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Abstract
Background: Creation of human gene families was facilitated significantly by gene duplication and
diversification. The (TG/CA)n repeats exhibit length variability, display genome-wide distribution,
and are abundant in the human genome. Accumulation of evidences for their multiple functional
roles including regulation of transcription and stimulation of recombination and splicing elect them
as functional elements. Here, we report analysis of the distribution of (TG/CA)n repeats in human
gene families.

Results: The 1,317 human gene families were classified into six functional classes. Distribution of
(TG/CA)n repeats were analyzed both from a global perspective and from a stratified perspective
based on their biological properties. The number of genes with repeats decreased with increasing
repeat length and several genes (53%) had repeats of multiple types in various combinations.
Repeats were positively associated with the class of Signaling and communication whereas, they
were negatively associated with the classes of Immune and related functions and of Information.
The proportion of genes with (TG/CA)n repeats in each class was proportional to the
corresponding average gene length. The repeat distribution pattern in large gene families generally
mirrored the global distribution pattern but differed particularly for Collagen gene family, which was
rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high
conservation in the Chimpanzee genome. However the majority of these repeats displayed length
polymorphism.

Conclusion: Positive association of repeats with genes of Signaling and communication points to
their role in modulation of transcription. Negative association of repeats in genes of Information
relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In
genes of Immune and related functions negative association of repeats perhaps relates to the
smaller gene length and the directional nature of the recombinogenic processes to generate
immune diversity. Thus, multiple factors including gene length, function and directionality of
recombinogenic processes steered the observed distribution of (TG/CA)n repeats. Furthermore,
the distribution of repeat patterns is consistent with the current model that long repeats tend to
contract more than expand whereas, the reverse dynamics operates in short repeats.
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Background
The evolution of organisms with increasing complexity
was significantly facilitated by duplication of genes and
genomes followed by diversification [1,2]. Gene duplica-
tion per se produces two identical copies. Subsequently,
one of the copies may either accumulate beneficial
changes to give rise to a functionally diversified gene or
accrue deleterious mutations to end up as a pseudogene,
while the other copy retains its original function. The
former mechanism leads to the creation of 'gene families'
capable of carrying out diverse functions [2,3].

The classification of genes into gene families by Human
Gene Nomenclature Committee (HGNC) on the basis of
sequence similarity of the encoded proteins [4] and the
availability of human genome sequence [5] allow us to
carry out a comprehensive survey of a class of important
functional element, namely the (TG/CA)n repeats. Analy-
sis of the distribution of (TG/CA)nrepeats within genes in
'present day' gene families holds the potential to provide
insights into the factors steering their abundance and
selective distribution. Although the characteristic property
of (TG/CA)n repeats exhibiting length polymorphism has
been widely used in genetic mapping [6], a growing body
of evidence accumulating over several years point to their
multiple functional roles in various biological processes.

The (TG/CA)n repeats have a propensity to undergo struc-
tural transitions [7-10] and have been shown to modulate
transcription in several genes including rat α-lactalbumin
[9], rat prolactin [11], MMP-9 [12], IFN-γ [13], EGFR [14],
HSD11B2 [15], tilipia prolactin1 [16] and human house-
keeping genes [17]. Furthermore, the (TG)n tracts have
been observed to act as stimulator in recombination and
in mRNA splicing [18-22].

In the current study, the analysis of distribution of (TG/
CA)n repeats in human gene families affords assessment
of the distribution of these repeats by examining for posi-
tive association or negative association with respect to
gene length and function.

Results
Characteristics of human gene families and their 
functional classification
Each of the 1,317 gene families included members with
similar functional roles. The family sizes varied in a wide
range between 2 to 223 members (Figure 1). The number
of gene families was found to bear an inverse exponential
relation to family size. About two-fifths of the gene fami-
lies were duplex. Only three gene families had more than
100 members per family: Immunoglobulin heavy chain
(162 genes), Zinc finger proteins (200 genes) and Solute
carrier (223 genes).

The functional classification of 1,317 gene families com-
prising 7,928 genes in the six functional classes unveiled
that the Signaling and communication is largest with 529
families and 3,072 genes (Figure 2). The Cell cycle is the
smallest with 82 families and 470 genes.

