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Abstract

Background: There is considerable interest in estimating the causal effect of a range of

maternal environmental exposures on offspring health-related outcomes. Previous

attempts to do this using Mendelian randomization methodologies have been hampered

by the paucity of epidemiological cohorts with large numbers of genotyped mother–

offspring pairs.

Methods: We describe a new statistical model that we have created which can be used

to estimate the effect of maternal genotypes on offspring outcomes conditional on off-

spring genotype, using both individual-level and summary-results data, even when the

extent of sample overlap is unknown.

Results: We describe how the estimates obtained from our method can subsequently be

used in large-scale two-sample Mendelian randomization studies to investigate the

causal effect of maternal environmental exposures on offspring outcomes. This includes

studies that aim to assess the causal effect of in utero exposures related to fetal growth

restriction on future risk of disease in offspring. We illustrate our framework using exam-

ples related to offspring birthweight and cardiometabolic disease, although the general

principles we espouse are relevant for many other offspring phenotypes.

Conclusions: We advocate for the establishment of large-scale international genetics

consortia that are focused on the identification of maternal genetic effects and commit-

ted to the public sharing of genome-wide summary-results data from such efforts. This

information will facilitate the application of powerful two-sample Mendelian randomiza-

tion studies of maternal exposures and offspring outcomes.
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Introduction

There is considerable interest in elucidating the causal effect

of maternal environmental exposures on offspring out-

comes. However, traditional observational epidemiological

studies are prone to confounding, bias and reverse causality.

Mendelian randomization (MR) is an epidemiological

method that was developed to estimate the causal effect of

environmental exposures on medically relevant outcomes.1

Recently, several studies have attempted to use MR to inves-

tigate the causal effect of maternal environmental exposures

on offspring outcomes.2,3 However, most of these studies

have been performed in relatively small samples of geno-

typed mother–offspring pairs because offspring genotypes

are needed to prevent violation of the assumptions underly-

ing MR. This has consequently limited the statistical power,

utility and broader application of the MR method in investi-

gating the causal effect of maternal environmental expo-

sures on offspring outcomes.

In this manuscript, we describe a statistical method based

on structural equation modelling that we have recently de-

veloped to partition genetic effects on offspring phenotypes

into maternal and offspring components.4 We discuss how

this partitioning could be used to facilitate large-scale two-

sample MR studies of maternal exposures and offspring out-

comes in different samples of individuals, maximizing sam-

ple size and obviating the requirement of individual-level

genotyped mother–offspring pairs. Within this context, we

show how the recent identification of genetic loci that exert

maternal effects on offspring birthweight5 provides an op-

portunity to assess the causal effect of in utero exposures re-

lated to fetal growth on offspring outcomes using this

method. We illustrate our methods using an example involv-

ing susceptibility to type 2 diabetes and offspring birth-

weight. Our methods have broad applicability to

investigating hypotheses involving the Developmental

Origins of Health and Disease (DOHaD).6 Finally, we advo-

cate for the establishment of large-scale genetics consortia

whose remit is to identify maternal genetic effects and utilize

this information to elucidate the role of maternal environ-

mental factors on offspring outcomes via MR using the

methods that we espouse in this manuscript.

Partitioning genetic effects at individual loci
into maternal and offspring components

The resolution of genetic effects into maternal and off-

spring components is important because it not only pro-

vides meaningful insights into the mechanism through

which genotypes exert their effects on offspring pheno-

types, but it can also be leveraged for a number of informa-

tive downstream analyses including MR.1,4,7 Traditionally,

in human genetic association studies, the estimation of ma-

ternal genetic effects on offspring phenotypes has been

achieved through conditional genetic association analysis

of genotyped mother–offspring pairs. For example, one

regresses offspring phenotype on maternal genotype whilst

controlling for the possible confounding influences of the

offspring’s genotype:

Yi ¼ aþ bo � oSNPi þ bm �mSNPi þ ei (1)

where Yi and oSNPi refer to the (offspring) phenotype and

SNP genotype of the ith individual, mSNPi is the genotype

of the individual’s mother at the same locus, bo and bm the

estimated offspring and maternal effects of the SNP, a is an

intercept and ei a normally distributed residual term.

However, a problem with this simple approach is that

there is a paucity of cohorts worldwide with genome-wide

association study (GWAS) data on both mothers and their

offspring. Additionally, loci influencing complex traits in

the offspring are typically of small effect and, since mater-

nal and offspring genotypes are highly correlated, power is

often low to definitively partition genetic effects into ma-

ternal and offspring components. For example, in a recent

Key Messages

• Statistical methods exist for partitioning genetic effects at single loci into maternal and offspring genetic components.

• Estimates of maternal genetic effects obtained from these methods can be used in large-scale two-sample Mendelian

randomization studies to investigate the causal effect of maternal environmental exposures on offspring outcomes.

• Two-sample Mendelian randomization studies can also be used to assess the causal effect of in utero exposures re-

lated to fetal growth on future risk of disease in offspring.
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study of offspring birthweight, we initially attempted to

partition the genetic effect at 58 autosomal genome-wide

significant birthweight SNPs into maternal and offspring

components using simple conditional linear regression in

some of the largest genotyped cohorts of mother–offspring

pairs that were available at the time (total N¼ 12 909).

