertensive subgroup analysis, subjects with ECG strain
had significantly higher indexed LVM (119 + 32 vs. 100 + 14 g/m?,
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Figure 3 Representative example of a hypertensive subject with LVH but no ECG strain. (A) No evidence of ECG strain. (B) SSFP short-axis cine
image at end-diastole. Indexed LVM = 92 g/m?. (C) LGE image showing no replacement fibrosis. (D) Native T1 map. Mean T1 relaxation time of
myocardium = 1033 ms and of blood pool = 1653 ms. (E) Post-contrast T1 map. Mean T1 relaxation time of myocardium = 520 ms and of blood

pool = 368 ms. ECV = 27%.

P < 0.05), ECV (30 + 4 vs. 28 + 3%, P < 0.05), indexed myocardial
cell volume (82 + 21 vs. 68 + 11 mL/mz, P < 0.05), and indexed
interstitial volume (36 + 13 vs.27 + 5 mL/mZ, P < 0.05) compared
with hypertensive subjects with LVH but without ECG strain
(Table 3).

In terms of LV geometry, subjects with ECG strain had significant-
ly higher M/V compared with those with LVH but no ECG strain

(144 + 0.35 vs. 1.11 + 0.30 g/mL, P < 0.05). However, there was
no significant difference in the prevalence of pattern of LVH (con-
centric LVH: 55 vs. 70%, P = 0.24 and eccentric LVH: 20 vs. 30%,
P = 0.30) geometry between subjects with ECG strain and those
with LVH but no ECG strain.

Functionally, those with ECG strain demonstrated trends to-
wards more severe myocardial strain impairment in circumferential
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Figure 4 Graphs of (A) mean circumferential strain of the mid-myocardium, (B) mean global longitudinal strain, and (C) mean radial strain of the
mid-myocardium over the cardiac cycle for normotensive control and hypertensive (ECG strain and no ECG strain) cohorts.

Table 3 CMR volumetric, T1 mapping, and myocardial strain data for hypertensive subgroup analysis

No ECG strain (n = 80) ECG strain (n = 20)
NoLVH(n=56)LVH(n=24)
Demographics
Age (years) 47 + 15 51+13 55 +13?%
Gender (% male) 48 71 70
BMI (kg/m?) 30+6 31+6 31+ 4
Diabetes (%) 7 13 252
Office SBP (mmHg) 164 + 28 170 + 34 186 + 27°
Office DBP (mmHg) 94+ 12 103 + 15° 97 + 12
LV volumetrics
Ejection fraction (%) 69 +7 64 + 10° 66 + 13
Indexed EDV (mL/m?) 71 + 15¢ 86 + 17 84 + 18
Indexed ESV (mL/m?) 22 + 8° 33+ 15 30+ 16
Indexed SV (mL/m?) 48 + 10° 54 + 11 56 + 15
Indexed LVM (g/m?) 72 + 10° 100 + 14 119 + 32¢
Mass-to-volume ratio (g/mL) 1.05 + 0.27¢ 124 + 0.35 144 4+ 0.36°
T1 mapping
Native T1 (ms) 1030 + 38 1047 + 35 1070 + 46*
Post-contrast T1 (ms) 543 + 49 551 4+ 36 511 4+ 70¢
Extracellular volume fraction (%) 27+ 3 28+ 3 30+ 4°
Myocardial cell volume fraction (%) 73+ 3 72+ 4 70 + 4°
Indexed interstitial volume (mL/mz) 18 + 3¢ 27+5 36 + 13¢
Indexed myocardial cell volume (mL/mZ) 50 + 8¢ 68 + 11 82 + 219
Myocardial strain function
Peak circumferential strain (%) —175+29° —157+ 3.7 —152 4+ 438
Peak longitudinal strain (%) —1724+22° —157+3.7 —159+ 3.7
Peak radial strain (%) 30.1 +£ 82 263+9.2 256+ 111

?ECG strain vs. no ECG strain and no LVH, P < 0.05.

®No ECG strain and LVH vs. no ECG strain and no LVH, P < 0.05.
“No ECG strain and no LVH vs. all subgroups, P < 0.05.