Of the 1,317 gene families, 131 were entirely intrachro-
mosomal. Chromosome 1 had the largest number with 17
families followed by chromosomes 19 and 11 with 13
and 12 families respectively. The remaining chromo-
somes had less than 10 intrachromosomal gene families
per chromosome. The functional classification of these
131 intrachromosomal gene families revealed that the
highest number (45) belonged to the class of 'Immune
and related functions' closely followed by the class of Sig-
naling and communication with 40 families. The remain-
ing classes had the following distribution of gene families:
Metabolism (24), Information (15), Structure and motil-
ity (5) and Cell cycle (2). These observations indicate that
the creation of intrachromosomal human gene families
was driven by large number of duplications followed by
divergence in selected functional classes.

Global distribution of (TG/CA)n repeats (n ≥ 6 units) in 
gene families
Of the 1,317 gene families, 732 families had (TG/CA)n
repeats in at least one of their members and 326 families
had repeats in all their members. Of the 7,928 genes in
1,317 families, 3,986 genes had intragenic (TG/CA)n
repeats of length greater than or equal to 6 units. All 3,986
genes had repeats in their introns. Only 277 genes had
(TG/CA)n repeats in exons indicating that these repeats are
mainly present in introns.

The distribution of genes with (TG/CA)n repeats in the six
functional classes is displayed in Figure 2. It is apparent
that the class of Signaling and communication had the
highest number of genes with (TG/CA)n repeats. Compar-
ison of the proportion of genes with repeats in each class
with the global proportion showed that the class of Sign-
aling and communication had significantly higher than
the expected proportion (p < 0.0001, Binomial test). In
contrast, the classes of Immune and related functions and
Information had significantly lower than the expected
proportion of genes with repeats (p < 0.0001 and p <
0.0002 respectively). The proportion of genes with repeats
was not significantly different from the global proportion
in the Cell cycle, Metabolism and Structure and motility
classes. These observations show that the (TG/CA)n
repeats exhibit positive association with the genes belong-
ing to Signaling and communication whereas, they are
negatively associated with the genes belonging to
Immune and related functions and Information.
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It has been shown that the human genome has an iso-
chore structure that varies in GC content [5]. This varia-
tion raises the possibility that the observed selective
distribution of (TG/CA)n repeats might have arisen due to
fluctuations in the local %(G+C) content of the genomic
region as opposed to function. We examined this by com-
paring the average %(G+C) content of the genes in the six
functional classes with the corresponding proportions of
genes with repeats. The average %(G+C) content was
observed to be in the narrow range (47–49%) in the six
functional classes whereas, the proportion of genes with
repeats varies widely in the range 29.6–61%. These obser-
vations indicate that the proportion of genes with repeats

is significantly determined by function instead of small
fluctuations in %(G+C) content.

Correlation between gene length, function and global 
distribution of (TG/CA)n repeats
Comparison of the proportion of genes containing (TG/
CA)n repeats with the average lengths of genes in each of
the six functional classes revealed a linear relationship
(Figure 3, correlation coefficient R = 0.93, p < 0.007). The
signaling and communication class had the longest aver-
age gene length (74.07 kb) along with the highest propor-
tion of genes with (TG/CA)n repeats (61.23%). The class
of Immune and related functions had the shortest average

Distribution pattern of human gene families with respect to family sizesFigure 1
Distribution pattern of human gene families with respect to family sizes. X axis: family size (number of genes in each gene fam-
ily). Y axis: number of gene families corresponding to various family sizes. Note the inverse exponential relationship.
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gene length (21.26 kb) with the lowest proportion of
genes with (TG/CA)n repeats (29.65%). These observa-
tions show that the proportion of genes with (TG/CA)n
repeats bears a linear relationship to the length of genes.

Trinity of (TG/CA)n repeats in gene families
In order to examine the characteristics of distribution of
(TG/CA)n repeats with respect to multiple functional roles
principally governed by their length, we analysed the
repeats stratified into three categories: type I (6 ≤ n < 12),
type II (12 ≤ n < 23) and type III (n ≥ 23). The results are
displayed in Figure 4. The number of genes containing
(TG/CA)n repeats decreases with increasing repeat length.
It is also apparent that several genes (53% of the total)
have multiple types of repeats in various combinations.