However, we were unable to resolve these effects defini-

tively at nearly all of the birthweight loci.8

Recently, we developed a new statistical model based on

the mathematical technique of structural equation model-

ling, which has allowed us to estimate maternal and off-

spring effects on birthweight utilizing data from the large

UK Biobank Study.4,9 A key realization was that the UK

Biobank Study contains self-reported information not only

on individuals’ own birthweight, but also (in the case of

females) on the birthweight of their first-born offspring, and

this makes it possible to resolve both maternal and offspring

effects on birthweight in the cohort. Figure 1 illustrates the

mathematical features of our structural equation model

(SEM) in the form of a path diagram. One-headed arrows

represent causal paths and two-headed arrows correlational

relationships. The three observed variables (in squares) de-

note the birthweight of a UK Biobank individual (BW), the

birthweight of their offspring (BWO) and their own geno-

type (SNP). The latent unobserved variables (in circles) rep-

resent the genotypes of the individual’s mother (their

offspring’s grandmother; GG) and the genotype of the indi-

vidual’s first-born offspring (GO). The total variance of the

latent genotypes for the individual’s mother (GG) and off-

spring (GO) and for the observed SNP variable are all set to

U [i.e. variance(GG)¼U, variance(SNP)¼ 0.75Uþ 0.25U,

variance(GO)¼ 0.75Uþ 0.25U, as can be verified by path

analysis/covariance algebra], which is estimated from the

data. According to quantitative genetics theory, the causal

path between the individual’s own genotype and both their

mother and offspring’s latent genotype is set to 0.5. The bm

and bo path coefficients refer to maternal and offspring ge-

netic effects on birthweight, respectively, and are equivalent

to the coefficients estimated using the conditional linear

model in Equation (1). The residual error terms for the

birthweight of the individual and their offspring are repre-

sented by E and EO, respectively, and the variance of both

these terms is estimated in the SEM. The covariance be-

tween the error terms is denoted by q. Models can be fit by

maximum likelihood using the OpenMx software pack-

age.10 We have included an example R code that imple-

ments this SEM in the Supplementary Materials, available

as Supplementary data at IJE online, of this manuscript.

Our approach is flexible in that the results from ‘single-

tons’ can be incorporated into the analysis (i.e. genotyped

individuals who have either their own or their offspring’s

birthweight available) and the results from the SEM can be

meta-analysed with results from conditional genetic associ-

ation analyses of genotyped mother–offspring pairs.

Importantly, our method can incorporate both individual-

level genotype data (e.g. from the UK Biobank Study) and

summary-level GWAS results data from other research

groups and publicly available websites. The result is an ex-

tremely large, powerful, combined dataset for the estima-

tion of maternal and offspring effects on birthweight.

Additionally, when the model is applied across the genome

(e.g. for locus-detection purposes), it can increase the

power to detect variants that have opposing maternal and

offspring effects on birthweight that may not otherwise be

apparent.4

We have recently described the statistical properties of

our approach, demonstrated that it yields unbiased estimates

of maternal and offspring genetic effects on birthweight,

gives similar answers to conditional genetic association anal-

yses of genotyped mother–offspring pairs and has low sensi-

tivity to random measurement error.4 Additionally,

asymptotic power calculations using the ‘Maternal and

Offspring Genetic Effects Power Calculator’11 (http://evan

Figure 1. Structural equation model (SEM) used to estimate maternal

and offspring genetic effects on birthweight. The three observed varia-

bles (in squares) denote the birthweight of a UK Biobank individual

(BW), the birthweight of their offspring (BWO) and their own genotype

(SNP). The latent unobserved variables (in circles) represent the geno-

types of the individual’s mother (their offspring’s grandmother; GG) and

the genotype of the individual’s first offspring (GO). The total variance

of the latent genotypes for the individual’s mother (GG) and offspring

(GO) and for the observed SNP variable are set to U and are estimated

from the data. The causal path between the individual’s own genotype

and both their mother and offspring’s latent genotype is set to 0.5. The

bm and bo path coefficients refer to maternal and offspring genetic

effects on birthweight, respectively. The residual error terms for the

birthweight of the individual and their offspring are represented by E
and EO, respectively, and the variance of both these terms is estimated

in the structural equation model. The covariance between the error

terms is denoted by q. The model can be modified easily to include ob-

served genotypes and/or the absence of one of the birthweight

phenotypes.
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sgroup.di.uq.edu.au/MGPC/) indicate that, whilst our ap-

proach is less powerful than similar-sized samples of geno-

typed mother–offspring pairs, the two study designs have

similar power when the residual correlation between mater-

nal and offspring phenotypes (q in Figure 1) approaches

0.5.11 Figure 2 compares the asymptotic power to detect ma-

ternal effects on birthweight (assuming a residual correlation

between maternal and offspring phenotypes of 0.2) using

three different study designs. In the first study design, 50 000

genotyped mother–offspring pairs are used in a SEM asymp-

totically equivalent to a conditional linear model. Through

our contacts within the Early Growth Genetics (EGG) con-

sortium, we have estimated that 50 000 mother–offspring

pairs with genome-wide SNP data would currently be avail-

able worldwide for meta-analysis. In the second study de-

sign, we use the SEM described in Figure 1 with the number

of unrelated individuals currently available through either

the UK Biobank Study or EGG consortium who have data

on both their own and their offspring’s birthweight

(N¼ 85 518), their own birthweight only (N¼ 178 980) or

their offspring’s birthweight only (N¼ 93 842). In the third

design, we combine the previous two data sources and con-

duct the SEM described in Figure 1. Figure 2 illustrates the

advantage in power obtained by using the large combined

sample from the UK Biobank Study and the EGG consor-

tium, including individuals with both maternal and offspring

phenotypes and singleton individuals with only one pheno-

type, compared with the power obtained from our estimate

of the current number of genotyped mother–offspring pairs

that are available across the world. However, the power can

be increased dramatically by including all individuals to-

gether in the analysis.

