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ARTICLE

Combining Model-Based Clinical Trial Simulation, 
Pharmacoeconomics, and Value of Information to 
Optimize Trial Design

Daniel Hill-McManus1 and Dyfrig A. Hughes1,*

The Bayesian decision-analytic approach to trial design uses prior distributions for treatment effects, updated with likeli-
hoods for proposed trial data. Prior distributions for treatment effects based on previous trial results risks sample selection 
bias and difficulties when a proposed trial differs in terms of patient characteristics, medication adherence, or treatment 
doses and regimens. The aim of this study was to demonstrate the utility of using pharmacometric-based clinical trial simu-
lation (CTS) to generate prior distributions for use in Bayesian decision-theoretic trial design. The methods consisted of four 
principal stages: a CTS to predict the distribution of treatment response for a range of trial designs; Bayesian updating for 
a proposed sample size; a pharmacoeconomic model to represent the perspective of a reimbursement authority in which 
price is contingent on trial outcome; and a model of the pharmaceutical company return on investment linking drug prices 
to sales revenue. We used a case study of febuxostat versus allopurinol for the treatment of hyperuricemia in patients with 
gout. Trial design scenarios studied included alternative treatment doses, inclusion criteria, input uncertainty, and sample 
size. Optimal trial sample sizes varied depending on the uncertainty of model inputs, trial inclusion criteria, and treatment 
doses. This interdisciplinary framework for trial design and sample size calculation may have value in supporting decisions 
during later phases of drug development and in identifying costly sources of uncertainty, and thus inform future research 
and development strategies.

The principal objectives of phase III clinical trials are to con-
firm efficacy and assess the benefit-risk ratio in order to gain 
regulatory approval.1,2 The evidence gained in this phase also 
forms the basis for health technology assessment, and deci-
sion-making regarding reimbursement.3 The design of phase 
III trials, specifically in relation to sample size calculations, has 
conventionally used power calculations based on thresholds 
for type I and type II statistical errors and estimates of mini-
mal clinically important differences and variances in treatment 

effect.4,5 There are well known limitations with this approach, 
in particular that the thresholds for type I or type II error are 
arbitrary and do not take into account the cost associated with 
making these errors.6 Furthermore, the focus is on passing 
the regulatory hurdle, even though pricing and reimbursement 
decisions will also be determined by the evidence that is gen-
erated in this phase.

Bayesian methods provide the main alternatives to the 
more traditional approach to sample size calculation and 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  A Bayesian decision-theoretic approach to sample size 
calculation provides an alternative to the more traditional 
methods based on thresholds for type I and type II error 
probabilities. Prior distributions for treatment effects are 
required, but these may be biased if based solely on the 
results of previous trials.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  If estimates of treatment effects from previous studies 
are not suitable, can pharmacometric model-based clini-
cal trial simulation be used to generate prior distributions 
of treatment effects for Bayesian trial design?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study provides a demonstration of the steps in-
volved in simulating trial outcomes, for a range of trial de-
signs, and using these to optimize trial design based on 
maximizing return on investment.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  This method may facilitate or enhance Bayesian clini-
cal trials design in situations where changes in treatment 
dose, regimen, patients, or comparators, means that evi-
dence from earlier studies is not likely to provide a reliable 
estimate of treatment effect in future studies.
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can be classed as either inference-based or taking a de-
cision-theoretic approach.7 From a decision-theoretic, or 
fully Bayesian,8 perspective the value of collecting addi-
tional data is that it may reduce the probability of incorrectly 
making a suboptimal decision with respect to some utility 
function, thus incurring an opportunity cost. The data de-
rived from larger samples therefore has value that must be 
weighed against the cost required to obtain the data.9 Much 
work has been done to further develop this methodology 
so that it can be applied in a wide range of contexts,10,11 
and extended to various decision perspectives,12,13 how-
ever, real-world applications remain limited.14

From a pharmaceutical industry perspective, larger stud-
ies should yield more precise estimates of treatment effects 
thereby reducing the uncertainty associated with achieving 
regulatory approval and reimbursement. Payers in many 
jurisdictions consider the cost-effectiveness of new phar-
maceuticals during the reimbursement decision-making 
process,15 with more effective and less costly drugs more 
likely to be reimbursed. If payer decision-making makes use 
of cost-effectiveness thresholds, for example,16 then there is 
also a relationship between the observed treatment effects 
in pivotal studies and the maximum price at which the payer 
would support reimbursement. This relationship is often 
informed via a cost-effectiveness analysis based on phar-
macoeconomic modeling.17