Classification of the distribution of genes with (TG/CA)n
repeats stratified into three categories into six functional
classes is shown in Figure 5. It is evident that the propor-
tion of genes containing repeats decreases in the order I >
II > III in all classes. The proportion of genes containing
(TG/CA)n repeats of Signaling and communication were
significantly higher than the expected proportion in all
three categories of repeats (p < 0.0001, type I, II and III).
On the other hand, the proportion of genes with (TG/
CA)n repeats of Immune and related functions and Infor-
mation were significantly lower than expected proportion
in all three categories: Immune and related functions (p <
0.0001, type I, II and III), Information (p < 0.0001, type I
and II, p < 0.004, type III). The proportion of genes with
type III repeats was marginally lower than the expected

Global distribution of gene families, genes and proportion of genes containing (TG/CA)n repeats classified into the six func-tional classesFigure 2
Global distribution of gene families, genes and proportion of genes containing (TG/CA)n repeats classified into the six func-
tional classes. The numbers correspond to the height of the vertical bars in each group.
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proportion in Metabolism class (p < 0.01) and marginally
higher than the expected proportion in Structure and
motility class (p < 0.02). The proportion of genes with
repeats in the three categories was not significantly differ-
ent from the expected value in the class of Cell cycle. These
observations show that repeats of all types are positively
associated with the genes of Signaling and communica-
tion whereas they are negatively associated with the genes
of Immune and related functions and Information.

The distribution of average number of (TG/CA)n repeats
per gene in the three categories in the six functional classes
is displayed in Figure 6. Comparison of the average
number of repeats per gene in the three categories with the
global distribution pattern revealed that in most cases the
observed number was significantly lower than the
expected value, except for the genes belonging to Signal-
ing and communication and Structure and motility,
which had significantly higher average number of repeats
per gene than the expected value (p < 0.0004 in all three
categories, both classes). The average number of type III

repeats per gene in the class of Cell cycle was not signifi-
cantly different from the expected value. These observa-
tions show that the repeat densities were higher in the
genes belonging to Signaling and communication and
Structure and motility classes whereas, the genes belong-
ing to other classes had lower repeat densities.

Large gene families
As a special case of this study, we examined the distribu-
tion of (TG/CA)n repeats in the top 2% large families (27).
The family sizes of this category varied widely from 32 to
223 members. Functional classification of these large fam-
ilies revealed the following distribution: Immune and
related functions (9), Signaling and communication (8),
Information (6), Metabolism (2), Structure and motility
(1) and Cell cycle (1).

The proportion of genes with (TG/CA)n repeats in large
families is displayed in Table 1. Comparison with the glo-
bal distribution showed that the proportion of genes with
repeats was significantly higher than expected value in the

Relationship between proportion of genes with (TG/CA)n repeats in each functional class and the average gene length in the corresponding functional classesFigure 3
Relationship between proportion of genes with (TG/CA)n repeats in each functional class and the average gene length in the 
corresponding functional classes.  X axis: Proportion of genes with (TG/CA)n repeats (%); Y axis: Average gene length (kb)  
(CC: Cell cycle; IN: Information; IR: Immune and related functions; MET: Metabolism; SC: Signaling and communication; STM: 
Structure and motility) 
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Signaling and communication and Structure and motility
classes (p < 0.0001, Binomial test). There was no signifi-
cant difference between the observed and the expected
proportion of genes with repeats in the class of Metabo-
lism. In the remaining classes, the proportion of genes
with repeats was significantly lower than the expected
value (p < 0.0001, Binomial test). As observed with all
gene families, a linear relationship was observed between
gene lengths and proportion of genes with (TG/CA)n
repeats (correlation coefficient R = 0.79, p < 0.0001).

