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The incidence and prevalence of chronic kidney disease (CKD) continue to increase
worldwide remaining as a major public health burden. CKD eventually progresses to end-
stage kidney failure and patients with CKD have high morbidity and mortality. Sirtuin 1
(SIRT1), a NAD+-dependent deacetylases, has significant renal protective effects through
its regulation of fibrosis, apoptosis, and senescence, oxidative stress, inflammation and
aging process. The renal protective effects of Sirt1 have been described in many kidney
diseases such as diabetic kidney disease and HIV-related kidney disease. SIRT1 also has
protective effects against vascular calcification and therefore could be developed as a
therapy for both CKD and CKD complications. In this narrative review, we will give an
overview of the recent progress on the role of SIRT1 and its downstream pathways in
CKD. We will also discuss potential therapeutic approach by activating SIRT1-related
pathway in patients with CKD. The purpose is to hope to provide some insights on the
future direction of the research in the field of SIRT1 for CKD.
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INTRODUCTION

About 10% of the human population have chronic kidney disease (CKD), which have high
incidence of cardiovascular disease and mortality (1). CKD is characterized by a progressive loss
of kidney function with glomerular, tubular and vascular injuries and cardiovascular disease is the
most important complication of CKD which is characterized by vascular calcification (2–4).
Therefore, new therapies are urgently needed to halt the progression of CKD and prevent
complications of CKD. A number of studies have shown that SIRT1, a nicotinamide adenine
dinucleotide-dependent histone deacetylase, has pivotal roles on renal protection through reduction
of oxidative stress, inflammation, and fibrosis (5–8). In addition, Sirt1 also inhibits apoptosis and
regulates metabolism (9). Therefore, the activation of SIRT1 may imply a therapeutic strategy to
improve the clinical outcome of CKD. This review focuses on the protective effects of SIRT1 against
CKD progression and complications through its regulation of fibrosis, apoptosis, oxidative stress,
inflammation and aging process.
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EXPRESSION OF SIRT1 IN THE KIDNEY

SIRT1 is a highly conservative protein and contains 500 amino
acid residues, which was first discovered in 1999 (10). SIRT1 is
expressed in the kidneys and can protect and maintain normal
kidney cell function by mediating in various physiological
processes (10). SIRT1 is mainly resided in the nucleus where it
facilitates nuclear cytoplasmic shuttling by regulating both
nucleosome histone acetylation and the activity of several
transcriptional factors (11–13). SIRT1 can also be found in the
cytoplasm. A few studies showed SIRT1 inhibits TNFa-
dependent transactivation of NF-kB in TNF-a induced
cytokine production in fibroblast cells and the expression of
several proinflammatory genes are inhibited (14). SIRT1 is a
negative regulator of p53. SIRT1 can deacetylate p53 and result
in reduced cellular senescence and apoptosis after DNA damage
and oxidative stress (15, 16).
SIRT1 AND RENAL FIBROSIS

Renal fibrosis is a major feature of progressive CKDs (3). Studies
have focused on the role of SIRT1 for renal fibrosis. Deficiency of
Sirt1 in endothelial cells increases peritubular capillary
rarefaction (17) and aggravates nephrosclerosis, via
downregulation of matrix metalloproteinase-14, which
indicates a role of SIRT1 in renal fibrosis (18). SIRT1 also
regulates kidney fibrosis by inducing deacetylation of Smad4
and inhibiting TGF-b-mediated matrix metalloproteinase-7
expression in kidney tubular epithelial cells (19). Activation of
SIRT1 can lead to attenuated renal fibrotic processes. SIRT1
reverses Smad3 acetylation and thereby inhibiting the profibrotic
response of TGF-b1 in vitro and in vivo such as in unilateral-
ureteric obstruction mouse model of renal fibrosis (20, 21). In
addition, a Chinese herbal formula, Shen Shuai IIRecipe (SSR),
significantly attenuates renal injury and fibrosis in the remnant
kidneys (22). SSR could contribute to renal protection by up-
regulating SIRT1/Smad3 deacetylation pathway and attenuating
renal fibrosis in 5/6 nephrectomy model of CKD (22).
Furthermore, tubular cell-specific overexpression of SIRT1
attenuates the progression of AKI to CKD transition through
Smad4 deacetylation (19). Therefore, activation of SIRT1 could
be a potential approach to develop anti-fibrosis therapy for CKD.
SIRT1 IN DIFFERENT KIDNEY DISEASES

