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ABSTRACT: The Born−Oppenheimer picture has forged our
representation and interpretation of photochemical processes, from
photoexcitation down to the passage through a conical
intersection, a funnel connecting different electronic states. In
this work, we analyze a full in silico photochemical experiment,
from the explicit electronic excitation by a laser pulse to the
formation of photoproducts following a nonradiative decay
through a conical intersection, by contrasting the picture offered
by Born−Oppenheimer and that proposed by the exact
factorization. The exact factorization offers an alternative under-
standing of photochemistry that does not rely on concepts such as electronic states, nonadiabatic couplings, and conical
intersections. On the basis of nonadiabatic quantum dynamics performed for a two-state 2D model system, this work allows us to
compare Born−Oppenheimer and exact factorization for (i) an explicit photoexcitation with and without the Condon
approximation, (ii) the passage of a nuclear wavepacket through a conical intersection, (iii) the formation of excited stationary states
in the Franck−Condon region, and (iv) the use of classical and quantum trajectories in the exact factorization picture to capture
nonadiabatic processes triggered by a laser pulse.

1. INTRODUCTION

Our way of picturing molecules and chemical processes has
been greatly shaped by the Born−Oppenheimer approxima-
tion, the assumption that the motion of electrons and nuclei
can be treated separately in a molecule.1,2 The discussion of
chemical structures, properties, and reactivity usually intrinsi-
cally assumes that the molecule remains in a given electronic
eigenstate or, in other words, that electrons can adapt
instantaneously to any nuclear motion, which is a direct
consequence of the Born−Oppenheimer approximation.
Photochemistry inherently goes beyond this picture because
photon absorption by a molecule makes transitions to different
electronic states possible.3−9 The subsequent out-of-equili-
brium evolution of the excited molecule usually means that
regions where one or more electronic states come close in
energy can be visited. When the nuclear dynamics drives the
molecule into such regions, the Born−Oppenheimer approx-
imation breaks down. The nonadiabatic coupling between
nuclear and electronic motions cannot be neglected anymore,
and one needs to accept that nuclear motion can lead to a
change of electronic states.10

A legitimate strategy to move beyond the Born−
Oppenheimer approximation would be to try to supplement
the Born−Oppenheimer picture with more electronic eigen-
states and account for their mutual couplings mediated by
nuclear motion. Importantly, this post-Born−Oppenheimer
picture, often called the Born−Huang representation,11 relies
on the use of quantities originally defined within the
framework of the Born−Oppenheimer approximation, such

as the potential energy surfaces obtained from the electronic
Schrödinger equation for fixed nuclear degrees of freedom, in a
context that is at the opposite of their initial raison d’et̂re:
strong electron−nuclear couplings.12 This post-Born−Oppen-
heimer picture is at the heart of our way to regard
photochemical processes, and the vocabulary used for such
processes is intrinsically shaped by Born−Oppenheimer
concepts: potential energy surfaces (eigenvalues from the
time-independent Schrödinger equation),4 conical intersec-
tions (points of degeneracy between two adiabatic potential
energy surfaces),13,14 the Berry phase (a phase picked up in the
adiabatic representation when encircling a conical intersec-
tion),15,16 and the transition dipole moment (the electric
dipole moment for the transition between two electronic
states). Within this picture, the molecular wave function is
expanded in the adiabatic basis, that is, using the set of time-
independent eigenstates of the (electronic) Born−Oppen-
heimer Hamiltonian. An alternative choice for this basis
expansion is to use the diabatic representation, which
diagonalizes, when possible, the nuclear kinetic energy
operator. In the diabatic representation, the electronic states
preserve their character upon varying the nuclear config-
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uration. Conical intersections and the Berry phase are not
present in this representation because the electron−nuclear
coupling is mediated here via off-diagonal elements of the
electronic Hamiltonian matrix. For systems with more than
two electronic states, where diabatic states might not be
defined, one needs to rely on quasi-diabatic states that
correspond to a set of electronic states that minimize the
nonadiabatic couplings.
An exact theoretical description of a photochemical process

necessitates the solution of the full time-dependent Schrö-
dinger equation, a task that is possible only for the smallest
molecular systems. In the vast majority of cases, the in silico
simulation of excited-state (or nonadiabatic) molecular
dynamics is performed under the (post-) Born−Oppenheimer
picture. In the simplest case, the molecule of interest is
considered to be described by its ground vibrational and
electronic states, an external time-dependent field (for
example, a laser pulse) is applied to the molecule, and the
light−matter interaction induces an electronic excitation
leading to the formation of a nuclear wavepacket in an excited
electronic state. This nuclear wavepacket subsequently evolves
and can branch in regions of strong nonadiabaticity, leading to
its (possibly partial) transfer to different electronic states, a
nonradiative decay, until the ground state is potentially
reached. The out-of-equilibrium dynamics experienced by the
molecule during this overall process can make it explore
regions of the nuclear configuration space that would not be
thermally accessible from the ground electronic state, leading
to the formation of so-called photoproducts.17−21 The
formation of these photoproducts can be triggered in the
excited electronic states or during subsequent athermal
dynamics in the ground electronic state following the
nonradiative decay.22,23 Accessing the photochemistry of
molecules in their full dimensionality usually requires
approximations for the dynamics, which are in many cases
based on representing the nuclear wave functions through
trajectory basis functions or substituting it with swarms of
classical trajectories. (See refs 24−26 for examples of such
strategies.) A consequence of the Born−Oppenheimer picture
is that one needs to find strategies to account for nonadiabatic
effects in these approximate methods and, more specifically, to
describe the branching of nuclear wavepackets between
different electronic states. A plethora of ideas and algorithms
were proposed, where coupled or uncoupled trajectories would
hop, evolve on mean-field surfaces, spawn, or clone other
trajectories.27

In this work, we propose to explore the different steps of a
typical photochemical experiment described above with an
alternative representation of the coupled electron−nuclear
dynamics of a molecule: the exact factorization.28,29 The exact
factorization introduces a framework exempt from the ideas
emanating from the Born−Oppenheimer picture; there is no
mention of electronic states or static potential energy surfaces.
Instead, the exact factorization depicts the dynamics of a
molecular system by a nuclear wave function whose dynamics
is dictated by a single time-dependent vector30 and scalar31

potential. Earlier work30,32−34 showed that this formalism
changes our way of representing nonadiabatic molecular
dynamics. In particular, the concepts of the transition between
electronic states, conical intersections, and the (topological)
Berry phase do not appear in the exact factorization. Hence,
there is a real curiosity in unraveling how the exact
factorization would describe a full photochemical experiment

for a 2D two-state molecular model, from photoexcitation with
a laser pulse to the formation of photoproducts, and in
comparing this picture to the more conventional Born−
Oppenheimer representation. In addition, these simulations
will allow us to shed light on other interesting aspects of an in
silico photochemical experiment, such as (i) the effect of the
Condon approximation, (ii) the analysis of the dynamics using
representation-free quantities, and (iii) the use of classical and
quantum trajectories to depict the entire nuclear dynamics
during a photochemical process.
This article is organized as follows. We propose in section 2

a brief review of the Born−Oppenheimer (section 2.1) and
exact-factorization (section 2.2) pictures to describe coupled
electron−nuclear dynamics such as that observed in a
photochemical process. We then define our two-state 2D
model Hamiltonian and the light−matter interaction Hamil-
tonian with and without the Condon approximation in section
2.3. In the same section, we also highlight some important
considerations on our model and provide the computational
details. We then present the results of our in silico
photochemical experiment in section 3, starting with the
more conventional Born−Oppenheimer picture and then
moving to the exact factorization. We also discuss the use of
classical and quantum trajectories within the exact factorization
formalism. Our conclusions are finally stated in section 4.

2. METHODS

The evolution of the time-dependent wave function describing
the state of a molecule, Ψ(r, R, t), follows the time-dependent
Schrödinger equation

ℏ ∂
∂

Ψ = ̂ Ψ
t

t H t tr R r R r Ri ( , , ) ( , , ) ( , , )
(1)

where the full Hamiltonian operator Ĥ(r, R, t) includes the
nuclear kinetic energy T̂n(R), a Born−Oppenheimer Hamil-
tonian ĤBO(r, R), and an external (time-dependent) potential
V̂(r, R, t):
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R and r are collective variables for the coordinates of the nuclei
and electrons forming the molecule. The summation for the
nuclear kinetic energy runs over all Nn nuclei, each labeled by ν
and with corresponding mass Mν. The Born−Oppenheimer
Hamiltonian consists of the electronic kinetic energy T̂e(r), the
electron−electron V̂ee(r), the nucleus−nucleus V̂nn(R), and the
electron−nucleus V̂en(r, R) interaction. In the dipole
approximation, the effect of an external time-dependent
electric field E(t) coupled to the electric dipole moment
operator μ̂(r, R) is encoded in V̂(r, R, t).