The large Collagen gene family belonging to the class of
Structure and motility had the highest proportion of genes
containing repeats (86.5%). In order to analyze this fur-
ther, we examined the sequence conservation of the
region flanking 200 bases upstream and downstream in
addition to the repeats by comparing the human sequence
with the available genome sequence of Chimpanzee (Pan
troglodytes), a nearest ancestor to human [46]. We
observed, that of the 268 sequence segments including

repeats from human Collagen genes, 244 were conserved
with greater than 92% identity in the chimpanzee. Of
these 244 repeats in human Collagen genes, 73 repeats
were identical in length, 142 repeats displayed length pol-
ymorphism in the chimpanzee, 27 repeats had point
mutations and in 2 cases there were no repeats in the cor-
responding segments in the chimpanzee. These observa-
tions show that both human and chimpanzee Collagen
genes have high repeat content, high conservation of posi-
tion and flanking sequences of the repeats. However,
majority of repeats exhibited length polymorphisms,
which is consistent with their characteristic property [6].

Discussion
The inverse relationship between the number of gene fam-
ilies and their corresponding sizes, resulting in a large
number of small sized gene families, suggests that several
duplicated copies may have been lost during the first
round of genome duplication itself, considering the
hypothesis of two rounds of genome duplication in

A Venn diagram of the genes with trinity of intragenic (TG/CA)n repeats (type I, II and III)Figure 4
A Venn diagram of the genes with trinity of intragenic (TG/CA)n repeats (type I, II and III). Note that several genes (shaded 
area) have multiple types of repeats in various combinations.
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vertebrate evolution [1,23,24]. The non-uniform distribu-
tion of the number of gene families across the six func-
tional classes suggests that widespread gene duplication
across gene families spanning a wide range of functions
may have been less productive in attaining higher levels of
complexity. An alternate course involving large amount of
duplications followed by divergence producing a wide
range of functions in selected classes might have been
favorable. The support for the latter hypothesis emerges
from the fact that large sized gene families, inherently low
in number, mainly belong to Immune and related func-
tions (required to tackle a wide range of infections), Sign-
aling and communication (required to respond to diverse
environmental stimuli) and Information class (required
to implement complex molecular processes through
supramolecular assemblies or organelles). A few members
of large sized gene families of Metabolism class function
in bioenergetics and xenobiotic metabolism and of Cell
cycle class function in packaging of nuclear DNA. Simi-
larly the large Collagen gene family of Structure and motil-
ity class offers a useful repertoire for the formation of
multiple tissues [25].

It is apparent that short repeats are abundant in human
genes and long repeats are rare. Our findings are consist-
ent with the observations by Whittaker et al. (2003), who
showed that longer repeats are more likely to contract
than expand [47]. Accordingly, contraction of long
repeats in time would result in accumulation of higher
number of short repeats.

Of the six functional classes, the Signaling and communi-
cation class was the richest in repeats including the pro-
portion of genes with repeats and repeat densities. Many
of the genes belonging to this class function at the inter-
face between the body and its environment that appears
to be a distinct feature of eukaryotes [28] to confer spe-
cies-specific advantages [24,41]. The positive association
of (TG/CA)n repeats associated with genes of this class
strongly argues for a positive temporal regulatory role that
could provide for variations in gene expression to comple-
ment the enormous diversity characteristic of this class.
Compared to this class, the anciently evolved gene fami-
lies of Information and Cell cycle are poor in repeats.
Considering the fact that these genes are highly conserved

Distribution of proportion of genes with three types of (TG/CA)n repeats in the six functional classesFigure 5
Distribution of proportion of genes with three types of (TG/CA)n repeats in the six functional classes.
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[28-30] and are involved in implementing the molecular
processes acting at the core of cellular physiology, these
observations suggest that repeats are negatively associated
with these genes to avoid unpredictable consequences for
the normal functioning of the cell.