The Bayesian decision-analytic approach to trial design 
uses prior distributions for treatment effects, which are then 
updated based on likelihood models for the data coming 
from a possible trial. Priors could be based on previous, 
such as phase II, trial results13,18,19 or on elicited expert 
opinion.20 These methods have their limitations, including 
the potential for bias with expert elicitation21 and sample se-
lection bias for previous trials.22 Furthermore, there will be 
added difficulties in making use of past trial data if proposed 
trial designs are expected to differ in the characteristics of 
patients, medication adherence,23 or are using a different 
dose or regimen to that previously investigated.

A possible method of incorporating evidence from, poten-
tially multiple, earlier phase studies that has not previously 
been applied in a Bayesian decision-theoretic context, is to 
make use of pharmacometric-based clinical trial simulation 
(CTS).24 Pharmacometric modeling and simulation is used 
routinely during drug development, including to study issues 
relating to the design of clinical trials.25–29 The advantage 
of pharmacometric-based CTS is that it can account for 
subject-specific covariates, imperfect medication adher-
ence, alternative doses and regimens, and can be used to 
simulate the comparator arm(s) of the proposed trial. The 
uncertainty in parameter estimates that is quantified during 
model development can be used in Monte Carlo simulation 
to generate a distribution of trial outcomes representing prior 
belief, but based on specific doses, regimens, comparators, 
and patient population, while also adjusted for protocol de-
viations, such as imperfect medication adherence.24

The aim of this study was to demonstrate the utility of 
using CTS to generate prior distributions for use in Bayesian 
decision-theoretic sample size calculation. Sample sizes 
are optimized with respect to the pharmaceutical company 
return on investment (ROI), and drug price is linked to the 

outcome of a clinical trial via a pharmacoeconomic model 
representing the perspective of a reimbursement authority. 
The process is illustrated using a case study of an already 
marketed drug used to treat hyperuricemia in patients with 
gout. We show that the approach can be applied to study a 
variety of design issues, apart from sample size, including 
trial inclusion/exclusion criteria, duration, drug adherence, 
or discontinuation.

METHODS

This study takes the perspective of a pharmaceutical 
company planning for phase III testing of a drug ahead of 
submission for marketing authorization. As a case study, 
using a drug with known pharmacokinetics (PK) and phar-
macodynamics (PD), and with completed phase III trials 
and pharmacoeconomic evaluations, we have used the 
urate-lowering therapy febuxostat, which is already mar-
keted for the treatment of gout. The aim of urate-lowering 
therapy, both in clinical trials and in routine practice, is to 
reduce serum uric acid (sUA) concentration to below 6 mg/
dL, which should lead to the dissolution of crystals and 
reduction or elimination of gout symptoms. There were 
four phase III trials of febuxostat (once-daily doses rang-
ing between 40 and 240 mg) versus the standard of care, 
allopurinol (once-daily doses ranging between 100 and 
300 mg). However, for simplicity, we have only considered 
the design of a single two-arm trial of febuxostat 80 mg ver-
sus allopurinol 300 mg.

The following will describe a simulation framework com-
bining a pharmacometric CTS, a pharmacoeconomic model, 
and a model of the company’s ROI applied to compare trial 
designs and perform sample size calculations. It is assumed 
that the pharmaceutical company has developed the nec-
essary pharmacometric models from early phase studies, 
which are capable of simulating the relevant phase III trial 
end points. These models characterize the dose-response 
relationships, covariate effects, and quantify sources of 
uncertainty, including for model parameters. The CTS was 
used to generate distributions of treatment effects, for a 
specific patient population and under specific dose-taking 
conditions, which were then used as prior distributions in a 
Bayesian decision-theoretic sample size calculation.