2.1. Born−Oppenheimer Picture of Nonadiabatic
Dynamics. Within the Born−Oppenheimer approximation,
the molecular wave function Ψ(r, R, t) is approximated as a
single product of a time-independent electronic wave function,
ΦJ(r; R), that is the Jth solution of the time-independent
electronic Schrödinger equation and a corresponding time-
dependent nuclear wave function, χJ(R, t):
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χΨ ≈ Ψ = Φt t tr R r R r R R( , , ) ( , , ) ( ; ) ( , )J JBO (3)

This approximation restricts the dynamics of the nuclear wave
function χJ(R, t) to the adiabatic electronic state J. In other
words, the nuclear wave function evolves adiabatically in a
given electronic state, and nothing can trigger a change in the
electronic state with the Born−Oppenheimer approximation.
To move away from an adiabatic representation and account
for nonadiabatic effects, one needs to move to a different
representation of the molecular wave function called the
Born−Huang expansion. In the Born−Huang representation,
the molecular wave function is written as

∑ χΨ = Φ
∞

t tr R r R R( , , ) ( ; ) ( , )
J

J J
(4)

Hence, the Born−Oppenheimer approximation has been
corrected via an infinite sum over all electronic states J leading
to an in principle exact expansion of the molecular wave
function. By inserting this expression into the molecular
Schrödinger equation (eq 1), we can (after left multiplication
by ΦI(r; R) and integration over all electronic coordinates r)
obtain a set of equations of motion for the nuclear amplitudes
(χI(R, t)). (We assume a general form for the nuclear
amplitudes that could include any phases picked up during the
dynamics as a function of R.)
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The first two terms on the right-hand side denote the nuclear
kinetic and potential energy associated with the adiabatic
dynamics of the nuclear wave function in electronic state I. We
can picture the nuclear amplitude associated with state I to be
evolving on the (static) potential energy surface ϵBO

(I) (R) =
⟨ΦI(R)|ĤBO(R)|ΦI(R)⟩r. We note that ⟨···⟩r indicates integra-
tion over all electronic coordinates r. The three last terms on
the right-hand side of eq 5, neglected within the Born−
Oppenheimer adiabatic approximation, are responsible for the
possible transfer of nuclear amplitude between electronic
states: DIJ(R) = ⟨ΦI(R)|∇R

2 |ΦJ(R)⟩r represents the second-
order nonadiabatic couplings, dIJ(R) = ⟨ΦI(R)|∇R|ΦJ(R)⟩r
represents the first-order nonadiabatic coupling vectors, and
the final term determines the light−matter interaction with the
external time-dependent electric field within the dipole
approximation. The (de)excitation process by an electric
field E(t) is mediated by the transition dipole moment μIJ(R)
= ⟨ΦI(R)|μ̂(R)|ΦJ(R)⟩r of the molecule. We note that dII(R) =
0 for real electronic wave functions, and DII(R) and μII(R) are
not necessarily zero.
2.2. Exact Factorization Picture of Nonadiabatic

Dynamics. Instead of expressing the molecular wave function
as an infinite sum over time-independent electronic eigen-
functions and time-dependent nuclear amplitudes, the exact
factorization proposes a subtle alternative:

χΨ = Φt t tr R r R R( , , ) ( , ; ) ( , ) (6)

This exact representation of the molecular wave function relies
on a single product composed of a nuclear wave function χ(R,
t) and an electronic wave function Φ(r, t; R), both time-
dependent. Importantly, the electronic wave function does still
depend parametrically on R. Using the partial normalization
condition, ∫ dr|Φ(r, t; R)|2 = 1 ∀R, t, ensures that |χ(R, t)|2
will reproduce the nuclear density as obtained from Ψ(r, R, t)
at all times. Both χ(R, t) and Φ(r, t; R) are uniquely defined
up to a phase factor of exp[(i/ℏ)θ(R, t)] for any choice of the
gauge function θ(R, t). In general, θ(R, t) does not have any
physical meaning in the sense that observable properties do
not depend on θ(R, t). Note that Ψ(r, R, t) = χ(R, t) Φ(r, t;
R) = χ̃(R, t) Φ̃(r, t; R) if one defines χ̃(R, t) = exp[−(i/ℏ)θ(R,
t)]χ(R, t) and Φ̃(r, t; R) = exp[(i/ℏ)θ(R, t)]Φ(r, t; R). The
partial normalization condition also holds for the gauge-
transformed electronic wave function. Once this gauge
freedom is fixed by imposing a choice of phase, eq 6 is unique.
Because now both electronic and nuclear wave functions

depend on time, we get (after insertion into the time-
dependent Schrödinger equation) a set of coupled equations of
motion:
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These equations of motion introduce two new potentials
within the framework of the exact factorization: the time-
dependent vector potential, Aν(R, t) = ⟨Φ(t; R)|−iℏ∇Rν

Φ(t;
R)⟩r, and the time-dependent potential energy surface
consisting of the two scalar potentials, ϵ(R, t) = ⟨Φ(t; R)|
ĤBO(R) + Ûen[Φ, χ](R, t) − iℏ∂t|Φ(t;R)⟩r and vint(R, t) =
⟨Φ(t; R)|V̂(R, t)|Φ(t; R)⟩r. The electron−nuclear coupling
operator, Ûen[Φ, χ](R, t), is explicitly dependent on the
nuclear wave function χ(R, t) and through the time-dependent
vector potential, Aν(R, t), also implicitly contains the electronic
wave function Φ(r, t; R):

∑χ

χ

χ

̂ [Φ ] =
[− ℏ∇ − ]

+
− ℏ∇

+ − ℏ∇ −

ν ν

ν

ν ν

ν

ν

ν

i

k
jjjjj

y

{
zzzzz

U t
M

t

t

t
t t

R
A R

R

R
A R A R

, ( , )
1

(
i ( , )

2

i ( , )

( , )
( , ) ( i ( , )))

R

R
R

en

2

(8)

It is worth mentioning here that the nuclear momentum field
computed from the molecular wave function Ψ(r, R, t) can be
decomposed as the sum of a curl-free contribution, which is
related to the phase of the nuclear wave function χ(R, t) and
(in general) a non-irrotational contribution, which is given by
the time-dependent vector potential Aν(R, t). The relationship
between the nuclear momentum field and the vector potential
will be used in Appendix B, where we illustrate the procedure
employed to introduce a trajectory-based description of the
nuclear dynamics within the framework of the exact
factorization. In particular, we clarify the difference between
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quantum35−37 and classical trajectories38,39 used in the
numerical studies proposed in section 3.2.
2.3. Presentation of the Two-State Two-Dimensional

Model. 2.3.1. Computational Details. We used for this study
a 2D two-state molecular model. In the diabatic representation,
the general form of the Hamiltonian is given by

= ̂ +
i

k

jjjjjj
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zzzzzzT
V V
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using R = (X, Y). The parameters kX = 0.02 Eha0
−2, kY = 0.1

Eha0
−2, Δ = 0.01Eh, γ = 0.01 Eha0

−1, α = 3a0
−2, β = 1.5a0

−2, MX
= 20 000.0me, and MY = 6667.0me are based on refs 34 and 40,
and we set here X1 = 6a0, X2 = 2a0, and X3 = 3.875a0. The two
states are taken to be within the singlet manifold, so henceforth
the adiabatic states will be labeled S0 (ground electronic state)
and S1 (first excited electronic state).
We propagated nuclear wavepackets with numerically exact

quantum dynamics, using for the initial state a Gaussian
function with widths σX = 0.15a0 and σY = 0.197a0 initialized in
the adiabatic ground electronic state with zero initial nuclear
momentum. The nuclear wave function is initially positioned
at the Franck−Condon point Rinit = (2.0, 0.0)a0. We note that
because of the weak anharmonicity, the Franck−Condon point
in the adiabatic representation coincides with the minimum of
V22(R).
The external time-dependent electric field of a laser pulse

under study here is given by
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with amplitude B0 = 0.065ℏ(ea0)
−1, centered at t0 =

350.0ℏEh
−1, with duration T = 141.421356 ℏEh

−1 and
frequency ω = 0.15Ehℏ

−1. ελ is the polarization vector, set to
(1.0, 1.0)1

2
for all calculations. (The parameters of the

external time-dependent electric feld were chosen to resemble
a typical femtosecond pulse in terms of amplitude and
duration, and the frequency was adjusted to be in resonance
with the S0 → S1 transition at the Franck−Condon point.)
According to Maxwell’s equations, the external electric field is
the time derivative of a (purely time-dependent, in the long-
wavelength approximation) vector potential. Equation 11 is
derived from such a vector potential assuming a Gaussian-
shaped laser pulse, as discussed in ref 41. The transition dipole
moment in the diabatic representation is chosen to be μ12(R)
= ( f X(X − X0), f Y(Y − Y0)), with f X = 0.2e, f Y = 2.0e, X0 =
−1.0a0, and Y0 = −0.5a0. In the Condon approximation, μ12(R
= Rinit) is used. The diagonal elements of the dipole operator
are set to zero.

The full time-dependent Schrödinger equation is solved
numerically in the diabatic representation employing a split-
operator formalism42,43 with a time step of 0.01ℏEh

−1. A spatial
grid of 800 points per coordinate is used over the ranges of X
∈ [0.0, 8.0]a0 and Y ∈ [−2.0, 2.0]a0. Diabatic quantities are
consequently transformed to give all of the respective exact-
factorization quantities of interest, namely, the time-dependent
vector potential and the time-dependent potential energy
surface. The expressions used for this transformation are given
in Appendix A. To avoid numerical issues in the conversion,
the time-dependent vector potential and the time-dependent
potential energy surface are calculated only for regions of the
nuclear configuration space where the nuclear density is larger
than 10−8.
Phase factor θ(R, t) is absorbed here into phase S(R, t) of

the nuclear wave function, χ(R, t) = |χ(R, t)| exp[(i/ℏ)S(R,
t)], and the gauge is chosen so that the nuclear wave function
is real and non-negative, i.e., χ(R, t) = |χ(R, t)|∀R, t. The exact
nuclear density is determined as the sum of the squared moduli
of the diabatic nuclear wave functions, and its positive square
root yields the nuclear wave function χ(R, t) in the chosen
gauge.