Another argument in favor of these inferences stems from
the linear relationship between the average gene length of
gene families belonging to the respective functional
classes and the proportion of genes with repeats in these
classes. The average length of genes belonging to Informa-
tion class was short and this factor aids in obtaining high
levels of expression of these genes [29]. This requirement,
however, generates a space constraint to accommodate
additional elements. This situation contrasts to that of
genes of Signaling and communication class with higher
average gene length offering more space for
accommodating other regulatory elements. The analysis
of Collagen gene family belonging to large sized families
presents itself as an interesting case. Most of the members

of this family have (TG/CA)n repeats. Sequence compari-
sons of repeat containing regions of human Collagen
genes with the nearest ancestor to humans, the Chimpan-
zee, revealed that although there is high conservation in
terms of content and position of repeats, majority of
repeats were polymorphic, which is consistent with their
characteristic property [6]. Among repeats that displayed
polymorphism between human and Chimpanzee, nearly
equal proportions of human repeats were either con-
tracted or expanded in Chimpanzee. These results are also
consistent with the Whittaker's model [47].

Strikingly, the genes of Immune and related functions
class are poor in (TG/CA)n repeats in general and in type
III repeats in particular. A characteristic trend of this class
is to have large sized families with their genes arranged
juxtaposed on the same chromosomal locations. This
arrangement increases the possibility of these gene fami-
lies to display more uniform sequence characteristics [31].
Further, these genes have the smallest average gene length

Distribution of the densities of three types of (TG/CA)n repeats in the genes of six functional classesFigure 6
Distribution of the densities of three types of (TG/CA)n repeats in the genes of six functional classes.
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indicating a compact arrangement, which is likely to act as
a space constraint in the accommodation of (TG/CA)n
repeats. In addition, the negative association of type III
(TG/CA)n repeats in these genes may have a directional
role. The immunoglobulin genes use the 7 bp and 9 bp

repeats for generation of variants through VDJ recombina-
tion [33]. Accommodation of type III (TG/CA)n repeats (n
≥ 23) might introduce variations in this process and could
result in loss of directional recombination essential to

Table 1: Distribution of (TG/CA)n repeats in large gene families

Functional class and 
gene families

Chromosomal 
Distributiona

Average 
Gene 

Length (kb)b

Genes in the 
family

Proportion 
of Genes 
with (TG/

CA)n 
repeats

Number of Genes with (TG/
CA)n repeats in three catego-

ries

Average number of repeats per 
gene in three categories

Type I Type II Type III Type I Type II Type III

Cell cycle classc(1)
Histone proteins family Dispersed 3.55 76 7.9 4 4 0 1.7 0.7 0
Immune and related functions class (9)
Interleukins Dispersed 14.67 43 32.6 9 6 2 1.3 0.9 0.1
Serine (or cysteine) 
proteinase inhibitor family

Dispersed 17.87 32 50 12 9 2 1.4 0.8 0.2

Tumor necrosis factor 
(ligand) superfamily

Dispersed 23.49 38 63.2 21 14 1 1.9 0.9 0.1

CD antigens Dispersed 26.96 54 46.3 20 11 3 1.9 1.3 0.3
Immunoglobulin heavy 
chains

Intrachromosomal 0.38 162 0.6 1 0 0 1 0 0

Immunoglobulin kappa 
chains

Intrachromosomal 0.55 73 5.5 1 3 0 0.3 3 0

Immunoglobulin lambda 
chains

Intrachromosomal 0.35 88 0 0 0 0 0 0 0

Interleukin receptors 
family

Dispersed 29.77 32 59.4 17 10 0 3.4 0.9 0

T cell receptor beta chains 84 Intrachromosomal, 
9 Dispersed

0.42 94 9.6 5 3 1 0.8 0.3 0.1

Information class (6)
Homeo box Dispersed 5.48 40 25 6 6 1 1.2 0.9 0.2
Eukaryotic translation 
initiation factor

Dispersed 36.54 33 45.5 13 10 3 2.1 0.9 0.2

Zinc finger protein family Dispersed 30.33 200 42.5 63 44 6 2.2 1.1 0.1
DEAD/H (Asp-Glu-Ala-
Asp/His) box polypeptides

Dispersed 43.44 32 62.5 17 8 2 1.5 0.6 0.1

Ribosomal protein genes Dispersed 4.94 96 6.3 6 0 0 1 0 0
Mitochondrial ribosomal 
protein genes

Dispersed 16.92 74 23 14 12 1 1.8 0.9 0.1

Metabolism class (2)
Cytochrome P450 
superfamily

Dispersed 31.34 45 46.7 15 11 2 1.9 1 0.1

Proteasome subunit genes Dispersed 25.64 40 32.5 11 8 0 1.5 0.8 0
Signaling and Communication class (8)
G protein-coupled 
receptor family