To further illustrate the utility of our method, we ap-

plied our SEM to 58 known autosomal SNPs for birth-

weight using data from the interim release of the UK

Biobank Study.8 Figure 3 displays the estimated maternal

(y-axis) and offspring (x-axis) genetic effects on birth-

weight at each of these loci. Figure 3 shows that most loci

influence birthweight primarily through the offspring ge-

nome, which was anticipated, as the loci were initially

identified in a GWAS of the individual’s own birthweight.

However, there is a subset of SNPs that exert their effects

predominantly through the mother’s genome (e.g.

MTNR1B, EBF1, ACTL9) and at least six loci that exhibit

maternal and offspring effects in opposite directions.

Interestingly, the loci that manifest opposing effects

through maternal and offspring genomes include the type 2

diabetes-associated loci HHEX-IDE, CDKAL1 and

ADCY5. Our results are consistent not only with smaller

and less powerful conditional regressions in genotyped

mother–offspring pairs,4,8 but also with examples of op-

posing maternal and offspring contributions on the birth-

weight of rare mutations influencing insulin secretion and

glucose tolerance, upon which the Fetal Insulin Hypothesis

was based, such as those in the GCK gene.12

Figure 2. Power to detect maternal effects on birthweight as a function

of variance explained. We assume a residual correlation of 0.2 between

own birthweight and offspring birthweight and that the same locus

exerts a maternal effect only. We compare power for N¼ 50 000 geno-

typed mother–offspring pairs (i.e. which is an estimate of the current

number of available genotyped mother–offspring pairs worldwide that

could be conceivably used for these analyses) with the current number

of individuals contributing to the UK Biobank and Early Growth

Genetics Consortium Analysis of birthweight (i.e. number of genotyped

individuals who have data on their own birthweight and their off-

spring’s birthweight N¼ 85 518; number of genotyped individuals who

have data on their own birthweight only N¼ 178 980; number of geno-

typed individuals who have data on their offspring’s birthweight only

N¼ 93 842) at genome-wide significance (a¼ 5� 10–8). Asymptotic

power calculations were performed using the ‘Maternal and Offspring

Genetic Effects Power Calculator’ (Moen et al., 201911).

Figure 3. Estimated maternal and offspring genetic effects on birthweight

for 58 autosomal SNPs robustly associated with birthweight. Squares

highlight the subset of SNPs that exert their effects predominantly

through the mother’s genome (Pmaternal< 0.001 and Poffspring> 0.5).

Triangles highlight the subset of SNPs with both maternal and offspring

genetic effects operating in opposite directions (Pmaternal< 0.05 and

Poffspring<0.05); the SNPs with their gene names are those previously as-

sociated with type 2 diabetes. The figure is based on data presented in

Warrington et al. (2018).4
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Whilst we have discussed our method within the context

of offspring birthweight, there is no reason why the same or

similar methods could not be applied to understand the ge-

netic basis of other offspring phenotypes. Many offspring

traits are thought to be influenced by maternal phenotypes13

and, indeed, maternal effects at specific genetic loci have

been demonstrated in the case of offspring birthweight,5 off-

spring gestational age14 and offspring atopic dermatitis,15

amongst others. However, a major practical challenge in

detecting/demonstrating maternal genetic effects is the pau-

city of large-scale cohorts with genome-wide maternal geno-

types and offspring phenotypes. One way of facilitating the

discovery of maternal genetics effects would be for research-

ers to publish complete summary GWAS results of maternal

genotypes and offspring phenotypes, conditional upon off-

spring genotype, on publicly available websites. However,

performing conditional association analyses across the ge-

nome is computationally intensive and may be difficult for

some researchers to implement. A simpler alternative might

be for investigators to deposit unconditional GWAS meta-

analyses documenting the association between maternal gen-

otypes and offspring phenotypes. These summary results

could then be combined with GWAS of offspring genotype

and phenotype in a SEM to generate unbiased estimates of

maternal and offspring genetic effects on offspring pheno-

types—even when the degree of sample overlap is unknown.

Given the phenotypic correlation between maternal and off-

spring phenotypes, appropriate standard errors could then be

obtained in these models by estimating the degree of sample

overlap using bivariate linkage disequilibrium (LD) score re-

gression16 and weighting the SEM likelihood appropriately.

In order to illustrate this potential, Figure 4 compares esti-

mates of maternal (and offspring) genetic effects on birth-

weight at 51 known autosomal birthweight loci (with minor

allele frequency greater than 1%) using summary-results

GWAS data from the UK Biobank Study at various degrees

of sample overlap (i.e. the same individual contributes to

both the maternal and offspring GWAS summary-results

data on birthweight). The column axis displays estimates

(and their standard errors) from summary-results data when

the degree of sample overlap is known. The second column

displays the same information from summary-results data

when the degree of sample overlap is unknown and has to be

estimated using bivariate LD score regression.16 Provided the

phenotypic correlation between maternal and offspring birth-

weight is specified relatively accurately (see Figure 4), esti-

mates of maternal and offspring SNP effects and their

standard errors are the same across the two approaches. It is

likely that similar results could also be obtained using other

conditional analysis strategies.17,18

Using two-sample MR studies to analyse the
causal effect of maternal environmental
exposures on offspring phenotypes

Once genetic effects on offspring phenotypes have been

partitioned into maternal and offspring components, the

Figure 4. Effect sizes and standard errors for 51 autosomal birthweight-associated SNPs, which have a minor allele frequency greater than 1%, esti-

mated from a structural equation model using covariance matrices derived from GWAS summary results of own birthweight and offspring birth-

weight from the UK Biobank Study. Both GWASs used z-scores of birthweight in a subset of unrelated Europeans, after adjusting for ancestry

informative principal components and sex for the individual’s own birthweight (sex was not available for the birthweight of the first child in the UK

Biobank Study). The x-axis presents results when the sample overlap is known and the y-axis presents results when the sample overlap is estimated

using bivariate LD score regression. The phenotypic correlation between own birthweight and offspring birthweight was assumed to be 0.23 (misspe-

cifying this correlation by small amounts i.e. q¼ 0.1–0.3 did not appear to influence estimates nor their standard errors for these data—results not

shown).