SIRT1 plays a major role in diabetic kidney disease (DKD). In
our previous studies, we also find SIRT1 can regulate NF-kB (p65)
and STAT3 acetylation inDKD. Since SIRT1 expression is reduced
in the diabetic kidney, the acetylation level of p65 and STAT3 is
increased indiabetic kidneys (23).The lossof SIRT1 in thepodocyte
of diabetic db/dbmice increases acetylation of p65 and STAT3 as a
result of exacerbated proteinuria and kidney injury, likely through
increased inflammatory response. Conversely, a bromodomain
inhibitor, MS417, significantly attenuates proteinuria and
Frontiers in Endocrinology | www.frontiersin.org 2
kidney injury. MS417 is able to block acetylation-mediated
association of p65 and STAT3 with bromodomain and extra-
terminal domain (BET) proteins in the kidney cells from diabetic
mice. These studies therefore indicate the critical role of SIRT1
against proteinuria and kidney injury by decreasing acetylation of
p65 NF-kB and STAT3 in DKD (23). For further exploring the
function of SIRT1, we generated inducible and reversible Sirt1-
knockdown mice in a global, or podocyte-specific, or tubular-
specific pattern. We find that knockout of SIRT1 either globally
or specifically in podocytes induced more albuminuria and
glomerulosclerosis in Adriamycin-induced nephropathy mouse
model as compared to wild-type mice with Adriamycin-induced
nephropathy. Knockdown of SIRT1 also induces more
mitochondrial injury and cell senescence in the kidney cells in
diabetic mice as compared with control diabetic mice (24). These
results indicate a critical role of SIRT1 in the pathogenesis of DKD
by regulating mitochondrial stress/injury and cell senescence of
kidney cells.

Recently, we also demonstrate a role of SIRT1 in HIV-related
kidney disease. We find that HIV infection suppresses SIRT1
expression in kidney cells, leading to increased acetylation and
activation of NF-kB and STAT3, similar to those observed in DKD
(25). Mechanistically, this is through HIV-induced miR-34a
expression, which downregulates Sirt1 mRNA level. Sirt1 not
only inhibits proinflammatory response but also HIV viral gene
expression in podocytes and thereby attenuating HIV-induced
podocyte injury as summarized in the Figure 1 (25). Therefore,
SIRT1 is also a key protector against HIV-mediated CKD
pathogenesis. In addition, HIV infection and diabetes have a
synergistic or additive effect on the progression of CKD (25). We
believe that SIRT1, which is suppressed by both diabetes and HIV
infection, plays a key role in mediating the synergistic effects
between diabetes and HIV and may explain why HIV infection
aggravates DKD progression.

The studies of Sirt1 in human CKD are limited. In our previous
study, we find that both mRNA and protein levels of Sirt1 are
reduced inglomeruli of patientswithdiabetic kidneydisease (DKD)
as assessed by qPCR and immunostaining (26). Consistent with
this, we also show that acetylation ofNF-kB andSTAT3 is increased
in human diabetic kidney (23). SIRT1 expression is also suppressed
in the kidneys from HIV-infected patients (25). How Sirt1
expression and function are regulated in human CKD remains
unclear. It has been shown that miRNA34a, an inhibitor of Sirt1
expression, is increased in human CKD (27) and, therefore we
believe that miRNA34a could downregulate Sirt1 in human CKD.

SIRT1 AND AGING

Experimental evidences show that SIRT1 plays critical roles in
age-related pathological changes such as age-related kidney
damage (28). Previous studies showed that SIRT1 activity is
decreased in the kidneys of aged rodents (29). SIRT1 can protect
cells from apoptosis and senescence induced by oxidative stress
during aging process. SIRT1 regulates activation of multiple
FOXO proteins such as FOXO1, FOXO3, and FOXO4 by
inducing their deacetylation in the context of oxidative
June 2022 | Volume 13 | Article 917773
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stress (30). It has been shown that PI3K-Akt, which is upstream
signaling pathway for FOXO proteins, is downregulated in aging
kidney (31). The aging process is highly associated with systemic
hypoxia, which results in apoptosis, metabolism disorder, and
abnormal cell cycle. Hypoxia decreases SIRT1 expression to
promote FOXO3 acetylation and therefore it inhibits the
expression of FOXO3 target genes such as p27Kip1 and Bnip3.
In addition, hypoxia causes apoptosis and inhibits the autophagy
of senescent cells, leading to the accumulation of senescent cells.
In the kidney, SIRT1 also protects the apoptosis of kidney cells by
inhibiting Smad7 acetylation, which is mediated by p300 (32).
Together, these findings suggest a critical role of SIRT1 in age-
related disease of CKD.
ROLE OF SIRT1 IN VASCULAR
CALCIFICATION IN CHRONIC
KIDNEY DISEASE