Dispersed 24.71 98 33.7 26 19 6 2.3 1.5 0.2

Tripartite motif-containing 
family

Dispersed 29.29 40 60 19 12 2 1.6 0.8 0.1

Solute carrier family Dispersed 59.19 223 62.8 134 87 22 2.9 1.5 0.2
RAS oncogene family Dispersed 39.92 60 65 38 17 4 1.8 0.7 0.1
ATP-binding cassette 
transporters gene family

Dispersed 73.85 44 68.2 29 24 4 3.6 2.5 0.3

Guanine nucleotide binding 
protein (G protein) 
polypeptide genes

Dispersed 58.83 32 59.4 18 12 5 3.3 1.9 0.4

Potassium voltage-gated 
channel genes

Dispersed 104.95 38 57.9 17 16 6 8.6 4.4 0.5

Protein phosphatase 
subunit genes

Dispersed 65.62 59 57.6 27 22 7 2.9 1.8 0.3

Structure and motility class (1)
Collagen family Dispersed 132.83 37 86.5 29 23 10 5.7 2.3 0.4

a: Chromosomal distribution of the members of gene families. 'Dispersed' indicates that members are distributed on different chromosomes.
b: average gene length (in kb) for each gene family.
c:Numbers in parentheses show the number of large sized gene families in each functional class.
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generate diversity in immunoglobulins and T cell receptor
chains in an ordered manner.

Conclusion
The (TG/CA)n repeat distribution pattern observed in
human gene families is consistent with Whittaker's model
of repeat expansion and contraction. It appears that mul-
tiple factors including gene length, function and direc-
tionality of recombination processes steered the observed
selective patterns of distribution of (TG/CA)n repeats in
human gene families.

Methods
Sequence retrieval and mapping of (TG/CA)n repeats
Sequences of 35,114 human genes (build number 33)
were retrieved from LocusLink http://
www.ncbi.nlm.nih.gov/LocusLink/[43] using a JavaScript
program. A sum of 192 genes could not be retrieved
because of either inaccessibility to the LocusLink page or
absence of the link for retrieving the gene sequence. A
gene in this analysis is considered as the nucleotide
sequence from the start of first exon to the end of last
exon. If alternate splicing was reported, the gene length
considered was the start of first exon to the last known
exon including all alternatively spliced products for that
gene.

Perl scripts, 'SimRep' and 'RepGene' were written for the
identification and mapping of perfect intragenic (TG/
CA)n repeats of length n ≥ 6 units in genes [17]. Through-
out this work we have used n ≥ 6 units as the minimum
cut-off to identify (TG/CA)n repeats. All repeats were
scored in the intragenic region (exons and introns only).

Categorization of (TG/CA)n repeats
We grouped (TG/CA)n repeats into three categories (types
I, II and III), according to their length and biological prop-
erties. Type I (TG/CA)n repeats, in the range 6 ≤ n <12
units, are short repeats based on the observation that a
repeat length of 8 units (n = 8) is minimum to be likely
polymorphic [34,35]. Type II (TG/CA)n repeats comprise
of 12 ≤ n < 23 units and is based on the observation that
more than 93% of the (CA)n repeats of n ≥ 12 units are
polymorphic [6]. Further, repeats of this length have also
been shown to have preferential binding to nuclear factors
compared to short repeats [36] and can also stimulate
mRNA splicing [21,22]. Type III repeats consist of
relatively long reiterations of (TG/CA)n (n ≥ 23 units) and
have propensity to adopt structures such as Z DNA
[8,9,37]. Other studies have shown that (TG/CA)n repeats
of length greater than 22.5 units can stimulate recombina-
tion [18-20].