2.3.2. Some Considerations for the Proposed Model. In
this work, we propose to simulate explicitly all of the steps in a
photochemical process for the model system discussed above,
as schematically represented in Figure 1. The model system

consists of two 2D parabolas shifted in the X direction and in
energy. At time t = 0, our molecular system is in its ground
vibrational state, in the Franck−Condon region of the
electronic ground state (point (1) in Figure 1). Then, a part
of the initial wave function is excited to the S1 excited
electronic state via the coupling of the molecule with an
explicit ultrashort laser pulse whose frequency is in resonance
with the S0-to-S1 transition (point (2) in Figure 1). This
photoexcitation generates a nuclear wavepacket in the excited
electronic state, which will relax toward the conical
intersectiona point of configuration space where the ground
and first electronic states are degenerateand funnel through
it (point (3) in Figure 1). At this point, the nuclear wavepacket

Figure 1. Schematic representation of the in silico photochemical
experiment discussed in this work. The adiabatic potential energy
surfaces for the ground (S0) and excited (S1) electronic states of the
model are represented with a color map that shows positive electronic
energies in purple and negative values in yellow/orange tones. The
black circles and arrows indicate the different steps of the
photochemical experiment: (1) initial state of the system in the
Franck−Condon region, (2) photoexcitation from S0 to S1 triggered
by a laser pulse, (3) relaxation through a conical intersection, and (4)
formation of photoproducts.
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experiences branching, preserving some of its amplitude in the
excited electronic state while a good part of it has transferred
back to the ground state as a result of nonadiabatic effects,
evolving now as a photoproduct on the ground electronic state
(point (4) in Figure 1).
We stress at this stage that the schematic representation of

the photochemical experiment depicted in Figure 1 is deeply
rooted in a (post-) Born−Oppenheimer picture. In section 3.1,
we will discuss the details of the dynamics in terms of time-
dependent nuclear wavepackets and static potential energy
surfaces, thus adopting a Born−Oppenheimer vocabulary. In
section 3.2, we will revisit this analysis from the perspective of
the exact factorization, where the overall dynamics is examined
in terms of a time-dependent nuclear wavepacket evolving
according to a single time-dependent vector and scalar
potential.
Another aspect that requires a comment at this stage is the

coupling of an external time-dependent electric field, here a
laser pulse, to a molecule. As described above, we use a
semiclassical approach to couple an external time-dependent
electric field to the molecular dipole operator. When
introducing a given basis for our electronic states, once more
preserving here a Born−Oppenheimer/Huang picture, we
obtain couplings between the time-dependent electric field and
the transition dipole moment between the pair of electronic
states considered (here S0 and S1), μ12(R). The magnitude and
direction of the transition dipole moment depend on the
nuclear position, as depicted by the color map and white
arrows in the upper panel of Figure 2. This R dependence of
the transition dipole moment implies that, within the long-
wavelength approximation, the time-dependent electric field
cannot be considered to be always aligned with the transition
dipole moment (gray arrows in Figure 2, symbolizing the
electric-field polarization vector), and one has to take the scalar
product between the two quantities. The situation in which we
account for the explicit R dependence of the transition dipole
moment will now be referred to as non-Condon. The Condon
approximation proposes to consider the transition dipole
moment as a constant, set to its value at the Franck−Condon
point, μ12(RFC) (lower panel of Figure 2). Hence, only within
the Condon approximation could we consider that the time-
dependent electric field is always polarized along the transition
dipole moment for all nuclear configurations (which is not the
case in the present work).
In the non-Condon case, the strength of the coupling

between the molecular system and the time-dependent electric
field, given by
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depends on R as well. Conversely, in the Condon
approximation the relative orientation of the transition dipole
moment and the polarization vector of the time-dependent
electric field is constant, leading to an R-independent coupling
term in the Hamiltonian.
An additional topic that our work addresses is the

representation of an in silico photochemical experiment
using only the concept of nuclear trajectories, which will
allow us to open a broader discussion of the steps toward
excited-state molecular dynamics simulations. In section 3.2,
we study the use of nuclear trajectories for nonadiabatic
dynamics in the context of the exact factorization since well-

defined nuclear forces can be identified and provide a clear
distinction between classical and quantum trajectories. For the
quantum and classical trajectory dynamics, the 1000 initial
nuclear positions are sampled from the probability density
given by the initial nuclear wave function. Special care needs to
be taken when selecting the initial nuclear momenta. While for
classical trajectories nuclear positions and momenta can be
regarded as independent variables, this is no longer the case for
quantum trajectories because their nuclear position and
momentum at each time step are related. As shown in
Appendix B, the nuclear momentum at time t and position R is
given by the time-dependent vector potential A(R, t). Thus,
the 1000 initial nuclear momenta for the sampled initial
nuclear positions R0 are given by A(R0, 0). For classical
trajectories, the initial nuclear momenta are sampled from the
momentum probability distribution computed from the
Wigner transform of the initial nuclear wave function (in
position representation). For the propagation of the
trajectories, a time step of 10ℏEh

−1 is used, and one uses the
exact time-dependent vector and scalar potentials as obtained
from the quantum dynamics. The time-dependent potentials
are not (numerically) available when the nuclear density is
small (<10−8). Furthermore, classical trajectories are propa-
gated according to the force computed as the negative of the
gradient of the time-dependent scalar potential. Therefore,
numerical errors due to the calculation of the nuclear gradients
can cause the trajectories to move in a region of space where
the time-dependent potential is not available. Those
trajectories need to be removed from the ensemble. We

Figure 2. Representation of the transition dipole moment (white
arrows give its direction and color map its intensity in ea0) in the non-
Condon case (upper panel) and the Condon case (lower panel)
around the Franck−Condon region. The gray arrows indicate the
polarization vector of the time-dependent electric field. The black
contour lines show the nuclear density of the initial wave function at
time t = 0.
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found that an energy-conservation criterion can be used to
remove such unstable trajectories. To this end, we imposed
that the classical energy should be conserved within a deviation
of 0.01Eh from the initial value at the end of the laser pulse. A
maximum of 51 classical trajectories have been excluded on the
basis of this criterion in any of our simulations.

3. RESULTS AND DISCUSSION

3.1. Photochemical Experiment in the Born−Oppen-
heimer Picture. 3.1.1. Nuclear Dynamics. In a Born−
Oppenheimer picture, the overall dynamics of an electronically
excited molecule is analyzed by following the evolution of
nuclear wavepackets on the potential energy surfaces (as
depicted schematically in Figure 1). At time t = 0, the nuclear
wave function is a stationary state in the adiabatic ground state
S0 (first column in Figure 3). The interaction with the time-
dependent external field, consisting of a laser pulse, induces the
electronic excitation of part of the original wave function to the
first excited state S1 (second column in Figure 3). The state
created in S1 is a nuclear wavepacket, which evolves and decays

back to the ground state through the conical intersection (third
column in Figure 3).
First, let us investigate the quantum dynamics obtained in

the non-Condon case (upper two rows of panels in Figure 3).
The color map shows the potential energy of the S1 (top row)
and S0 (second row from top) states, and the locations of two
critical points of the potential energy surfacesthe Franck−
Condon point (FC) and the conical intersection (CI)are
marked throughout the plots with a cross and a triangle for
reference. Because we are now focusing on the Born−
Oppenheimer picture of a photochemical process, the potential
energy surfaces of the two adiabatic states do not move or
change during the dynamics but can rather be seen as the
electronic landscape on the support of which the nuclear
wavepackets evolve. The nuclear densities associated with the
S0 and S1 states are superimposed onto the respective
potentials in Figure 3 and are indicated as red and purple
contour lines, respectively. At time t = 0, the complete nuclear
density is found in the S0 state without any contribution from
S1. During the photoexcitation by the laser pulse (t = 10.2 fs in
Figure 3; the time evolution of the laser field is shown in

Figure 3. Snapshots of the nonadiabatic quantum dynamics at times 0, 10.2, and 31.5 fs (from left to right). The color maps indicate the
(adiabatic) electronic energies of the S1 and S0 electronic states (see labels) in hartree (Eh). The adiabatic contribution to the nuclear density in
each electronic state for the three snapshots is indicated by red χ| |tR( ( , ) )S

2
0

and purple χ| |tR( ( , ) )S
2

1
contour lines. The Franck−Condon point

(FC) is indicated by a magenta cross, and the location of the conical intersection (CI) is indicated by a burgundy triangle.
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Figure 4), nuclear amplitude is transferred to the excited
electronic state. In addition, it can be observed that the nuclear

contribution remaining in the ground electronic state is also
affected by the action of the laser pulse. Once the short laser
pulse is over, the excited portion of the nuclear wavepacket
relaxes on the S1 potential energy surface, and at t = 31.5 fs, it
reaches the conical intersection (last column in Figure 3). At
this precise moment, part of the nuclear density transfers to the
S0 electronic state due to the influence of nonadiabatic effects.
Interestingly, the portion of the nuclear wavepacket that
remained in the Franck−Condon region in S0 formed a nodal
line as a result of the photoexcitation process. This nodal line is
somehow tilted, that is, not parallel to the Y axis (red contour
lines in the second row, last column panel of Figure 3).
Within the Condon approximation (bottom two rows in