Clinical trial simulation model
The CTS consisted of linked PK and PD models for both al-
lopurinol and febuxostat, as well as a trial execution model. 
The PK for allopurinol and febuxostat were described using 
one-compartment and two-compartment models, respec-
tively. The PD model consisted of a multicompartment, 
semi-mechanistic model of uric acid production and renal 
excretion. The drug PD models used inhibitory indirect 
response equations, with febuxostat having an additional 
stimulatory impact on the renal excretion of the uric acid 
precursor xanthine. Given the individual dosing histories 
of trial subjects, the PK/PD model was used to simulate 
sUA trough concentrations on each day at the time of dose 
administration. Details of the PK/PD model development 
have been published previously30,31 and more details are 
provided in the Supplementary Material.
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The trial execution model includes the trial duration, in-
clusion/exclusion criteria, recruitment, and drug adherence. 
Both arms were populated by random sampling from attri-
bute distributions representing the gout population (from 
previous trials) and application of inclusion/exclusion criteria 
(Supplementary Material). These attributes included sub-
jects’ baseline sUA concentration, body weight, and age, 
which are covariates in the PK/PD model. Drug adherence 
comprises the initiation of treatment, the degree to which a 
patient’s dose taking matches the prescribed regimen while 
nominally adhering (implementation), and treatment discon-
tinuation.32 It was assumed that all patients initiate treatment 
and patients who discontinue revert to their baseline sUA 
concentration. Implementation was modeled according to 
a subject-specific probability of taking each dose, inde-
pendent of whether any previous doses were taken. The 
population dose implementation probability was assumed 
to have a mean of 0.9. Discontinuation was simulated using 
a daily hazard, modeled as a Weibull hazard function such 
that the risk of discontinuation falls over time.

In order to propagate uncertainty in input parameters to 
predicted uncertainty in the trial outcome, each CTS was 
replicated 10,000 times with resampling from input parame-
ter probability distributions. The variance-covariance matrix 
for model parameters would typically be estimated during 
the development of the PK/PD model. For the purpose of 
demonstrating this methodology we have assigned arbitrary 
variances to model parameters to examine two different 
scenarios: (i) the base case in which parameters are as-
sumed to be highly uncertain and (ii) a reduced uncertainty 
scenario with lower variances for all PK/PD parameters. The 
reduced uncertainty scenario is used to represent the option 
of temporarily foregoing a phase III trial in favor of a smaller, 
shorter study designed to reduce uncertainty surrounding 
the drug pharmacology. Parameter uncertainty was sim-
ulated using a constant coefficient of variation model, for 
example, KAi = KA ∗ e

ηKAi is the absorption in the ith CTS 
simulation and ηKA is a random normal variate with mean of 
zero and assumed variance. Each iteration of the CTS used 
1,000 subjects in order to minimize any variation due to sam-
pling the trial cohort, and did not simulate intra-individual 

variability. Complete tables of all CTS model parameters and 
coefficients of variation and interindividual variability models 
are given in the Supplementary Material.

Apart from the consideration of two scenarios for PK/PD 
parameter uncertainty, we have also examined three possi-
ble dose and inclusion criteria options for each trial arm, as 
summarized in Table 1. Designs ψ2 and ψ5 using allopurinol 
300 mg and febuxostat 80 mg with a minimum baseline sUA 
concentration of 8 mg/dL, for inclusion in the trial, are most 
aligned with the previous trials. Designs ψ1 and ψ4 use a lower 
the cutoff of 6 mg/dL and designs ψ3 and ψ6 use a lower cut-
off in conjunction with higher doses of both drugs. The result 
of the CTS is a distribution of the primary trial outcome θjk, 
and the percentage of subjects with a final sUA concentra-
tion of < 6 mg/dL, for a treatment j and trial design k.

The CTS, represented by stage 1 in Figure 1, was per-
formed using R version 3.5.1 and implemented on the 
Supercomputing Wales cluster to enable parallelization. 
The 10,000 CTS replicates for a given trial design were split 
into parallel groupings that were then run in series using 
480 CPUs. A single model simulated both a febuxostat and 
an allopurinol arm, therefore, six models were used that cor-
respond to the trial designs in Table 1.

Bayesian updating
In the case where the outcome of interest is a proportion, 
in this case the proportion of subjects achieving a reduc-
tion in sUA to below 6 mg/dL, we may model the outcome 
in one arm of a clinical trial using the binomial distribution 
m ∼ Bin(n, θ ), where θ is the probability of treatment success 
(sUA < 6 mg/dL) and n is the sample size. The probability of 
treatment success will be a function of the pharmacology of 
the drug (e.g., its potency) and of the trial design (e.g., sub-
ject attributes) so may further write: mj ∼ Bin(nj, θj (ψ,ϕj ) ) 
where ψ is a specified trial design, ϕ is the drug pharma-
cology, and the subscript j refers to a specific trial arm/
treatment, j = {1,2}.

