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G protein-coupled receptors (GPCRs) are integral membrane proteins forming the fourth largest
superfamily in the human genome. Many of these receptors play key physiological roles and
several pathologies have been associated with receptor functional abnormalities. GPCRs therefore
represent important goals for drug design in pharmaceutical companies since they constitute the
target of about one third of the drugs currently on the market. However, endogenous GPCRs
are most often difficult to study because of a lack of tools to target them specifically and single
out their response to physiological or drug-elicited stimulations. To date, studies mostly focused
on recombinant receptors expressed in a variety of cellular models that do not always closely
reflect the receptor natural environment and often deal with levels of expression exceeding by far
physiological ranges. Recent technological developments have improved our ability to visualize
endogenous GPCRs and to address their signaling properties. Data suggest that the receptor
may embrace a different fate depending on the ligand. This so-called biased signaling is getting
growing importance in the GPCR field. Similarly, increasing attention is given to the concept of
heteromerization that corresponds to the physical association of two receptor types resulting in new
signaling properties. Investigating endogenous receptor activation and subsequent intracellular
redistribution or addressing changes induced by drug-elicited stimulation from molecular and
cellular events to integrated response is thus crucial for the development of new pharmacological
tools and strategies. In this topic, timely overview as well as original reports present new tools,
including genetically modified animals, and techniques available to track expression and signaling
of endogenous GPCRs.

Brogi et al. (2014) review novel approaches in medicinal chemistry for class A GPCRs that all
aim at more efficacy with less side effects. They are ranging from in silico studies for increased
ligand selectivity and affinity to new orientations in ligand development including biased agonists
that favor specific signaling cascades such as G protein or beta-arrestin dependent pathways,
allosteric modulators or bivalent ligands that target heteromers. Thompson et al. (2014) illustrate
the concept of biased agonism at the level of the endogenous somatostatin and opioid systems in
the gut. In the case of opioid receptors, biaised agonism could be achieved through heteromer
formation. In this context, Gonzalez-Maeso (2014) provides a brief overview of the techniques
currently available to establish physical proximity between receptors in vivo, which represents
the first criterion to postulate heteromer formation. In the same line, Gomes et al. (2014)
introduce the generation of heteromer selective antibodies by substractive immunization strategy
and discuss their use to get insight into class A heteromer-specific signaling in vivo. Moving to
genetically modified animals, Ceredig and Massotte (2014) review the contribution of knock-
in mice that express fluorescent proteins to neuroanatomy. The authors highlight the role of
knock-in animals expressing fluorescent receptors for linking receptor trafficking, desensitization
and behavioral output and for mapping receptor neuronal co-expression as a first hint toward
in vivo heteromers. Knock-out animals on the opposite are deficient for a given receptor but
proved powerful to decipher the specific role of a given GPCR in various physiopathological
conditions. This is exemplified by Befort (2015) who reviews the relative contribution
of opioid and cannabinoid receptors and their interactions in the context of reinforcing
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behaviors and discusses the limitations of the approach.
Genetically modified animals are also powerful tools to address
GPCR signaling. As an example, GCaMP transgenic mice
express engineered proteins containing Ca2+ binding motifs
within a circularly permutated variant of the green fluorescent
protein that undergo a conformational change upon elevation of
intracellular Ca2+. Partridge (2015) reviews the use of this Ca2+

sensor to monitor in vivo activation of Gq/11 coupled GPCRs
in response to pharmacological stimulation. Alternatively, Bagley
(2014) reports an original study that illustrates the utility
of classical approaches such as electrophysiology as another
powerful tool to identify the specific impact of a given
receptor on neuronal activity. She addresses the identity of
the Gi/o coupled receptor responsible for protein kinase A
(PKA)-dependent increase of the GABA transporter GAT-1 in
the periaqueductal gray, a phenomenon underlying increased
GABAergic neuronal excitability and synaptic GABA release
during opiate withdrawal. Combining perforated patch recording
with selective pharmacological stimulation, Bagley clearly
demonstrates that PKA dependent increase in GAT 1 is promoted
by opioid receptor activation and not GABAB receptors possibly
due to differential subcellular distribution of the two receptors
within the neuron. Chen et al. (2014) also report a novel approach
to monitor PKA activity in brain tissue by fluorescence lifetime
imagingmicroscopy (FLIM) using two-photonmicroscopy using
their newly developed PKA sensor FLIM-AKAR. FLIM-AKAR
can be transfected or virally encoded for in vivo expression.
The latter can be controlled by cre-dependent elements to target

specific neuronal populations. This sensor reports the balance
of PKA and phosphatase activity with less pH sensitivity and
a broader dynamic range. Moreover, FLIM-AKAR being highly
diffusible enables monitoring of PKA activity in dendritic spines.
Finally, two reviews broach the functional role of endogenous
opioid receptors. Cahill et al. (2014) expand our knowledge of
the role of the kappa opioid receptor and its endogenous ligand
dynorphin. The authors review evidence of the implication of
the kappa-dynorphin system in the negative aspects related to
pain, highlighting possible contribution in the high comorbidity
of mood disorders associated with chronic neuropathic pain.
Allouche et al. (2014) review the various mechanisms by which
opioid receptors desensitize including aspects related to biased
agonism and discuss their impact on the development of opiate
tolerance.

Altogether, the topic covers various conceptual and technical
approaches at the molecular, cellular or integrated level that can
be generalized to challenge the functional role of endogenous
class A GPCRs and to gather critical insight for novel therapeutic
strategies.
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