Figure 3), the potential energy surfaces remain identical to the
non-Condon case but the transition dipole moment and, as
explained above, the interaction Hamiltonian are no longer R-
dependent. The overall dynamics is very similar to that
observed in the non-Condon case, with the main difference
being that the nodal line observed after the laser pulse on the
ground-state nuclear wavepacket appears to be parallel to the Y
axis rather than being tilted as in the non-Condon case. This
feature can be clearly observed at times t = 10.2 and 31.5 fs in

the S0 portion of the nuclear density (bottom panels of Figure
3).
It is worth commenting further on the development of the

nodal line in the ground-state portion of the nuclear wave
function after the laser pulse. This nodal line suggests the
formation of a higher vibrational eigenstate in the electronic
ground state in the Franck−Condon region. The asymmetry of
the nuclear density in S0 observed at t = 31.5 fs results from the
anharmonic nature of the S0 potential energy surface for the
low vibrational states. From a more general perspective, this
observation highlights something to keep in mind when
analyzing a photochemical experiment because the outcomes
of a light-induced processphotoproducts or hot ground-state
moleculesare usually thought to originate from the dynamics
in the excited electronic states following photoexcitation. Our
observation underlines the possibility of forming vibrationally
excited molecules without nonadiabatic processes simply as a
result of the coupling with a laser pulse. However, nonadiabatic
dynamics simulations are often initiated directly from the
formed nuclear wavepacket in a given excited electronic state,
neglecting the remaining ground-state nuclear amplitude.
Although that is often an adequate approximation, the simple
example presented here could indicate that the influence of a
laser pulse on the contribution remaining in the ground
electronic state may not always be negligible.

3.1.2. Analysis of the Nuclear Dynamics. A more
quantitative analysis of the photochemical dynamics described
in section 3.1.1 can be obtained by monitoring the electronic
population evolution and the formation of photoproducts
(Figure 4).
In the top panel of Figure 4, we present the time evolution

of the ground-state population for both the Condon and the
non-Condon quantum dynamics simulations with, for
reference, the strength of the external electric field over time.
Initially, the population is fully in the ground state. Because of
the coupling between the molecule and the laser pulse, the
population starts to be transferred to the excited state just
before 5 fs. Maximum values of around 64% (non-Condon)
and 67% (Condon) of the population are excited to S1 at t =
10.2 fs, shortly after the laser pulse reaches its maximum
intensity. The ground-state population subsequently plateaus
at 48% (non-Condon) and 46% (Condon). After 26 fs, the
excited-state population starts to decay back to the ground
state as the S1 nuclear wavepacket reaches the conical
intersection (section 3.1.1). This ground-state population
reaches a final plateau at about 98% after about 39 fs. Overall,
the evolution of the ground-state population is very similar in
the non-Condon and Condon quantum dynamics simulations,
with only minor quantitative differences emerging.
It is important at this stage to stress that the electronic

population dynamics reported in the top panel of Figure 4 and
discussed above is a representation-dependent quantity. In
other words, this quantity is not (strictly speaking) an
observable, and the assignment of an adiabatic electronic
state is intrinsically linked to the Born−Oppenheimer picture.
Hence, we complement our earlier observations with an
analysis of the evolution of the nuclear density in the
configuration space. To this end, we calculate the transmission
probability through an ideal barrier parallel to the Y axis and
containing the conical intersection along the reaction
coordinate (along X). We propose that XCI, i.e., the position
of the conical intersection in the X coordinate, delimits two
regions: the photoreactant region (X < XCI) and the

Figure 4. (Top) Time trace of the ground-state (S0) population for
the non-Condon (purple) and Condon (magenta) quantum dynamics
simulations and the strength of the electric component of the laser
pulse (gray line) in Eh/ea0. (Bottom) Time trace of the transmission
probability through an ideal barrier at X > 3.86a0 for the non-Condon
(purple lines) and Condon simulations (magenta lines). Solid lines
indicate the total (S0 + S1) probability, and the dashed (dotted) lines
give the S0 (S1) population contribution.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c09604
J. Phys. Chem. A 2022, 126, 1263−1281

1269

https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig4&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c09604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


photoproduct region (X > XCI). Therefore, we can estimate the
formation of photoproducts by integrating the nuclear density
over all values of Y and for X > 3.86a0 (that is, X > XCI). In the
case of a real photochemical experiment, the formation of
photoproducts could be probed,6 and the passage through a
conical intersection can open up pathways in the ground
electronic state that would have been inaccessible by thermal
evolution.
The transmission probability for the non-Condon and

Condon cases is shown in the bottom panel of Figure 4.
Within the Condon approximation, 54.2% of the population is
transferred to the photoproduct region. In the non-Condon
case, this value is slightly lower, reaching 52.0%. The
transmission probability can be decomposed into ground-
and excited-state contributions, going back to a Born−
Oppenheimer picture. We observe that a majority of the
photoproducts are formed in their ground states, 50.2% (non-
Condon) and 52.3% (Condon). Hence, the slight differences
between non-Condon and Condon excitations observed in the
representation-dependent population dynamics are reflected in
this “representation-free” observable.
3.2. Photochemical Experiment in the Exact-Factori-

zation Picture. Now that we have discussed our in silico

photochemical experiment from a Born−Oppenheimer
perspective, we propose in the following section to reinterpret
our findings using the tools offered by the exact-factorization
picture. We recall that this representation proposes to replace
the concepts of static potential energy surfaces associated with
adiabatic electronic states and their nonadiabatic couplings
with a single time-dependent potential energy surface
(TDPES) and a time-dependent vector potential (TDVP).
With the exact factorization, we move away from the
representation of multiple electronic states visited by time-
dependent nuclear wave functions and focus solely on a single
nuclear wave function evolving under the influence of the
single TDPES and TDVP.
For the non-Condon dynamics, Figure 5 schematically

depicts the behavior of the TDPES for the three same times
along the dynamics as in the previous section, i.e., t = 0, 10.2,
31.5 fs. At time t = 0, the TDPES exhibits a single well in the
Franck−Condon region, basically reproducing the shape of the
S0 potential energy surface in this region (Figure 1). When the
laser pulse is interacting with the molecule (t = 10.2 fs in
Figure 5), the minimum in the TDPES decreases in energy and
becomes asymmetrical around the Franck−Condon point.
This distortion is due to the fact that the TDPES includes the

Figure 5. Schematic representation of the full time-dependent potential energy surface at three different times during the dynamics: 0, 10.2, and
31.5 fs. The positions of the Franck−Condon (magenta cross) point and conical intersection (burgundy triangle) are marked for reference. The
color bar is given in hartrees (Eh) and we note that its negative range has been extended for the t = 31.5 fs snapshot. The TDPES is represented
only in the regions of nuclear configuration space where the total nuclear density is 10−8 or larger.

Figure 6. Time-dependent potential energy surface at three different times (0, 10.2, and 31.5 fs (from left to right)) for the non-Condon (top row)
and Condon quantum dynamics (bottom row). The color bar is given in hartrees (Eh). The nuclear density is superimposed (black contour lines).
The positions of the Franck−Condon (magenta cross) point and conical intersection (burgundy triangle) are marked for reference.
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effect of the time-dependent external field via v(R, t) (section
2.2). At later times (t = 31.5 fs in Figure 5), the TDPES
develops a step separating the two portions of the nuclear
wavepacket: one portion is localized in the Franck−Condon
region, and the second one can be found in the vicinity of the
conical intersection. In addition, the nodal line observed for
the nuclear wave function in the Franck−Condon region is
reflected in the TDPES as a potential barrier, reaching high
positive and negative values. In the following section, we will
provide a deeper analysis of the TDPES and its companion, the
TDVP, for the studied photochemical experiment.
3.2.1. Nuclear and Electronic Dynamics. As in section 3.1,

we propose here to compare the quantum dynamics obtained
with and without invoking the Condon approximation, but this
time from an exact-factorization perspective.
Let us first focus on the evolution of the TDPES. In Figure

6, the full TDPES is plotted as a color map with superimposed
black contour lines indicating the areas where the (full) nuclear
density is mainly localized. At t = 0, both the non-Condon and
the Condon simulations show an identical picture, where the
TDPES shows a minimum around the center of the initial
nuclear wave function and is curved upward to higher energies
toward the borders, mainly reproducing the shape of the S0
potential energy surface (as discussed for Figure 5). When the
laser pulse reaches its maximum intensity (at around t = 10.2
fs), the TDPES is lower in energy in the area just around the
center of the nuclear wave function in comparison to the
previously shown time step, where the yellow/orange areas
correspond to negative energy values. At this time step, there
appears to be no significant differences between the TDPES
computed with and without the Condon approximation. Later
in time, when the laser pulse is over (Figure 6, t = 31.5 fs), a
step appears within the TDPES: the portion of the TDPES
with X > 3a0 is significantly lower than that at X < 3a0.