International Journal of Epidemiology, 2019, Vol. 48, No. 3 865



resulting estimates can be utilized in a variety of informa-

tive downstream analyses. In this section, we argue that

the availability of maternal effect estimates on offspring

phenotypes allows us to estimate the causal effect of mater-

nal environmental exposures on offspring outcomes via

two-sample MR19 in potentially large samples of

individuals.

MR is an epidemiological method that uses genetic var-

iants robustly associated with a modifiable environmental

exposure of interest to estimate the causal relationship be-

tween the exposure and a trait or disease of interest.1 In

the context of this manuscript, the relevant exposures are

maternal traits and exposures that might affect offspring

outcomes (especially whilst the offspring is in utero, but

the method is also relevant for evaluating post-natal mater-

nal influences on offspring phenotypes). Mendel’s Law of

Segregation ensures that genetic variants segregate ran-

domly and independently of environmental factors, whilst

Mendel’s Law of Independent Assortment suggests that the

genetic variants should also segregate independently of

other traits, provided certain conditions are met. This

means that genetic variants are less susceptible to con-

founding than the ‘traditional’ variables used in observa-

tional epidemiological studies.20 In other words, genetic

variants can be used to divide a study sample into sub-

groups, which differ systematically with respect to the ex-

posure of interest, but not with respect to confounding

factors. If groups defined by their genotypes also show dif-

ferences in their outcome, then, provided core assumptions

are met,21 this provides evidence that the exposure causally

influences the outcome. The basic MR framework has

been extended successfully to two-sample situations where

the SNP–exposure association is estimated in one sample

and the SNP–outcome association is measured in an-

other.19 This is important because it means that very pre-

cise estimates of the causal effect can be obtained by

utilizing publicly available GWAS summary-results data,

often using tens or hundreds of thousands of individuals.22

Although MR is a useful method for assessing causality,

there are a number of assumptions and potential complica-

tions that should be borne in mind that we have discussed

at length elsewhere.7,23,24 First, MR requires robust associ-

ation between genetic variants and the exposure of interest

[assumption (i) in Figure 5A]. Second, MR assumes that

the genetic variants used are uncorrelated with confound-

ers of the exposure–outcome relationship [assumption (ii)

in Figure 5A]. Mendel’s Laws of Segregation and

Independent Assortment provide assurance that this as-

sumption is likely to be valid and there is considerable em-

pirical evidence that this is indeed the case for many

genetic variants.20 Third, MR assumes that the genetic in-

strument is only potentially associated with the outcome

through the exposure of interest [assumption (iii) in

Figure 5A]. This assumption, also known as the exclusion

restriction criterion, precludes SNPs (or variants in LD

with them) that influence multiple phenotypic traits includ-

ing the exposure of interest through horizontal pleiotropy

and also have an association with the outcome that is not

mediated through the exposure of interest. It is widely

regarded that this final assumption is likely to be more

problematic for the validity of MR than the two previous

assumptions, although a number of different procedures

are available to detect and correct for horizontal pleiot-

ropy.24–29

MR has recently been used to examine the causal effect

of maternal environmental exposures on offspring out-

comes. Examples include the effect of maternal cardiome-

tabolic phenotypes2 and smoking3 on offspring

birthweight and maternal alcohol consumption during

pregnancy on offspring education.30 MR studies that at-

tempt to estimate the causal effect of maternal exposures

on offspring outcomes are subject to all the usual limita-

tions of MR studies. However, one complication specific

to estimating the causal effect of maternal environmental

Figure 5. Directed acyclic graphs illustrating the core assumptions un-

derlying Mendelian randomization. Assumption (i) requires robust as-

sociation between the genetic variants and the maternal exposure.

Assumption (ii) requires that the genetic variants are uncorrelated with

confounders. Assumption (iii) assumes that the genetic variants are

only potentially associated with the offspring outcome through the ma-

ternal exposure of interest. Offspring genetic variants violate assump-

tion (iii), as they allow a path to offspring outcome that is not through

the maternal exposure (iv). However, conditioning on offspring variants

(indicated by a box around offspring SNPs) blocks path (iv) and as-

sumption (iii) holds.
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exposures on offspring outcomes via MR is the fact that

maternal and offspring genotypes are correlated.

Consequently, any association between maternal genotype

and offspring outcome may in fact be mediated by off-

spring genotype (Figure 5B). One solution to this problem

is to statistically correct for offspring’s genotype by condi-

tioning on offspring genotype in the MR analysis.2,7 For

example, Tyrrell et al.2 have used MR in mother–offspring

pairs to show that higher maternal systolic blood pressure

is likely to be causal for low offspring birthweight after

conditioning on offspring genotype. However, there is a

dearth of cohorts that have genotyped mother–offspring

pairs, meaning that such analyses are likely to be

underpowered.

One potential way to increase the power of MR analy-

ses involving maternal exposures and offspring outcomes is

to utilize two-sample MR in potentially extremely large

samples of individuals.7,19 First, unbiased estimates of ma-

ternal genetic effects on the offspring phenotype could be

obtained, e.g. from the SEM in Figure 1. These effects rep-

resent the influence of maternal genotype on offspring out-

come with the effect of the offspring’s genotype removed.