9ECG strain vs. all subgroups, P < 0.05.
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Table 4 Univariate and multivariate logistic regression analyses to assess determinants of ECG strain

Univariate analysis

Age (years) 1.03 (0.99-1.07)
1.91 (0.67-5.47)
3.48 (0.97-12.44)
1.02 (1.01-1.04)
1.08 (1.04-1.10
1.03 (0.99-1.06
1.02 (1.01-1.04

1.24 (1.05-1.46

Male gender
Presence of diabetes
Office SBP (mmHg)
Indexed LVM (g/m?)
Indexed EDV (mL/m?)
Native T1 (ms)

ECV (%)

NGNS AN

Multivariate analysis

P-value OR (95% CI) P-value
0.08 0.96 (0.94-1.08) 0.99
0.23 - -
0.06 1.18 (0.15-9.52) 0.87

<0.05 1.02 (0.99-1.06) 0.15

<0.0001 1.07 (1.03-1.11) <0.005
0.06 1.00 (0.94-1.05) 0.87

<0.01 1.00 (0.97-1.02) 0.82

<0.05 1.06 (0.82-1.38) 0.64

OR, odds ratio; Cl, confidence interval; LVM, Left ventricular mass; EDV, end-diastolic volume; ECV, extracellular volume.

and radial deformation directions compared with subjects with LVH
but no ECG strain.

Predictors of ECG strain

On univariate logistic regression analysis, indexed LVM, office SBP,
native T1, and ECV demonstrated significant association with ECG
strain (Table 4). Both indexed myocardial cell volume [odds ratio
(95% confidence interval): 1.10 (1.05-1.15), P < 0.0001] and in-
dexed interstitial volume [1.21 (1.11-1.33), P < 0.0001] were uni-
variate predictors of ECG strain. However, only indexed LVM
remained a significant independent determinant in the multivariate
logistic regression statistical model, which accounted for age,
gender, office SBP, and presence of diabetes.

Discussion

To our knowledge, this is the first study to investigate the patho-
physiology of ECG strain in hypertension with advanced CMR muilti-
parametric T1 mapping and voxel-tracking techniques. Our novel
findings are that ECG strain pattern in hypertensive subjects is asso-
ciated with significant increased LVM that is not simply a result of
myocardial cellular expansion but due to significantly increased
interstitial fibrosis. Subjects with ECG strain have significantly
more interstitial fibrosis compared with all subjects without ECG
strain and compared with the subgroup of hypertensive patients
with LVH but without ECG strain. ECG strain is associated with sig-
nificantly impaired circumferential strain, despite normal LVEF, com-
pared with those without ECG strain and normotensive controls.

ECG strain and myocardial structure

Indexed LVM was a significant independent predictor of ECG strain
in multivariate logistic regression analysis. It is interesting to contrast
our findings from a purely hypertensive cohort with patients with
aortic stenosis.”® Shah et al. demonstrated similar findings in terms
of elevated LVM and ECV in an aortic stenosis subgroup with ECG
strain.2® However, in aortic stenosis, increased myocardial fibrosis
(either replacement or interstitial), but not increased indexed
LVM, maintained an independent association with ECG strain in
multivariate analysis. There was also a high prevalence of mid-wall

replacement fibrosis among the aortic stenosis patients. These latter
findings contrast with our results and suggest the myocardial re-
sponse to increased afterload differs in these two disease states,
with a predilection for hypertrophy in hypertension and potentially
cardiomyopathy in aortic stenosis. However, it is important to real-
ize that hypertension was present in 65% of patients with aortic
stenosis and ECG strain in the aforementioned study confounding
the comparison.

ECG strain and myocardial function

We also explored the functional implications of identifying ECG
strain with CMR myocardial strain analysis. Despite no significant re-
duction in LVEF, the hypertensive cohort with ECG strain exhibited
systolic impairment in all three deformational directions compared
with both hypertensive subjects without ECG strain and normoten-
sive controls. Myocardial strain impairment in hypertension has
been described in echocardiographic*® and CMR studies.?” It is
not possible to determine whether the expansion in myocardial
cell volume or the interstitial volume expansion is the predominant
factor driving the myocardial impairment in subjects with ECG
strain. Both variables are likely to be important. Interstitial fibrosis
may result in increased LV stiffness, reduced end-diastolic muscle
fibre length, and, therefore, reduced myocardial systolic strain.”®
Equally, myocardial cell volume expansion, resulting in increased
end-diastolic wall thickness, may mean that less endocardial
displacement is required to generate an adequate stroke volume.”’
Interestingly, our results suggest that changes in myocardial struc-
ture at the intra- and extracellular level appear to predominantly
affect the function of the mid-wall circumferential fibres as circum-
ferential strain was the only strain parameter to be significantly
impaired in ECG strain subjects compared with all other subgroups.