We treat the CTS results as the prior distribution θj, rep-
resenting our belief regarding the probability of treatment 
success based on prior knowledge of the drugs’ pharma-
cology and of dose-taking behavior. The computation of the 

Table 1  Overview of 12 clinical trial simulations performed using two treatment arms and six trial designs

Arm Scenario Design Dose, mg Duration, days
sUA threshold, 

mg/dL

Allopurinol Base case ψ1 300 182 6

ψ2 300 182 8

ψ3 600 182 6

Reduced uncertainty ψ4 300 182 6

ψ5 300 182 8

ψ6 600 182 6

Febuxostat Base case ψ1 80 182 6

ψ2 80 182 8

ψ3 120 182 6

Reduced uncertainty ψ4 80 182 6

ψ5 80 182 8

ψ6 120 182 6

sUA, serum uric acid.
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posterior distribution θjk |mjk would be straightforward for a 
conjugate prior with a Beta distribution. The subscript k has 
been included to index over a set of possible trial designs, 
ψ = {ψ1,ψ2,…,ψ6 }. To facilitate Bayesian updating in this 
case study, we used the simulated means and variances 
to calculate the corresponding α and β parameters of Beta 
distributions.

The posterior distribution of the treatment effect can then 
be written, for the jth trial arm and the kth trial design, as:

For each CTS-generated Beta prior, posterior densities 
were computed for a range of different proposed sample sizes 
in each trial arm nj = {50, 100, 150, 200, 300, 400, 500, 600}.

Maximum reimbursement pricing
This framework also considers the perspective of a 
reimbursement authority and how their decision on reim-
bursement is a function of both drug price and clinical 
trial outcome. To facilitate the analysis, a single-payer 
healthcare service (the National Health Service in the 
United Kingdom) was considered, but other payers or 
multiple payer models could also be developed. Cost-
effectiveness is central to health technology appraisals 
in the United Kingdom and is assessed via economic 
evaluation that estimates the long-term costs and ben-
efits of adopting a new drug.33 A cost-effectiveness 
threshold of £20,000–£30,000 per quality-adjusted life 
year (QALY) is used, and medicines are deemed cost-ef-
fective if estimated to result in a positive incremental net 
monetary benefit (NMB). Incremental NMB is defined 
as ΔB = � (Q2 −Q1 ) − (C2 − C1 ), where λ is the payer’s 
cost-effectiveness threshold, Q2 −Q1 is the incremen-
tal QALYs gained, and C2 − C1 is the incremental cost. 
Economic evaluations typically use pharmacoeconomic 
models to estimate costs and QALYs over an appropri-
ate time horizon and for the relevant patient population. 
We have applied a pharmacoeconomic model in order to 

interpret proposed trial evidence from the reimbursement 
authority perspective and calculate the maximum they 
should be willing to pay (maximum reimbursement price 
(MRP)) to provide patient access to a drug providing ben-
efit θ |m.

As illustrated in Figure1, Qj and Cj are functions of the 
posterior outcomes for each treatment and design θjk |mjk 
and the other pharmacoeconomic model inputs (χ). We 
implemented a previously published pharmacoeconomic 
model that links sUA concentration subgroupings to acute 
gout flare frequency to estimate long term QALYs and 
costs.31 The economic model used a Markov state-tran-
sition structure with a 3-month time cycle, a lifetime 
(50 year) time horizon, discounting of costs and QALYs at 
a rate of 3.5% per annum,33 and assumed a starting co-
hort of patients with untreated gout representative of the 
United Kingdom. The model predicts the impacts of two 
alternative payer decisions; (i) febuxostat recommended 
as first-line therapy, or (ii) febuxostat NOT recommended 
as first-line therapy and instead continue to treat all pa-
tients with allopurinol. Economic model inputs other than 
treatment response rates were not varied during simula-
tions, assuming that reimbursement decisions are based 
on expected values of these inputs.34

From the pharmacoeconomic model, therefore, we obtain 
distributions of Qj and Cj that are functions of the posterior 
outcomes for each treatment and other pharmacoeconomic 
model inputs (Figure1):

where j = 1 for allopurinol and 2 for febuxostat. Then, by 
separating febuxostat cost into drug and non-drug compo-
nents, setting NMB to zero and rearranging for the price of 
febuxostat (P2) we can obtain for the kth trial design:

(1)θjk |mjk ∼ B (αjk +mjk, βjk + nj −mjk )

(2)
Qjk∼ f(θjk|mjk, χ)