These estimates could then be combined with SNP–expo-

sure estimates for the maternal exposures that the investi-

gator is interested in, in a two-sample MR framework. In

the case of offspring birthweight, the attractiveness of this

strategy lies in the fact that the entire UK Biobank Study

sample and data from the EGG consortium (and indeed

any other publicly available summary-results statistics and

large-scale cohorts) could be leveraged to estimate the as-

sociation between maternal genotypes and offspring birth-

weight. Simultaneously, the largest publicly available

GWAS meta-analysis could be used to estimate the associa-

tion between the same SNPs and the maternal exposures of

interest. The robustness of causal estimates, including to

the possibility of latent horizontal pleiotropy, can subse-

quently be investigated using sensitivity analyses including

MR Egger regression,25 weighted median MR,26 the MR

modal estimator,28 multivariable MR,29 random-effects

meta-analyses24 and tests of heterogeneity between the

causal-effect estimates derived from different SNPs.27

The two-sample MR procedure we advocate relies on the

assumption that the variants associated with the maternal

exposure of interest are also associated with these same

traits during the critical period of interest (e.g. during preg-

nancy) and also that it is this time point that is relevant in

terms of influencing the offspring phenotype. The same

assumptions are of course also made in one-sample MR

studies using genotyped mother–offspring pairs—the

critical difference being that, in the latter case, it may be

possible to investigate these assumptions empirically.7

For example, there is preliminary evidence to suggest that

genetic variants associated with cardiometabolic phenotypes

in the general population (i.e. men and women who are not

pregnant) are also associated with the same traits in mothers

during pregnancy, meaning that SNPs that proxy these traits

also proxy the exposures in pregnant women.2,31

In all the MR analyses we describe above, we assume

that maternal genotypes act additively on the maternal ex-

posure of interest; the absence of parent of origin effects

(e.g. from genetic imprinting); genetic non-additivity (in-

cluding genetic dominance and epistasis); no gene–gene in-

teraction between maternal, paternal and/or offspring

genotypes; and the absence of paternal genetic effects af-

fecting the offspring outcome at the same loci used in the

maternal–offspring analyses. Recent work from the

deCODE group and others13,32 has shown that offspring

phenotypes are influenced by untransmitted alleles from

both parents. The presence of paternal genetic effects at

the same loci used in the analysis will bias estimates of the

maternal and offspring genetic effects on the offspring out-

come (and consequently estimates of the causal effect of

the maternal and offspring exposures on offspring out-

come). This is probably more likely to be a problem where

the outcome phenotype is a more ‘visible’ lifestyle charac-

teristic, such as smoking, alcohol consumption, diet or

physical activity, which could subsequently influence the

offspring or that the offspring might mimic or be encour-

aged to adopt, than it is for something like a circulating

biomarker, such as fasting glucose or vitamin D. In order

to account for the effect of paternal genetic effects, pater-

nal genotypes at the same loci would need to be included

in the statistical model. Whilst this could be accomplished

relatively easily in the structural equation modelling frame-

work that we have espoused in this manuscript, doing so

might be difficult in practice because of the small numbers

of cohorts that have obtained genome-wide paternal geno-

type data on their participants. We have summarized some

of the potential issues/limitations specific to MR studies of

maternal exposures and offspring outcomes in Table 1.

Finally, we note that an alternative approach consisting

of fitting a multivariate model that includes maternal geno-

type, offspring genotype, maternal exposure and offspring

outcome (e.g. via multivariable MR29) would likely yield

similar causal estimates of the maternal exposure on the

offspring outcome to the framework that we espouse in

this manuscript. However, we emphasize that, regardless

of which approach is used, the important point is that both

methods are capable of generating and utilizing estimates

of the conditional effect of maternal genotype on offspring

phenotype in two-sample data, increasing the number of

individuals contributing to the analysis and statistical

power to detect the causal effect of maternal exposures on

offspring outcomes.
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Table 1. Potential limitations of MR studies of maternal exposures and offspring outcomes and suggestions of how to deal with

them. We do not list limitations that are endemic to all types of MR studies, but rather focus on issues that are specific to MR

studies of maternal exposures and offspring outcomes

Potential limitation Description Solution

Suitability of genetic variants to

proxy maternal environmental

exposure of interest

A key question is whether genetic variants identified

in GWAS of men and (non-pregnant) women are

appropriate instruments for the research question,

e.g. if the interest is on the effect of maternal

environmental exposures during pregnancy on

offspring outcomes, is it appropriate to use SNP

effects from a GWAS of the environmental

exposure in another population?

Where possible utilize estimates of the

association of SNPs with maternal

exposures in population of interest

during time period of interest

Timing of maternal exposure Since an individual’s genetic variants are present

from conception, causal estimates derived from

MR studies are often thought to represent life-

long effects of the environmental exposure.

Interpretation of these estimates may be difficult if

the investigator is interested in the effect of the

maternal exposure during a particular time period

(e.g. prenatal exposures)

See above.

Examining the causal effect of

paternal exposures on offspring

outcomes may be informative.

Evidence for similar maternal and

paternal effects on offspring out-

comes is consistent with post-natal

effects of the environmental expo-

sure, whereas evidence for mater-

nal-specific effects on offspring

outcomes in the absence of (or con-

siderably weaker) paternal effects is

more consistent with prenatal

effects of the environmental expo-

sure, although maternal-specific

effects for some exposures may

reflect a stronger postnatal maternal

effect

Paternal genetic effects Paternal genotypes at the same (or correlated) SNPs

may have effects on the study exposure/outcome.