Vascular calcification (VC) is an important pathological finding in
patients with CKD, which mediates cardiovascular complication
and accompanied by displaying the features of vascular aging (33–
36). Vascular calcification is associated with vascular injury such as
atherosclerosis, vascular stiffness and vascular aging (37). Vascular
calcification can cause the abnormal calcium phosphate crystal
deposition in the vessel wall. Increasing osteogenic transition will
positively regulate vascular calcification in senescent vascular
smooth muscle cells (5). SIRT1 can inhibit vascular calcification
(38, 39). A decreased expression of SIRT1 was observed during the
development of vascular calcification, and activation of SIRT1 can
reduce vascular calcification, suggesting a protective role of SIRT1 in
vascular calcification (38, 40, 41). Resveratrol, a pan-activator of
SIRT1, ameliorates vascular calcification in animal models (42, 43).
Resveratrol activates all Sirt1 isoforms and affects many downstream
pathways such as COX and PGC1a (44, 45) and therefore these data
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do not suggest that this is Sirt1-specific. More specific Sirt1 agonists
have been described and future studies are required to confirm
whether more specific Sirt1 agonists could also improve vascular
calcifications (46–48). Spermidine (Spd) can upregulate SIRT1 and
inhibit ER stress, and thereby alleviating vascular calcification in
CKD. When the expression of SIRT1 is decreased, the inhibitory
effect of Spd on vascular smooth muscle cell calcification is also
abolished, suggesting that SIRTmediates the protective effect of Spd
on the progression of vascular calcification. In addition, a large body
of evidence suggest that SIRT1 plays a critical role in inhibiting the
senescence of vascular smoothmuscle cells and endothelial cells (49,
50). Also, SIRT1 regulates RUNX2 deacetylation to affect its
transcriptional regulation in hyperglycemic conditions (51). In
endothelial cells, SIRT1 and eNOS/NO can crosstalk each other
to increase their antioxidant and anti-inflammatory property.
SIRT1 also inhibits p16 and p21 expression to reduce vascular
smooth muscle cells (VSMCs) senescence. In addition, SIRT1 also
inhibits osteogenic phenotypic transdifferentiation of VSMCs
through deacetylation of RUNX2 and b-catenin (40). SIRT1 also
can prevent adipocytokine release through the activation of AMPK
pathway or normalization of adiponectin secretion in perivascular
adipose tissues (PVAT). Because of these protective mechanisms of
Sirt1 in endothelial cells, VSMCs, and PVAT, SIRT1 activators
could be considered as potential drugs to inhibit vascular
calcification in CKD patients (9, 52). The Figure 2 summarizes
the potential mechanism of Sirt1 in protecting vascular calcification
in CKD patients.
SIRT1 IS A POTENTIAL THERAPEUTIC
TARGET OF CKD

SIRT1 is known to inhibit renal cell apoptosis, inflammation, and
fibrosis and therefore could be considered as a potential
therapeutic target. A number of studies suggest that SIRT1 has
FIGURE 1 | Summary on how HIV infection regulates Sirt1 expression and how Sirt1 mediates HIV infection-induced kidney disease.
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a cytoprotective effect by reducing cell apoptosis, senescence, and
by inhibiting inflammation (32, 53). SIRT1 has anti-fibrosis effect
in CKD by interacting with TGF-b1 signaling (32). SIRT1
overexpression abolishes TGF-b1-induced kidney cell apoptosis
and renal fibrosis, via suppression of CTGF expression (54). NF-
kB can regulate senescence and cell cycle-specific gene
expression (55). SIRT1 can interact directly with NF-kB p65,
resulting in p65 deacetylation and NF-kB inactivation (56).
Interestingly, the study indicates that SIRT1 and NF-kB
regulates each other in a positive feedback loop (57). These
studies suggest that SIRT1 activators should have multiple
beneficial effects in kidney cells including anti-apoptosis, anti-
inflammation, and anti-senescence. Therefore, Sirt1 activators
could be developed as a new drug to treat patients with CKD. In
addition, SIRT1 attenuates development of hyperphosphatemia-
related vascular calcification via inhibiting cell senescence and
osteogenic phenotype switching of VSMCs and therefore
activation of SIRT1 or restauration of Sirt1 expression could be
a reasonable approach to reduce hyperphosphatemia-induced
medial calcification in CKD patients (38).

However, most of the studies are performed in Sirt1 deficient
animals and these studies can only show the association of Sirt1
deficiency with kidney disease. In order to show whether increased
Sirt1 expression after onset of CKD has any beneficial effects, we
generated an inducible Sirt1 overexpression mouse mode. In these
mice, we show that induction of Sirt1 expression after disease onset
still has renal protective effects in mice with DKD and HIV kidney
disease (25, 48). In addition, we show that BF175, a novel Sirt1
specific agonist, also reduces kidney injury in these animal models.
Frontiers in Endocrinology | www.frontiersin.org 4
Our studies suggest that targeting Sirt1 could be a potential new
therapy for CKD (25, 48).
CLINICAL PERSPECTIVES

In summary, SIRT1 induces deacetylation of several key
transcriptional factors in regulation of cell apoptosis,
senescence, inflammation and fibrosis in the context of CKD.
SIRT1 activators could be developed to inhibit the apoptosis and
senescence of kidney cells, reduce renal inflammation and
oxidative stress, improve mitochondrial function, and reduce
renal fibrosis. Therefore, SIRT1 activators could be considered as
a new therapy to prevent the development and progression of
CKD. In addition, SIRT1 has protective effects against vascular
calcification which is a major complication of CKD. Therefore,
SIRT1 activators should have beneficial effects for both CKD and
its complication.
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