Cjk∼ f(θjk|mjk, χ)

(3)
P2 =

C1 ( θ1 |m1, χ ) − C2 ( θ2 |m2, χ ) + λ (Q2 ( θ2 |m2, χ ) −Q1 ( θ1 |m1, χ ) )

t2 (ψ )

Figure 1  Representation of the simulation framework showing the four stages and key inputs and outputs at each stage. Stage 1: 
clinical trial simulation; stage 2: Bayesian updating (prior to posterior analysis); stage 3: pharmacoeconomic modeling; and stage 4: 
implementation of the ROI model. The procedure is replicated a large number of times with resampling from pharmacometric and trial 
design parameters such that subsequent outputs are in fact distributions. The subscript j indexes over the trial arms and the subscript 
k indexes over the trial designs. ROI, return on investment.
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In the equation above, the subscripts shown refer to the 
trial arm j. All variables except χ should have a k subscript 
for the trial design, this has been omitted to aid the presen-
tation. The t2 is the mean number of years for which a patient 
is expected to persist with febuxostat and is a function of 
the rate of dropout used in the pharmacometric model, and 
C2 is the expected cost impact of febuxostat excluding the 
cost of the drug.

Return on investment
Taking a decision-theoretic approach, the optimal sam-
ple size is that which maximizes the expectation of some 
objective function. Here, that objective function was taken 
to be the company ROI resulting from a particular trial 
outcome. This used a previously published and relatively 
simplistic model of ROI,13,35 the additional inputs required 
are summarized in Table 2. It was assumed that the price 
of febuxostat is set at the payer’s MRP, determined based 

on the posterior distribution of efficacy from a trial of size ∑
nj, as described in the previous section. It was further 

assumed that the company has a minimum price (Pmin),  
which, if above the payer’s MRP, results in termination of 
development and zero revenue. The cost of producing and 
marketing a year’s supply of febuxostat (CPM) was included 
on a per-patient basis. Total revenue was calculated for the 
kth trial design according to the MRP less the cost of pro-
duction and marketing, then multiplied by the mean number 
of year’s supply of febuxostat per patient (tj=2,k) and the 
number of patients who will receive febuxostat (S(H)) over 
some time horizon H.

The methods used to calculate S(H) and the trial costs are 
presented in the Supplementary Material.

RESULTS

Clinical trial simulation results are summarized in Table  3 
in terms of the primary outcome of treatment response, 
defined as the percentage of subjects with a sUA trough 
concentration measurement of < 6 mg/dL on the last day of 
a trial. The mean response rate for allopurinol ranged from 
11 to 59%. The minimum used a 300 mg dose, included only 
patients with baseline sUA > 8 mg/dL, and assumed less un-
certainty on model inputs (ψ5). The maximum used a 600 mg 
dose and included only patients with baseline sUA > 6 mg/
dL. The mean response rate for febuxostat was less vari-
able, ranging from 64 to 70%. The minimum used a dose of 
80 mg, included only patients with baseline sUA > 8 mg/dL, 
and base case uncertainty on model inputs (ψ2). The maxi-
mum used a dose of 120 mg and included only patients with 
baseline sUA > 6 mg/dL. The uncertainty in the response 
rate, shown as SD and 2.5th and 97.5th percentiles, was 

(4)ROIk =

{
[P2k−CPM]t2k(ψk)S(H)−Ctrial(ψk) if P2k≥Pmin

0 if P2k<Pmin

Table 2  Inputs values for payoff (return on investment) model

Cost group Item (unit) (variable name) Value

Drug development Trial fixed cost (£) (CTF) £5,000,000

Trial variable cost (£) (CTV) £20,000

Production and marketing (£ per 
annum) (CPM)

£10

Minimum price (£ per annum) 
(Pmin)

£70

Reimbursement 
authority

Cost effectiveness 
threshold (£) λ £20,000

Marketing Gout incidence (persons per 
annum) (I)a

100,000

Market share (%) (s) 40

Time horizon (years) (H) 10

Deflation index (%) (r) 4

aIncidence was halved in scenarios where the serum uric acid threshold for 
treatment was 8 mg/dL.