Failure to take these effects into account may re-

sult in biased estimates of the causal effect of the

maternal exposure on the offspring outcome

Include paternal genotypes in the

statistical model where possible

Low power MR studies may have low power because individual

SNPs explain small portions of variance in the ex-

posure and the outcome. This potential limitation

may be exacerbated in MR studies of maternal

exposures because the causal effect of the mater-

nal exposure on the offspring outcome may be

smaller than the effect of the maternal exposure

on maternal outcomes (as is examined in typical

MR studies)

Utilize multiple instruments that

explain more variance in the

maternal exposure

Utilize two-sample MR methods

described in this manuscript to

increase sample size and statistical

power

Violation of exclusion restriction

criteria via offspring genetic

effects on offspring outcome

Maternal SNPs may be associated with offspring

outcome via their association with offspring geno-

type violating the exclusion restriction assumption

of MR and biasing causal estimates

Perform MR analyses conditioning on

offspring genotype

Utilize two-sample MR methods

described in this manuscript

Paucity of genotyped mother–off-

spring pairs

There is a dearth of cohorts worldwide that contain

large numbers of genotyped mother–offspring

pairs for MR analyses of maternal exposures

meaning that these sorts of analyses may lack

power

Utilize two-sample MR methods

described in this manuscript to

combine summary-results

information across many

different cohorts
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Using maternal genetic effects to investigate
the effect of exposures influencing fetal
growth on future offspring health and
disease

One exposure that is of interest to the epidemiological

community is fetal growth and the in utero exposures that

influence it, and their effect on future offspring outcomes.

DOHaD posits that adverse intrauterine environments re-

sult in different fetal growth trajectories (some resulting in

growth restriction, others overgrowth) and (independently)

increased future risk of disease through developmental

changes.6 However, the in utero environment is difficult to

measure and investigators may settle with infant birth-

weight as a proxy of this. There are several problems with

this methodology, including the fact that offspring birth-

weight is an imperfect measure of growth in utero as well

as all the usual limitations of traditional observational epi-

demiological studies (confounding, etc.). We believe that

SNPs in mothers that are robustly associated with offspring

birthweight (i.e. after conditioning on offspring genotype)

exert their effects through the in utero environment and

consequently that these variants could be used to proxy in-

trauterine growth restriction. Therefore, it should be possi-

ble to use the principles of MR to investigate the causal

effect of in utero exposures influencing fetal growth on a

variety of offspring phenotypes. Specifically, we propose

that the existence of birthweight-associated SNPs in the

mother that also exert maternal genetic effects on other

offspring outcomes is highly suggestive of mechanisms con-

sistent with DOHaD.

To illustrate why this is the case, Figure 6 shows the

four credible ways in which SNPs in the mother that exert

maternal effects on offspring birthweight can also be asso-

ciated with future offspring phenotypes (although we have

used cardiometabolic disease in this example, similar dia-

grams could be used to illustrate the relationship between

in utero exposures influencing fetal growth and other off-

spring outcomes). In the different panels of this figure, we

consider the relationship between SNPs in the mother that

are associated with offspring birthweight (i.e. through ma-

ternal genetic effects) and cardiometabolic disease in the

offspring. The black ‘X’ in the diagram represents the ef-

fect of conditioning the association analysis on either the

offspring or maternal genotype and therefore blocking the

path between the conditioned genotype and the other vari-

ables of interest.

In panel (A), and consistently with DOHaD, SNPs in

mothers that produce an adverse in utero environment lead

to reduced fetal growth and subsequently lower offspring

birthweight and developmental compensations that result

in increased risk of offspring cardiometabolic disease in

later life. Under this scenario, SNPs in the maternal ge-

nome that exert maternal effects to reduce offspring birth-

weight will also be positively correlated with offspring

cardiometabolic risk (after correcting for offspring geno-

type). In panel (B), lower offspring birthweight is causal

Figure 6. This figure illustrates the four possible ways in which maternal SNPs that are associated with offspring birthweight (conditional on offspring

genotype at the same locus) can also be (unconditionally) associated with offspring cardiometabolic disease risk. The ‘X’ represents the effect of con-

ditioning the association analysis on either the offspring or maternal genotype and therefore blocking the path between the conditioned genotype

and the other variables of interest. The dashed path with the question mark indicates the potential pleiotropic effects of the offspring’s SNPs on their

own cardiometabolic disease risk.
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for increased risk of cardiometabolic disease. Under this

scenario, SNPs in the maternal genome that exert maternal

effects to reduce offspring birthweight will also be posi-

tively associated with offspring cardiometabolic disease

risk (after correcting for offspring genotype). We stress

that, although this model is broadly consistent with

DOHaD, most advocates of DOHaD would not believe

that birthweight is directly causal for future cardiometa-

bolic risk, but rather a marker of an adverse in utero envi-

ronment, as in panel (A). Nevertheless, we believe it is

important to consider this possibility, particularly as naı̈ve

MR analyses making similar assumptions have begun to

appear in the literature.33 Importantly, under panels (A)

and (B), the existence of a negative association between

maternal SNPs that are associated with lower offspring

birthweight and increases in offspring cardiometabolic

phenotypes is consistent with DOHaD.

In panel (C), the correlation between SNPs in the

mother and offspring cardiometabolic risk is driven by ge-

netic pleiotropy in the offspring genome. Under this model,

SNPs that exert maternal effects on offspring birthweight

will not be correlated with offspring cardiometabolic risk

after conditioning on offspring genotype. This model

encompasses the possibility of cardiometabolic disease-

associated SNPs in mothers directly affecting offspring

birthweight and then being transmitted to their offspring,

where they increase the risk of cardiometabolic disease in

later life.