Furthermore, a marked difference between the non-Condon
and Condon calculations emerges when looking at the TDPES
in the region where the nodal line appears on the nuclear wave
function around the FC position. In the non-Condon case, a
localized peak can be observed between the two portions of the
nuclear wave function, whereas a barrier forms within the
Condon approximation, almost parallel to the Y axis and
stretching all through the TDPES. It is worth stressing that the
interesting features of the TDPES at t = 31.5 fs are all localized
around the FC point and are caused by the formation of an
eigenstate in this portion of the configuration. The TDPES in
the region where a conical intersection would be observed in
the Born−Oppenheimer picture is blatantly featureless,
basically leading the nuclear wavepacket toward the photo-
product region (X > XCI).
The TDPES is one of the time-dependent quantities of

interest within the exact factorization. Another key ingredient
of this formalism is the TDVP. We recall that the TDVP is
equivalent to the nuclear momentum field within the chosen
gauge, as detailed in section 2.2. Figure 7 shows the TDVP for
the three critical times of the dynamics, with and without the
Condon approximation. At time t = 0, the magnitude of the
TDVP is very small. This can be understood from the
definition of the initial condition for our dynamics, which is the
ground vibrational state for the ground electronic state, at the
FC point. From a quantum trajectory perspective, the
momentum field corresponding to a nuclear (real) eigenstate
would be zero everywhere.44 During the excitation, the TDVP
increases in magnitude and triggers the dynamics of the
nuclear wavepacket. Conversely with respect to our earlier
observations with the TDPES, the TDVP has already
developed some differences at t = 10.12 fs depending on the
use of the Condon approximation. In the non-Condon
simulation, the TDVP shows a non-negligible contribution

Figure 7. Time-dependent vector potential at three different times (0, 10.2, and 31.5 fs (from left to right)) for the non-Condon (top row) and
Condon quantum dynamics (bottom row). The color map indicates the absolute value of the time-dependent vector potential in ℏ/a0, and the gray
unit vectors show the orientation of the vector potential. The nuclear density is superimposed (black contour lines). The positions of the Franck−
Condon (magenta cross) point and conical intersection (burgundy triangle) are marked for reference.
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along the Y direction, whereas within the Condon approx-
imation, such a contribution is basically zero and the vector
potential has components only along the X axis (see unit
arrows in Figure 7). In both cases, however, one can observe
an abrupt change in direction of the TDVP along the X-axis at
around X = 1.9a0 for all values of Y. At t = 31.5 fs, the TDVP
develops two clear portions. In the region of X > 3a0, the
TDVP has an overall larger magnitude. In this region, the
nuclear wavepacket is indeed pushed toward larger X values
following the slope of the TDPES. Interestingly and consistent
with our observation on the TDPES, this portion of the TDVP
is smooth and does not reveal any features that would testify to
a specific electron−nuclear coupling. This observation is
particularly important if one considers that, in the Born−
Oppenheimer picture, the nuclear wavepacket is passing
through a conical intersection at this specific time (Figure
3). Such a behavior of the TDPES and TDVP simply highlights
that the coupled electron−nuclear dynamics presented here
should be seen as a non-event, with a molecule simply relaxing
in energy, driven by the TDPES and TDVP. However, a
Born−Oppenheimer picture enforces the description of this
process with adiabatic electronic states, which are not
representative of single electronic character. As a result, the
S1 nuclear wavepacket in the Born−Oppenheimer picture
suffers nearly singular nonadiabatic coupling to transfer to the
S0 electronic state, hence preserving its electronic character.
Conical intersections and singular nonadiabatic coupling terms
therefore emanate from the intrinsic limitations posed by the
adiabatic representation of the Born−Oppenheimer picture,
and the exact factorization naturally remedies this issue by
eliminating the notion of electronic states altogether.
Around the (FC) position, the TDVP has significantly

smaller values at t = 31.5 fs, highlighting the rather stationary
nature of the portion of the nuclear wave function localized in
this region (Figure 7). In the region around X = 2.1a0 where
the nuclear density splits, an intense localized peak appears on
the TDVP in the non-Condon case while the Condon
simulation leads to the appearance of an intense “delocalized”

barrier parallel to the Y axis. In the non-Condon case, the unit
vectors of the TDVP betray the fact that the nuclear
wavepacket is somehow rotating around X = 2.1, Y = 0a0.
The TDVP is in general not irrotational,30 and the

calculation of its line integral along a closed loop in nuclear
(R) space yields a nonzero quantity. Such a quantity is a
geometric phase whose value depends on the integration path.
This dependence on the integration path means that this
geometric phase is not quantized but is instead the case for the
topological Berry phase arising in the post-Born−Oppen-
heimer picture in the presence of a conical intersection. In
Figure 8, we prove numerically that the curl of the TDVP, i.e.,
[curl A(X, Y)]Z = ∂XAY(X, Y) − ∂YAX(X, Y), is nonzero at time
t = 31.5 fs in the non-Condon (upper panels) and Condon
(lower panels) cases. Figure 8 gives the magnitude of the curl
of the TDVP, which has only a Z component orthogonal to the
X, Y plane in two dimensions. Because of the large difference in
the curl magnitude, the plot for the FC region (X < 2.8a0, left
panels) is separated from that for the CI region (X > 2.8a0,
right panels). In line with our previous observations, the curl of
the TDVP highlights the main differences between the non-
Condon and Condon dynamics in the FC region. In the region
where the ground-state wavepacket is located at the end of the
laser pulse, the curl of the TDVP is nonzero only around X =
2.1, Y = 0a0 in the non-Condon case. The “rotating” behavior
of the TDVP is encoded in the change of sign of its curl. (We
checked numerically that this observed structure is robust (and
not a numerical artifact) by varying the cutoff parameter for
the calculation of the TDVP from 10−6 to 10−10.) The
observed structure in the non-Condon case is lost in the
Condon simulation, where the curl of the TDVP is nonzero
and always positive only along a line at X = 2.1a0 parallel to the
Y axis. The two simulations yield similar results in the CI
region. In particular, the curl of the TDVP is zero at the CI.
The change in curl sign between positive and negative values of
Y attests from the overall spreading of the nuclear amplitude in
this region.

Figure 8. Curl of the TDVP at t = 31.5 fs for the non-Condon (top row) and Condon quantum dynamics (bottom row). The curl of the TDVP is
given for the FC region X < 2.8a0 (left panels) as well as the CI and photoproduct regions X > 2.8a0 (right panels). The positions of the Franck−
Condon (magenta cross) point and conical intersection (burgundy triangle) are marked for reference.
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To further unravel the differences observed in the TDPES
and TDVP for the non-Condon versus Condon treatment of
quantum dynamics, we decompose the TDPES into ϵ(R, t)
and vint(R, t) at 2 times close to the maximum in the field
envelop. The 8.95 fs time corresponds to a snapshot before the
electric field of the laser pulse reaches a maximum while the
other snapshot, t = 9.20 fs, is just after the maximum is passed.
Figure 9 presents a close-up view of the TDPES and TDVP
around the FC region for these two specific times. Looking
only at the contribution to the TDPES coming from the
coupling of the laser pulse to the molecule (vint(R, t) in eq 7
(vint, top panels in Figure 9)), we observe in the non-Condon
case that an anisotropy along the Y direction is created, which
is absent in the Condon approximation. This anisotropy is also
visible in the term ϵ(R, t) (TDPES without vint, middle panels
in Figure 9), where for instance the negative contributions of
the TDPES are not symmetric along the Y direction in the
non-Condon case. The variation of the TDPES caused by the
interferences between the two components of the nuclear wave
function is reminiscent of the observations of interference in
nonadiabatic processes.39 Zooming in on the TDVP (bottom
panels of Figure 9) highlights some additional interesting
features. The TDVP already exhibits strong contributions
along the Y-direction in the early stage of the dynamics in the
non-Condon case, when the laser pulse is present, while in the
Condon case no Y-contribution can be observed. The line
along which the X-component of the TDVP changes sign is not
parallel to the Y-axis in the non-Condon simulation, which is
opposite to the Condon simulation.
The observations presented in this section show that the

exact-factorization formalism offers an alternative perspective
of a photochemical process to the conventional Born−
Oppenheimer picture. The contribution to the molecular
Hamiltonian coming from the light−matter interaction is fully
encoded in the TDPES, and the evolution of the nuclear
wavepacket is driven by the (single) TDPES and TDVP, which
in turn encode the effect of the electronic dynamics on the
nuclei. In the particular gauge chosen in this work, the TVDP
is identified as the nuclear momentum field. Furthermore, we
highlighted the combined effects of the TDPES and TDVP in
inducing the splitting of the nuclear wavepacket into two
portions in the Franck−Condon region, resembling the
formation of a higher vibrational state of the electronic
ground-state potential. Instead, the TDPES and TDVP are
smooth where, in the Born−Oppenheimer picture, the nuclear
wavepacket passes through a conical intersection and suffers
singular nonadiabatic couplings.
The exact factorization and its time-dependent potential also

highlight another interesting fact about photochemistry and
photophysics. The presence of potential energy surfaces in a
Born−Oppenheimer picture invites us to think of photo-
chemical processes and chemical reactions in the ground
electronic state in similar ways: by looking at these static
potentials and possibly looking at their critical points and how
they connect via minimum-energy paths. However, it is crucial
to realize that such concepts are often not sufficient or valid in
understanding a given photochemical process.21 In other
words, a molecule does not have a defined photochemical
reactivity per se, but such a photochemical reactivity depends
on the initialization of the process (type of photoexcitation)
and the following out-of-equilibrium dynamics on the coupled
potential energy surfaces. The exact factorization highlights
this fact by exhibiting different time-dependent potentials even