Clustering of genes into gene families
Functional roles of a large number of human genes are not
well known. Presently, these genes are assigned hypothet-
ical annotations. Genes labeled as 'LOC', 'DFKZP', 'FLJ',
'HSPC', 'HSU', 'HT', 'KIAA', 'ORF', 'hypothetical', 'PRO'
and 'pseudogenes' without clear functional details were
filtered out. A total of 22,688 genes were removed in this
filtering exercise. Out of the remaining 12,426 genes, a
total of 8,778 genes (25% of total) were clustered into
gene families based on their gene root symbols as defined
in the guidelines of Human Gene Nomenclature Commit-
tee (2002) [4]. The remaining 3,648 genes could not be
clustered into gene families and are solitary.

The HGNC guidelines consider sequence and functional
similarity of proteins encoded by genes while grouping
them into gene families [4,38,39]. A root symbol signifies
a gene family. The family members are designated by Ara-
bic numerals placed immediately after the gene root sym-
bol, for example GPR1, GPR2, GPR3 for genes of the G
protein-coupled receptor family. A Perl script namely
Clustergene was written to cluster 8,778 human genes into
1,556 gene families. The Perl script called ChromoCluster
was written to report gene families located on the same
chromosome. Subsequently these gene families were clas-
sified into the six functional classes as described below.

Functional Classification of gene families for comparative 
analysis
The gene families were classified into six functional classes
namely, 'Information', 'Cell cycle', 'Metabolism', 'Signal-
ing and communication', 'Immune and related functions'
and 'Structure and motility' based on the scheme defined
by Adams et al. [40]. We combined the functional classes
of replication, transcription, RNA processing and transla-
tion into 'Information' class based on Andrade et al. [41].

'Cell cycle' includes cell cycle, apoptosis, chromosomal
structure and DNA repair; 'Immune and related functions'
includes immunology, homeostasis, carrier proteins/
membrane transport and stress response; 'Information'
includes protein synthesis, translation factors, ribosomal
proteins, post-translational modification/targeting, pro-
tein degradation, tRNA synthesis/metabolism, RNA syn-
thesis, transcription factors, RNA polymerase, RNA
processing, RNA degradation, DNA synthesis/replication
and DNA repair; 'Metabolism' includes amino acids,
nucleotides, sugars, lipids, cofactors, protein
modification, energy and carrier proteins/membrane
transport; 'Signaling and communication' includes recep-
tors, hormone/growth factors, intracellular transducers,
effectors/modulators, metabolism, cell adhesion and
channels/transport proteins; 'Structure and motility'
includes cytoskeletal, microtubule-associated proteins/
motors and extracellular matrix.
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Assignment of gene families to each of the functional
classes was carried out according to their annotations in
Gene Ontology [42] and LocusLink [43] databases. Out of
the total 1,556 gene families, 1,317 could be classified
into any of the six functional classes. The remaining 239
families could not be classified unambiguously due to
limited information on gene function. Subsequent analy-
sis, with respect to functional classification and distribu-
tion of (TG/CA)n repeats, presented here is from 1,317
gene families comprising of 7,928 genes.

Alignment of human (TG/CA)n repeats and flanking 
sequences with Chimpanzee genome sequence
The repeats present in human Collagen genes were aligned
with Chimpanzee (Pan troglodytes) genome by using
'BLAT' software available at UCSC Genome Bioinformat-
ics Site http://www.genome.ucsc.edu/cgi-bin/hgBlat[49].
Nucleotide segments including the repeats and containing
200 nucleotides upstream of the start and 200 nucleotides
downstream from the end of each of the (TG/CA)n repeat
were extracted for human Collagen genes [48]. These seg-
ments were aligned with the Chimpanzee genome (Build
1, version 1, Nov 2003) using BLAT. Only those segments
that showed more than 92% identity were noted as
conserved.

Statistical methods
Significance of the differences between the proportions of
genes containing repeats and repeats densities in the six
functional classes compared with global distribution was
tested using Binomial proportions test. The observed pro-
portion in each class was tested against the expected pro-
portion, which was computed assuming no preference
with respect to function. Correlation coefficient (R) was
computed to examine the relationship between average
gene length of gene families belonging to a functional
class and the proportion of genes with (TG/CA)n repeats
in the corresponding functional classes. The 'Interactive
Statistical Calculation Pages' website http://mem
bers.aol.com/johnp71/javastat.html was used to perform
the statistical tests.
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