Finally, in panel (D), SNPs that exert maternal effects

on offspring birthweight also pleiotropically influence off-

spring cardiometabolic risk through the postnatal environ-

ment. Under this model, SNPs with maternal effects on

birthweight will be associated with offspring cardiometa-

bolic risk after conditioning on offspring genotype. In gen-

eral, however, we think this last model is unlikely, since

the primary effect of these variants is likely to be on birth-

weight though the in utero environment. Any postnatal en-

vironmental effects of these variants, if they exist, on

offspring phenotypes are likely to be small in comparison

to their in utero effects. We note that the availability of

mature genotyped father–offspring pairs would provide a

test of this assumption, since we would expect that pater-

nal genotypes will not be associated with offspring cardio-

metabolic risk in the absence of postnatal environmental

effects.

Thus, the different models illustrated in Figure 6 imply

different patterns of association between maternal and

offspring SNPs, offspring birthweight and offspring cardio-

metabolic outcomes according to the source, nature

and direction of the underlying relationships. In parti-

cular, the existence of negative associations between

maternal birthweight-associated SNPs and offspring

cardiometabolic outcomes (after conditioning on offspring

genotype) strongly argues for the importance of intrauter-

ine growth restriction in this context. We therefore posit

that tests of the maternal effect of SNPs on offspring traits

(whilst conditioning on offspring genotype) are akin to

testing the validity of DOHaD in this particular context.

We note that there exist opportunities to test other models

of disease development using similar frameworks, includ-

ing the Fetal Insulin Hypothesis.12 For example, under this

hypothesis, we would predict positive relationships be-

tween maternal birthweight-associated SNPs and offspring

glycaemic variables, but negative correlations between off-

spring birthweight-associated SNPs and offspring glycae-

mic variables.

In this section, we have used birthweight SNPs to proxy

intrauterine growth restriction and have consequently

made the assumption that variation across the distribution

of birthweight is informative for inference regarding the

validity of DOHaD. Whilst utilizing birthweight-

associated SNPs represents a useful starting point for inves-

tigations, some DOHaD literature concerns the effect of

more extreme maternal exposures (e.g. famine) on fetal

growth restriction and subsequent adaptation.34 It may

well be that these sorts of exposures produce changes that

are qualitatively different from small perturbations within

the normal range. However, there is no reason why the

aforementioned methodologies could not be modified to

examine these more extreme situations. For example, it

would be interesting to investigate the effect of pre-

eclampsia on birthweight and subsequent offspring cardio-

metabolic risk. Again, a partitioning of genetic effects of

pre-eclampsia loci into maternal and offspring components

would be a necessary prerequisite for understanding the

processes involved.

Applied example

In order to illustrate the framework espoused in this manu-

script, we examined the relationship between maternal and

offspring susceptibility to type 2 diabetes and offspring

birthweight in the UK Biobank study9 (N¼ 234 154 indi-

viduals reporting their own birthweight and N¼ 210 423

mothers reporting their offspring’s birthweight). Full

details on the sample, genotyping and phenotypes are in-

cluded in the Supplementary Materials, available as

Supplementary data at IJE online. A total of 403 SNPs

identified in a recent GWAS meta-analysis of type 2 diabe-

tes35 were extracted from the imputed files provided by

UK Biobank and aligned to the type 2 diabetes risk allele

(Supplementary Table 1, available as Supplementary data

at IJE online). We fit the SEM described in Figure 1 to the

data from each of these 403 SNPs to estimate the maternal
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and offspring genetic effects on birthweight. One of the

403 SNPs, rs79046683, had a low minor allele frequency

in the UK Biobank (MAF¼ 3.9�10–5), so the SEM was

unable to converge using this SNP and it was therefore ex-

cluded from subsequent MR analyses. Using the effect sizes

for type 2 diabetes reported in Mahajan et al.,35 we calcu-

lated the Wald ratio estimate of the causal effect of mater-

nal susceptibility to type 2 diabetes on offspring

birthweight at each of the 402 SNPs (i.e. calculated as the

SEM-derived maternal genetic effect of the SNP on off-

spring birthweight divided by the logistic regression coeffi-

cient of the SNP association with type 2 diabetes).

Additionally, we calculated the causal effect of an individ-

ual’s own susceptibility to type 2 diabetes on their own

birthweight (i.e. calculated as the SEM-derived offspring

genetic effect of the SNP on offspring birthweight divided

by the logistic regression coefficient of the SNP association

with type 2 diabetes). Using these Wald statistics, we calcu-

lated an inverse variance-weighted (IVW) causal-effect esti-

mate, using a random-effects model for the standard error.

We also used MR Egger regression to provide estimates of

the causal effect robust to violations of the exclusion re-

striction assumption caused by horizontal pleiotropy.25

Finally, in order to compare our results to those that would

have been obtained had we not partitioned genetic effects

into maternal and offspring components using our SEM,

we generated causal-effect estimates using uncorrected esti-

mates of the SNP–own birthweight association and uncor-

rected estimates of the SNP–offspring birthweight

association using simple linear regression. Since these latter

analyses do not explicitly partition genetic effects on birth-

weight into maternal and offspring genetic components,

the SNP–birthweight associations will reflect a compli-

cated mixture of maternal and offspring genetic effects and

will likely bias downstream MR analyses.

The results of our analyses are displayed in Table 2.

We found strong evidence for a positive causal effect of

maternal susceptibility to type 2 diabetes on offspring

birthweight. In contrast, type 2 diabetes alleles transmitted

to offspring were associated with reduced birthweight.

This pattern of results was seen using both IVW MR and

MR Egger approaches and is entirely consistent with both

the Developmental Overnutrition and Fetal Insulin

Hypotheses models of the relationship between type 2 dia-

betes and birthweight.12 In short, mothers who have or are

susceptible to type 2 diabetes are likely to have poorer gly-

cemic control and higher blood glucose, resulting in

increased fetal growth and higher offspring birthweight

(Developmental Overnutrition). Conversely, children who

receive type 2 diabetes susceptibility alleles from their

parents are less sensitive to insulin and therefore tend to

have lower birthweights on average, resulting in an inverse T
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association of birthweight with subsequent type 2 diabetes

(Fetal Insulin Hypothesis).