Figure 9. Time-dependent potential energy surface and vector
potential during the laser pulse, for the non-Condon (top row of
each panel) and Condon (bottom row of each panel) dynamics. Top
panel: vint, contribution to the time-dependent potential energy
surface coming from an external potential (here the interaction

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c09604
J. Phys. Chem. A 2022, 126, 1263−1281

1273

https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig9&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c09604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


for subtly different photochemical dynamics (here, simply
employing or not employing the Condon approximation).
3.2.2. Further Analysis of a Photochemical Process with

Quantum and Classical Trajectories. Since the exact
factorization encodes all of the coupled electron−nuclear
dynamics in the TDPES and TDVP, this framework naturally
lends itself to the propagation of nuclear trajectories, which can
be used to further analyze and approximate the nuclear
quantum dynamics without the need to introduce additional
approximations. The challenge of propagating trajectories in a
Born−Oppenheimer picture to describe nonadiabatic dynam-
ics is notorious and caused by the presence of the lack of well-
defined nuclear forces due to the presence of different
(sometimes coupled) potential energy surfaces.10,38

As discussed in Appendix B, quantum trajectories can be
propagated easily within the exact factorization by using the
TDVP as a nuclear momentum field, integrating eq 25.
Although the initial nuclear positions can be randomly sampled
from the initial nuclear density, the initial nuclear momenta
have to be chosen as A(R0, t = 0) (where R0 stands for the
whole set of initial positions) because positions and momenta
are not independent variables. We propagated 1000 quantum
trajectories using the TDVP calculated at all times from the
quantum dynamics simulations, without and with the Condon
approximation.
As expected from their definition, the quantum trajectories

closely follow the nuclear density of the quantum wavepacket
at all three times as previously discussed (Figure 10). We show
the results only for the non-Condon dynamics because the
Condon dynamics are very similar. Several observations can be
made by looking at the time evolution of the quantum
trajectories in the non-Condon case (movies in the Supporting
Information). First, we can see that the motion of the quantum
trajectories is dominated by an evolution in the X direction.
Second, the trajectories forming the two split portions of the
nuclear wavepacket that remain in the vicinity of the FC region
appear to rotate around a point close to the initial position of

the nuclear wave function (but not exactly at the FC point due
to the anharmonicity of the potential energy surface in this
region). Such behaviors were predicted earlier on the basis of
the analysis of the shape of the TDVP (section 3.2.1).
Conversely, within the Condon approximation the quantum
trajectories representing the nuclear wavepacket around the FC
region do not significantly move once the splitting is complete.
This behavior further supports the stationary nature of the
driving wave function in this region and attests to the fact that
the Y contribution of the momentum field is basically zero at
later times in this region (as observed in Figure 7).
The distribution of the nuclear momenta for each quantum

trajectory of the swarm highlights striking differences between
the non-Condon and Condon dynamics at all times (Figure
11). At t = 0, the TDVP is very small in magnitude, i.e., close
to zero, which is why the distribution of initial momenta
appears to be highly localized around (0.0, 0.0). Subsequently,
the quantum trajectories acquire larger momenta and start
spreading to finally be distributed in three distinct areas by t =
31.5 fs in the non-Condon case (top right panel in Figure 11).
The first group of trajectories shows large (positive) values for
PX, between 60 and 80 ℏa0

−1 and represents the photoproduct
trajectories. Two groups of trajectories with comparably
smaller PX values spread along two lines, reaching a value of
−4ℏa0−1 or 4ℏa0

−1 for PY. These last two groups depict the
slow quantum trajectories in the region where a stationary state
is formed. The distribution of nuclear momenta for the
dynamics conducted within the Condon approximation looks
significantly different from those of the non-Condon case
described above (bottom row in Figure 11). At t = 10.2 fs, all
of the trajectories have a dominant X contribution to their
nuclear momenta. At t = 31.5 fs, a partitioning of the
trajectories in momentum space is visible, as observed in the
non-Condon case, forming two main groups: trajectories with
a large PX value and those with smaller momenta in the X
direction. We note that the group with a smaller PX
contribution appears to be further split at the same position
in X as in the non-Condon case. We also notice that a small
portion of the trajectories with a very large PX contribution at t
= 31.5 fs also starts to spread along PY.
The fate of the quantum trajectories over time is made

clearer by plotting their traces in time and space (Figure 12).
We note that the quantum trajectories presented here were
initialized from an equally spaced grid to improve the clarity of
the plots in Figure 12. The trace representation of the quantum
trajectories highlights the presence of two groups of quantum
trajectories: those that remain that evolve around the FC

Figure 9. continued

between the laser pulse and the molecule). Middle panel: time-
dependent potential energy surface without the external potential.
Bottom panel: time-dependent vector potential, where the color map
indicates the absolute value and the black unit vectors show the
orientation. The Franck−Condon point is indicated by a magenta
cross in all plots. Color bars for the top and middle panels are given in
hartrees (Eh), and those of the lower panel are given in ℏ/a0.

Figure 10. Positions of the quantum trajectories at three different times (0, 10.2, and 31.5 fs (from left to right)) for non-Condon dynamics. The
full nuclear density from the quantum dynamics is superimposed (black contour lines). The positions of the Franck−Condon (magenta cross)
point and conical intersection (burgundy triangle) are marked for reference.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c09604
J. Phys. Chem. A 2022, 126, 1263−1281

1274

https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c09604?fig=fig10&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c09604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


region (left panel of Figure 12) and those that leave that

translate the formation of photoproducts (right panel of Figure

12). Interestingly, it appears from this analysis that quantum

trajectories with a larger X value in the FC region are more

likely to follow the photoproduct path than those started at t =

0 fs at a smaller value of X. This trace representation for the

quantum trajectories also offers an opportunity to show that

they do not cross in configuration space.45 This noncrossing

Figure 11. Components of the nuclear momentum in X (PX) and Y (PY) for each quantum trajectory at three different times (0, 10.2, and 31.5 fs
(from left to right)) for non-Condon (top row) and Condon (bottom row) dynamics. The label a.u. stands for ℏ/a0.

Figure 12. Traces of quantum trajectories in space and time for the non-Condon dynamics. These quantum trajectories were specially initialized on
an equally spaced grid in configuration space to enhance clarity. The left panel shows in yellow/orange the trajectories remaining in the FC region.
The right panel depicts in pink/purple the trajectories moving away from the FC region to reach the photoproduct region. The same trajectories
are shown in both panels.

Figure 13. Positions of the classical trajectories at three different times (0, 10.2, and 31.5 fs (from left to right)) for non-Condon dynamics. The full
nuclear density from the quantum dynamics is superimposed (black contour lines). The positions of the Franck−Condon (magenta cross) point
and conical intersection (burgundy triangle) are marked for reference.
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rule is a strict requirement for quantum trajectories and a
direct consequence of the single-valuedness of the nuclear
wave function.
An interesting feature of quantum trajectories is that they

can easily be transformed into their more classical analogues by
neglecting the so-called quantum potential, which acts as a
nonlocal glue for the trajectories (Appendix B). We can
therefore propagate classical trajectories by using the TDPES
and TDVP computed from the quantum wavepacket dynamics,
but with the removal of the contribution from the quantum
potential Qpot(R, t). Hence, the classical trajectories, initialized
from 1000 nuclear positions and momenta sampled from a
Wigner distribution, come directly from the integration of eqs
27 and 28.
The positions of these classical trajectories at t = 0, 10.2,

31.5 fs show rather good agreement with the nuclear
wavepacket (Figure 13), even if it is clear by comparison
with Figure 10 that the classical trajectories spread more in
both the X and Y directions over time. (We note that the same
initial positions were used for the classical and quantum
trajectories.) Looking at the full evolution of the classical
trajectories over time further reinforces this observation
(movies in the Supporting Information), with trajectories
exhibiting important oscillations along the Y coordinate.
The projection of the classical trajectories in nuclear

momentum space for the three selected times (Figure 14) is
strikingly different from that of the quantum trajectories
discussed earlier (Figure 11). The distribution of nuclear
momenta for the classical trajectories is spread at all times and
does not exhibit the peculiar structure observed for the
quantum trajectories. The magnitude of the nuclear momenta
is also significantly larger in the X direction and, more
specifically, in the Y direction. This observation explains the
oscillating behavior in the Y coordinate described above for the
classical trajectories. At t = 31.5 fs, the momenta distribution
separates into only two regions (Figure 14): one part with

momenta distributed around PX = 0 and the other part with
momenta distributed around PX = 70ℏa0