Left ventricular hypertrophy

Our study also demonstrates that, even in the absence of ECG
strain, hypertensive LVH is associated with significantly elevated
native T1 compared with normotensive controls. These findings
are consistent work by Treibel et al. of 40 hypertensive subjects®
and by Kuruvilla et al. in their study of 43 hypertensive subjects.’’
We have demonstrated geometrical differences between subjects
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with ECG strain and those with LVH but no ECG strain in terms of
higher M/V. However, we did not find a significant difference in the
prevalence of concentric and eccentric LVH phenotypes.

Limitations

Gadolinium was not administered to the normotensive control
group due to lack of ethical approval. As a result, there is no ECV
data for the controls in our study. However, the lack of significant
difference between native T1 values between controls and hyper-
tensive subjects without LVH suggests that there is a normal ECV
in this hypertensive subgroup, which essentially acts as the hyper-
tensive control group.

Despite our study of 100 hypertensive subjects constituting the
largest study to date of T1 mapping in hypertension, we did not
have sufficient statistical power to determine the impact of hyper-
tension duration on the variables investigated. Diabetes was more
common in subjects with ECG strain and can affect cardiac structure
and may be a confounding factor.>? However, the presence of
diabetes was not a significant predictor of ECG strain in either uni-
variate or multivariate logistic regression analysis.

Conclusion

The most widely applicable finding from our study is that the ECG, a
simple, cheap, readily interpretable investigation performed ubiqui-
tously in hypertensive subjects, is a marker of advanced LVH asso-
ciated with increased interstitial fibrosis and with significant
myocardial circumferential strain impairment despite normal LVEF.
Further study is now required to determine whether these patients
will benefit from aggressive anti-hypertensive, in particular anti-
fibrotic, therapies.
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IMAGE FOCUS

Evanescent atrial tumour after percutaneous coronary intervention
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A 75-year-old female patient consulted for
shortness of breath over the last week. A rise
in the serum levels of high-sensitivity TnT
prompted a coronary angiography before a
transthoracic echocardiogram (TTE) could be
obtained. A severe stenosis in the proximal
LCX underwent percutaneous coronary inter-
vention (PCI).

The following day the patient kept on com-
plaining about shortness of breath and a TTE
unveiled a bulky tumour in the left atrium. The
mass had heterogeneous echogenicity, oval
shape, regular contour and a base of implant-
ation on the lateral and inferior walls of the
atrium, as depicted in transoesophageal echo-
cardiogram (A, B; Supplementary data online,
Videos 1—4) and multi-slice computed tomog-
raphy (C). Intraatrial masses of similar charac-
teristics have been reported as hematomas
complicating PCl of chronic total occlusions or
different ablation procedures. A careful review
of the PCI, unravelled that the operator chose
a core-to-tip hydrophilic-coated wire (PILOT
50, Abbott Vascular, Santa Clara, CA) and
placed it in an atrial branch of the LCX (D, as-
terisk; Supplementary data online, Video 5).
Inappropriate manipulation led to inadvertent

progression of the wire deep into the atrial branch over the intervention (Supplementary data online, Video 6). The final angiographic re-
cording showed clear contrast staining in the atrial wall (D, arrows; Supplementary data online, Video 7), thus strongly suggesting the diagno-
sis of iatrogenic haematoma. The tumour was regressive in serial imaging controls and it completely vanished 2 months after the initial
diagnosis (A—C, FU subpanels; Supplementary data online, Videos 8—10).

This case underscores the importance of an appropriate material selection and a refined interventional technique to avoid potentially

life-threatening complications.

Supplementary data are available at European Heart Journal—Cardiovascular Imaging online.
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