Importantly, causal estimates obtained using the SEM-

adjusted estimates of the maternal and offspring genetic

effects were far greater in magnitude than causal estimates

obtained using the uncorrected estimates from simple lin-

ear regression. Likewise, the strength of evidence against

the null hypothesis of no association was far greater for the

SEM-derived estimates. Our results suggest that failing to

partition genetic effects into maternal and offspring genetic

components has the potential to bias the results of MR

analyses and lead to misleading interpretations of the data.

R code illustrating the SEM and two-sample MR analyses

we have performed are included in the Supplementary

Materials, available as Supplementary data at IJE online.

Future directions

We envisage that the major challenge in implementing the

ideas outlined in this manuscript will be practical rather

than technical. With some notable exceptions,5,14 most

large-scale international genetics consortia have involved

GWAS of individuals’ own genotype and phenotype. In gen-

eral, these efforts have been extraordinarily successful and

Table 3. List of cohorts that have maternal genotype data and offspring phenotype data

Cohort Approximate number of genotyped

mother–phenotyped child pairsa

1958 British Birth Cohort (B85C-T1DGC)42 8585

1958 British Birth Cohort (B85C-WTCCC)42 8365

Add Health—National Longitudinal Study of Adolescent to Adult Health43 �1000

Autism Genome Project (AGP)44 259445

Avon Longitudinal Study of Parents and Children (ALSPAC)46 73045

Berlin Birth Cohort (BBC)47 13572

Born in Bradford Study (BiB)48 �10 000

Chicago Food Allergy Study49 54150

Children’s Hospital of Philadelphia (CHOP) 3122

Copenhagen Prospective Study on Asthma in Childhood (COPSAC-2000)51 2822

Danish National Birth Cohort—Genomics of Young Adolescent (DNBC-GOYA)52 18055

Danish National Birth Cohort—Preterm Birth Study (DNBC-PTB)53 16565

deCODE (Genealogy Database)54 54 54613

Environmental Risk (E-Risk) Longitudinal Twin Study55 80456

Exeter Family Study of Childhood Health (EFSOCH)57 7462

Family Atherosclerosis Monitoring In earLY life (FAMILY) study58 40659

Finnish Twin Cohort60 �400061

Hispanic B-cell Acute Lymphoblastic Leukemia Study62 32362

HUNT Study41 �18 000

Hyperglycemia and Adverse Pregnancy Outcome Study (HAPO)63 443763

Millennium Cohort64 12 000

Minnesota Center for Twin and Family Research (MCTFR)65 140465

Netherlands Twin Register (NTR)66 7075

Northern Finland 1966 Birth Cohort Study (NFBC1966)67 20355

Norwegian Mother and Child Cohort Study (MoBa)39 �46 000

Prediction and Prevention of Preeclampsia and Intrauterine Growth

Restriction Study (PREDO)68

�1000

Pune Maternal Nutrition Study (PMNS)69 53369

QIMR Berghofer Cohort70 8925

Simons Simplex Collection71 257671

Sister Study72 71572

STORK Study73 52931,73

STORK Groruddalen74 634

TwinsUK75 16035

UK Biobankb,76 221 528

aThe number of genotyped mother–phenotyped child duos is based on information provided in peer-reviewed papers including on birthweight5 and gestational

weight gain,77 on the cohort’s official website or from discussions with the study principal investigators. These numbers are liable to change as more individuals

are recruited/genotyped, and should only be considered approximations.
bBirthweight only.
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responsible for the robust identification of thousands of ge-

netic loci associated with complex traits and diseases.36

Consequently, the majority of summary GWAS results data

posted on publicly available websites concern these associa-

tions. We propose the establishment of analogous interna-

tional consortia (or efforts within existing consortia) whose

remit is the detection of maternal genetic effects on offspring

phenotypes and who are committed to the deposition of

summary-results data from these collaborations on publicly

available servers and utilities such as MRBase37 and

LDHub.38 This will not only facilitate the detection of ma-

ternal genetic effects on offspring phenotypes, but also en-

able large-scale MR studies of maternal exposures and

offspring outcomes in the wider scientific community.

A logical place to start might be the establishment of

working groups focused on perinatal phenotypes, where

maternal genetic effects on offspring phenotypes are

expected to be strongest. We have already begun to do

this in the case of offspring birthweight within the EGG

consortium, where maternal genotypes and offspring phe-

notypes in the large-scale UK Biobank Study and many

other population-based birth cohorts of appreciable size

are available.5 However, many other perinatal pheno-

types have been collected by cohorts within both the EGG

and Early Genetics and Lifecourse Epidemiology

(EAGLE) consortia, which would facilitate the examina-

tion of other traits, too. There also exist several very large

Scandinavian cohorts that have maternal genotypes and

offspring outcomes, including the Norwegian Mother and

Child Cohort (MOBA),39 the HUNT Study40,41 and

DECODE13 cohorts, and several smaller twin and family

studies cohorts and family studies with parental geno-

types available that would be useful for this purpose

(Table 3).

Conclusions

Statistical methods now exist for estimating maternal ge-

netic effects on offspring phenotypes. The estimates

obtained in these studies can subsequently be used in

large-scale two-sample MR studies to investigate the

causal effect of maternal environmental exposures on off-

spring outcomes. This includes studies that aim to assess

the causal effect of in utero exposures influencing fetal

growth restriction on future risk of disease in offspring.

The establishment of large-scale international genetics

consortia geared to identifying maternal genetic effects

will assist in facilitating these sorts of studies.

Supplementary Data

Supplementary data are available at IJE online.
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