−1. Interestingly, the
distribution of classical nuclear momenta in the non-Condon
case closely resembles that in the Condon case, as if the
removal of the quantum potential washed out the fine
differences observed during the formation of the stationary
state.
We conclude this analysis by calculating the transmission

toward photoproducts, as performed in section 3.1.2 but here
based on the distribution of the quantum and classical
trajectories over time. To this end, we simply count the
trajectories with X > 3.86a0 (as described in section 3.1.2) for
both quantum and classical trajectories and in non-Condon
and Condon dynamics. Quantum trajectories appear to slightly
underestimate the reference transmission probability (from the
quantum dynamics) by around 0.01 for the non-Condon
dynamics and 0.02 for the Condon dynamics (top panel of
Figure 15). The classical trajectories overestimate the trans-
mission probabilities in both non-Condon and Condon cases
by 0.04 and 0.05, respectively (bottom panel of Figure 15).
This deviation is marginal, and both quantum and classical
trajectory-based dynamics reproduce reasonably well the
qualitative evolution of the nuclear density while providing
quantitatively good estimates for the transmission probability,
an observable that would, for a real molecule, connect to the
formation of photoproducts and thus to the quantum yield of a
photochemical reaction.
One important aspect that needs to be stressed at this point

is the fact that both quantum and classical trajectories
benefitted from the definition of the time-dependent potentials
used to propagate them thanks to the formalism of the exact
factorization (and within our choice of gauge). More
specifically, simulating a full photochemical experiment as
done here using quantum or classical trajectories within a
Born−Oppenheimer picture would have made the simulations
dramatically more complex. Transfers, hops, averaging, or

Figure 14. Components of the nuclear momentum in X (PX) and Y (PY) for each classical trajectory at three different times (0, 10.2, and 31.5 fs
(from left to right)) for non-Condon (top row) and Condon (bottom row) dynamics. The label a.u. stands for ℏ/a0.
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spawns would have to be invoked to allow the trajectories to
visit different electronic states due to the influence of a laser
pulse or nonadiabatic transitions. The exact factorization
simplifies that by providing the single TDPES and TDVP.

4. CONCLUSIONS
We introduced in this work a comparison between the Born−
Oppenheimer and exact-factorization picture of an in silico
photochemical experiment, from the initial photoexcitation
with an ultrashort laser pulse to the formation of photo-
products. Our extensive analysis of the subsequent photo-
dynamics revealed how to picture a photochemical reaction in
the exact factorization formalism and how its quantities,
namely, the time-dependent vector and scalar potentials,
behave when an external laser pulse shakes the electronic
wave function and triggers the formation of a nuclear
wavepacket. As a side product of the excitation with a laser
pulse, we could also observe the formation of a stationary state
in the Franck−Condon region and the corresponding behavior
of the time-dependent potentials. The Condon approximation
can alter the dynamics of the nuclear wavepacket, even if the
formation of photoproducts, which is a representation-free
quantity, does not suffer from this approximation in the
presented model. Interestingly, the passage through a conical
intersection in the Born−Oppenheimer picture becomes a
nonevent in the exact factorization: the singularities and
degeneracies at conical intersections are in stark contrast with
the featureless time-dependent potentials of the exact
factorization. Finally, we highlighted one of the exciting

features of the exact factorization in the context of a full
photochemical process: the possibility to naturally introduce
trajectories as an approximation for the nuclear dynamics. The
propagation of these trajectories is trivial because the exact
factorization has only a single time-dependent vector and scalar
potential, meaning that no hops or spawns are required to
describe regions of strong nonadiabaticity. Distinguishing
between classical and quantum trajectories, we discussed the
suitability of using trajectories to simulate photochemical
processes with the exact factorization as well as the importance
of properly selecting initial conditions.

■ APPENDIX A: EXPRESSING THE TDVP AND TDPES
WITHIN A DIABATIC BASIS

Quantum mechanics allows one to switch from the Dirac
representation |ψ⟩ of a state to the wave function
representation ψ(r) with the operation ⟨r|ψ⟩ = ψ(r). The
same holds true for the exact-factorization quantities: the
electronic-state vector at time t, |Φ(t; R)⟩, which parametri-
cally depends on R, is related to the conditional wave function
of eq 6 as ⟨r|Φ(t; R)⟩ = Φ(r, t; R). Since the electronic
Hamiltonian (eq 9) is given in the diabatic basis, we represent
in our calculations the state |Φ(t; R)⟩ in such a basis and
identify the expansion coefficients (or diabatic nuclear
amplitudes) as χl

(d)(R, t). All quantities analyzed in this
work, namely, the nuclear density, the TDPES, and the TDVP,
are obtained by integrating over the electronic degrees of
freedom, thus by summing over the diabatic states. We give
their expressions below.
The nuclear density |χ(R, t)|2 is simply

∑χ χ| | =t tR R( , ) ( , )
l

l
d2 ( ) 2

(13)

The explicit expression of the TDPES is
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and can thus be decomposed as the sum of four terms ϵ(R, t)
= ϵGI1(R, t) + ϵGI2(R, t) + ϵGI3(R, t) + ϵGD(R, t), with the first
three being gauge-invariant (GI) and the last one being gauge-
dependent (GD) under the (gauge) transformations discussed
in section 2.2. Transforming the integration over r to the sum
over the diabatic states, considering that the nonadiabatic
coupling vectors are identically zero in this basis, and using the
notation for the matrix elements of the electronic Hamiltonian
introduced in eq 9, the terms in the expression of the TDPES
are

∑ χ χ
χ

ϵ =
| |

*

t
t t

t
VR

R R

R
R( , )

( , ) ( , )

( , )
( )

l k

k
d

l
d

klGI1
,

( ) ( )

2
(15)

∑ ∑ χ
χ

ϵ = ℏ ∇
ν ν

ν
t

M

t

t
R

R

R
( , )

2

( , )

( , )l

l
d

RGI2

2 ( ) 2

(16)

Figure 15. Time trace of the transmission probabilities through the
line defined by X > 3.86a0 obtained for the quantum (top panel, red
lines) and classical trajectories (bottom panel, orange lines) in the
non-Condon and Condon cases. The results from quantum dynamics
(QD) are given for reference (non-Condon with purple lines and
Condon with magenta lines).
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Similarly, the TDVP is given by
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While the TDPES and TDVP can be expressed in the diabatic
basis, as done above, it is critical to note that they do not
depend on any particular choice of electronic representation.

■ APPENDIX B: TRAJECTORY-BASED SOLUTION OF
THE NUCLEAR EXACT FACTORIZATION
EQUATION

Because the coupled nuclear and electronic equations of
motion give rise to a single time-dependent vector potential
and a single time-dependent potential energy surface in the
exact factorization, one intriguing question is whether one
could simplify the nuclear dynamics by representing the
nuclear probability density with trajectories evolving on the
basis of the two potentials. In previous work,35,43 it was shown
that by inserting the polar form of the nuclear wave function,

χ χ= | | ℏ( )t t S tR R R( , ) ( , ) exp ( , )i , into the time-dependent

Schrödinger equation, one can derive an evolution equation for
the phase that can furthermore be identified as a (nuclear)
Hamilton−Jacobi equation (with ∇ = ν̃ν

S t tR P R( , ) ( , )R ):
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The last term on the right-hand side is the so-called quantum
potential, Qpot(R, t), which is responsible for an important
portion of the nuclear quantum effects. The term containing
the nuclear momentum field, Pν(R, t) = P̃ν(R, t) + Aν(R, t), is
the nuclear kinetic energy, and the sum ϵ(R, t) + vint(R, t) +
Qpot(R, t) represents the potential energy. As discussed in an
earlier work,43 this Hamilton−Jacobi partial differential
equation can be solved by using the method of characteristics.
This results in Hamilton-like evolution equations (which are
ordinary differential equations to be solved for an a priori
infinite number of initial conditions)
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for the trajectories ≡ { }ν ν=t tR R( ) ( ) N1,..., n
, with corresponding

momenta ≡ { }ν ν=t tP P( ) ( ) N1,..., n
.

Enforcing our choice of gauge for this work (S(R, t) = 0, see
section 2.2) in the characteristic representation of the nuclear
dynamics, we find that eqs 21 and 22 simplify to

̇ =ν
ν

ν
t

t t
M

R
A R

( )
( ( ), )

(25)

̃ =ν tP ( ) 0 (26)

proving that the time-dependent vector potential fully accounts
for the nuclear momenta of the trajectories. It is worth noting
that, within the exact factorization, the nuclear momentum
field computed with Ψ(r, R, t) is the sum of a curl-free term
the gradient of S(R, t)and a (in general not irrotational)
contribution due to the time-dependent vector potential, as
shown in ref 38. With our choice of gauge, the curl-free
contribution from the gradient of S(R, t) becomes zero. In
Appendix C, we prove analytically the identity given in eq 26
and show that, in the chosen gauge, ∇ =∼

ν
H t t tP R( ( ), ( ), ) 0nR .

Propagating trajectories solely using either eq 25 or coupled
eqs 23 and 24 yields what we refer to as quantum trajectories.
In particular, eq 25 corresponds to the Bohmian definition of
the velocity field for quantum-mechanical particles described
by a real wave function in the presence of an external vector
potential.46 By neglecting the quantum potential in Hn(P(t),
R(t), t), the nuclear Hamiltonian becomes classical, i.e.,
Hn

cl(P(t), R(t), t). This classical approximation is used when
integrating eqs 23 and 24 to generate classical trajectories. The
corresponding evolution equations for the classical trajectories
then read

̇ =ν
ν

ν
t

t
M

R
P

( )
( )

(27)

̇ = −∇ + ̇ν νν
t H t t t t tP P R A R( ) ( ( ), ( ), ) ( ( ), )nR

cl
(28)

■ APPENDIX C: NUCLEAR FORCES FOR THE
QUANTUM TRAJECTORIES

In this appendix, we prove eq 26 of Appendix B by
demonstrating that, within the chosen gauge, S(R, t) = 0,
∇ =∼

ν
H tP R( , , ) 0nR .
The nuclear Hamiltonian identified in the Hamilton−Jacobi

equation in eq 20 reads

∑

∑ χ

χ

= + ϵ +

+ −ℏ ∇ | |
| |

ν

ν

ν

ν ν

ν

H t
t

M
t v t

M

t

t

R
A R

R R

R

R

( , )
( , )
2

( , ) ( , )

2

( , )

( , )

n

R

2

int

2 2

(29)

when imposing the gauge as P ≈ 0. From the definition of the
time-dependent scalar potential ϵ(R, t) given in section 2.2 and
in eq 14, we identify ϵBO(R, t) = ϵGI1(R, t) and ϵbBO(R, t) =
ϵGI2(R, t) such that the full nuclear Hamiltonian reads

= ϵ + ϵ + ϵ

+ +

H t t t t

v t Q t

R R R R

R R

( , ) ( , ) ( , ) ( , )

( , ) ( , )
n BO bBO GD

int pot (30)
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It is easy to prove that while ϵBO(R, t) (Born−Oppenheimer
term) and ϵbBO(R, t) (beyond-Born−Oppenheimer term) are
gauge-invariant contributions because they remain unchanged
if the electronic wave function is modified by a phase factor
that depends only on R and t, ϵGD(R, t) is gauge-dependent
(GD).38 Furthermore, it might seem that in the chosen gauge
the nuclear Hamiltonian is purely potential energy. This is not
actually the case because it has been shown in refs 29 and 47
that ϵbBO(R, t) contributes to the nuclear kinetic energy
despite appearing as a scalar potential included in the
expression of ϵ(R, t).
With the aim of manipulating previous equations, we use the

defin i t ion o f the e l ec t ron i c wave func t ion as

Φ =
χ

Ψ
| |tr R( , ; ) t

t
r R
R

( , , )
( , )

. This expression is inserted into the

definitions of the ϵBO(R, t) and ϵGD(R, t) potentials. In
addition, we write explicitly the expectation values as integrals
over the electronic configuration space such that

∫χ
ϵ =

| |
Ψ* ̂ Ψt

t
t H tR

R
r r R r R r R( , )

1
( , )

d ( , , ) ( , ) ( , , )BO 2 BO (31)

∫

∫

∫

χ χ

χ
χ χ

χ

χ

ϵ = Ψ*
| |

− ℏ ∂
∂

Ψ
| |

= Ψ*
| |

− ℏ

Ψ | | − Ψ | |

| |

=
| |

Ψ* − ℏ ∂
∂

Ψ

∂
∂

∂
∂

i
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jjj

y
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jjj
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zzz
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t t
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t
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t
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t

t
t
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t
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r R
R

r R
R

r
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R
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( , , )
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d
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( i )

( ( , , )) ( , ) ( , , ) ( , )

( , )

1
( , )

d ( , , ) i ( , , )

t t

GD

2

2
(32)

The second term in ϵGD(R, t), being purely imaginary, is
clearly identically zero because the whole expression is purely
real.
The contribution to the time-dependent scalar potential

arising from the external field, i.e., vint(R, t), can be rewritten as
well as

∫χ
=

| |
Ψ* ̂ Ψv t

t
t V t tR

R
r r R r R r R( , )

1
( , )

d ( , , ) ( , , ) ( , , )int 2 (33)

The “kinetic” part of the time-dependent scalar potential,
ϵbBO(R, t), becomes

∫

∫

∫

∑

∑

ϵ = ℏ ∇ Φ * ∇ Φ

= ℏ ∇ Φ* ∇ Φ

− Φ* ∇ Φ

ν ν

ν ν

ν ν

ν ν

ν

Ä
Ç
ÅÅÅÅÅÅÅ

É
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ÑÑÑÑÑÑÑ
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t t

M
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t t

R r r R r R

r r R r R

r r R r R

( , )
2

d ( ( , ; )) ( ( , ; ))

2
d ( , ; ) ( , ; )

d ( , ; ) ( , ; )

R R

R R

R

bBO

2

2

2
(34)

Here, we used the chain rule for the derivative with respect to
Rν, namely, ∇

νR . Applying once more the chain rule to the first
term on the right-hand side of eq 34 yields

∫ ∫
∫
Φ* ∇ Φ = ∇ Φ* Φ

− ∇ Φ *Φ

ν ν

ν

t t t t

t t

r r R r R r r R r R

r r R r R

d ( , ; ) ( , ; ) d ( , ; ) ( , ; )

d ( ( , ; )) ( , ; )

R R

R (35)

Using the partial normalization condition, ∫ dr|Φ(r, t; R)|2 =
1∀R, t, to show that the first term on the right-hand side of eq
35 is identically zero implies that

∫
∫

Φ* ∇ Φ

= − ∇ Φ *Φ

ν

ν

t t

t t

r r R r R

r r R r R

d ( , ; ) ( , ; )

d ( ( , ; )) ( , ; )

R

R (36)

proving that eq 36 is purely imaginary. However, ϵbBO(R, t) is

real overall, which implies that such a purely imaginary

contribution, from the first integral in its definition (eq 34),

should be canceled out exactly by the imaginary part of its

second term. As a result, we can rewrite eq 34 as

∫∑ϵ = − ℏ Φ* ∇ Φ
ν ν

ν

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
t

M
t tR r r R r R( , )

2
d ( , ; ) ( , ; )RbBO

2
2

(37)

Summarizing the results obtained so far, we can rewrite the

nuclear Hamiltonian as

∫

∫∑

χ
=

| |
Ψ* − ℏ ∂

∂
+ ̂

+ ̂ Ψ

− ℏ Φ* ∇ Φ

+
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n

R

2 BO

2
2

pot (38)

Note that the first integral of eq 38 can be simplified using the

time-dependent Schrödinger equation. In fact, the operator in

parentheses equals the negative of the nuclear kinetic energy,

i.e., − ℏ + ̂ + ̂ = − ̂∂
∂( )H V t Tr R r R Ri ( , ) ( , , ) ( )

t BO n , and the

whole integral is the negative of the expectation value of T̂n(R)

over the molecular wave function. Hence, we can now define

the condition for (the nuclear gradient of) Hn(R, t) to be equal

to zero:

∫

∫

∑

∑
χ

− ℏ Φ* ∇ Φ

=! −ℏ Ψ* ∇ Ψ

| |

−
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ν ν

ν
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R

R

2
2

2 2

2

pot (39)

We use once again the definition of Φ(r, t; R) in terms of the

molecular and nuclear wave functions, and we apply∇
νR

2 on the

left-hand side of eq 39 such that
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∫

∫

∫

∫

∑

∑

∑

χ χ
χ

χ

χ

χ

χ

χ

χ
χ

χ

χ

χ

χ
χ

χ

− ℏ Φ* ∇ Φ

= − ℏ Ψ*
| |

∇ Ψ
| |

−
∇ Ψ ∇ | |

| |

−
Ψ ∇ | |

| |
+

Ψ ∇ | |

| |

= ℏ −
Ψ* ∇ Ψ

| |

+
∇ | |

| |

+
Ψ* ∇ Ψ

| |

∇ | |
| |

−
∇ | |

| |

ν ν

ν ν

ν ν

ν

ν

ν ν

ν ν

ν

ν

ν ν

ν

i

k

jjjjjj

y

{

zzzzzz

i

k

jjjjjj

y

{

zzzzzz

M
t t

M
t

t

t

t
t t

t

t t

t

t t

t

M

t t

t
t

t

t t

t

t

t
t

t

r r R r R

r
r R
R

r R

R
r R R

R

r R R

R

r R R

R

r
r R r R

R
R

R

r
r R r R

R

R

R
R

R

2
d ( , ; ) ( , ; )

2
d

( , , )
( , )

( , , )

( , )
2 ( , , ) ( , )

( , )

( , , ) ( , )

( , )

2 ( , , )( ( , ) )

( , )

2
d

( , , ) ( , , )

( , )
( , )

( , )

2 d
( , , ) ( , , )

( , )

( , )

( , )

2
( ( , ) )

( , )

R

R

R R

R R

R

R

R R

R

2
2

2 2

2

2

2

2

3

2 2

2

2

2

2

2

(40)

Therefore, we see that the condition given by eq 39 would be
fulfilled if, by taking the real part of eq 40, the last two terms
would cancel out.
To show that, let us investigate the real part of the

contribution depending on the full molecular wave function,
where we use Ψ(r, R, t) = Φ(r, t; R)|χ(R, t)|, namely,
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The first term on the right-hand side of eq 41 is identically zero
because it is purely imaginary (eq 36); the integral in the
second term yields 1 thanks to the partial normalization
condition. As a result, we have
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(42)

proving that when taking the real part of the last two terms of
eq 40, they exactly cancel out. Therefore, the condition posed
by eq 39 is fulfilled, as stated above.
Finally we can show that the nuclear Hamiltonian of eq 38 is

zero in the chosen gauge

χ
=

⟨Ψ | − ℏ + ̂ + ̂ + ̂ |Ψ ⟩

| |

− + =
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n
t rBO n

2

pot pot (43)

meaning that its gradient is zero as well.
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