Table 3  Clinical trial simulation results and prior distribution parameter values for the percentage of subjects with sUA < 6 mg/dL

Scenario Design Mean SD

Percentiles Beta parameters

2.5 97.5 Shape (α) Scale (β)

Allopurinol arm

Base case ψ1 36 10.6 17 57 7.1 12.4

ψ2 14 11.1 1 42 1.3 7.6

ψ3 59 10.2 37 76 13.2 9

Reduced ψ4 34 5.7 23 45 23.7 45.2

ψ5 11 5 3 22 4.2 33.9

ψ6 59 6.3 44 70 35.2 24.4

Febuxostat arm

Base case ψ1 67 6.3 51 76 36.4 17.6

ψ2 64 9.6 38 75 15.3 8.6

ψ3 70 4.8 58 77 62.8 26.9

Reduced ψ4 68 5.2 55 75 53.4 25.1

ψ5 65 7.3 46 74 27.1 14.4

ψ6 70 4 61 76 89 37.5

sUA, serum uric acid.
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higher for allopurinol than febuxostat. The simulation results, 
therefore, indicate greater confidence in the prior estimate of 
febuxostat in a future trial than the comparator allopurinol.

The distributions in response rate from the CTS are pre-
sented in Figure  2, showing the relative effects of each 
treatment and the uncertainty for the different scenarios 
considered. We observe that the higher sUA threshold for 
inclusion onto the trial impacts allopurinol much more than 
the response rate for febuxostat. Using the higher doses of 
both drugs improves the response rate for allopurinol more 
than for febuxostat. Reducing the scale of uncertainty on 
input parameters has a noticeable impact on the width of 
distributions presented, however, considerable uncertainty 
in the simulated response rate remains.

Figure 3 shows the distribution of MRPs that were ob-
tained at the end of stage 3 having performed Bayesian 
updating and calculated using costs and QALYs from the 
pharmacoeconomic model. Three of the eight sample sizes 
considered have been presented. As expected, the greater 
the separation between the distributions of response for al-
lopurinol and febuxostat in Figure 2 the higher the predicted 
MRPs. This reflects the assumed willingness of payers to 
pay higher prices for greater benefit relative to the standard 
of care, allopurinol, in line with its cost-effectiveness thresh-
old. We observed reduced uncertainty in the predicted 
MRPs for larger sample sizes, and in simulations with re-
duced uncertainty in CTS inputs.

In the final stage, the predicted MRPs were used as in-
puts to a model of company ROI, which are presented in 
Table 4 for each design and sample size. The designs ψ1 
and ψ4 yield the greatest expected ROI overall, due to the 
assumed larger patient population for a lower sUA threshold 
for treatment of 6 mg/dL. Design ψ4 is higher than ψ1 and is 
maximized at a lower sample size, 150 per arm compared 
with 300 per arm. The expected ROI for ψ2 was a maximum 
for 200 subjects per arm and for ψ5 only 50 subjects per 
arm, however, such a small trial is unlikely to be sufficient in 
practice when considering safety outcomes. For the higher 
dosage designs, ψ3 and ψ6, the expected ROI is negative for 
sample sizes ≥ 150 and 100, respectively.

DISCUSSION

This study has demonstrated an approach to trial design 
and sample size calculation that is based on value of in-
formation analysis, or fully Bayesian trial design, in which 
the optimal sample size is that which results in the greatest 
expected ROI to the pharmaceutical company. However, 
contrasting with previous analyses, we used pharmaco-
metric models to simulate prior distributions of treatment 
effect for the investigational drug and comparator under 
varying trial designs defined in terms of doses, patient char-
acteristics, and uncertainty on input parameters. The prior 
distributions can, therefore, be developed in a transparent 

Figure 2  Simulated prior distributions of treatment effect (proportion of responders at sUA < 6 mg/dL) mg/dL. sUA, serum uric acid.
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way that represents the specific conditions under which a 
drug will be used in a proposed trial. This would be ad-
vantageous in situations where changes in treatment dose, 
regimen, patients, or comparators, means that evidence 
from earlier studies is less likely to provide a reliable es-
timate of treatment effect in future studies. It also allows 
other aspects of trial design to be examined at the same 
time as performing sample size calculations.

We illustrated this interdisciplinary approach using a case 
study of designing a single phase III trial of febuxostat ver-
sus allopurinol. The greatest expected ROI was predicted to 
occur with reduced uncertainty in PK/PD inputs, suggesting 
that it may be of value to gather further evidence relating to 
the pharmacology of the drugs before proceeding to large 
scale phase III testing. The optimal sample size for this sce-
nario was also lower than the corresponding design with a 
higher level of input uncertainty. The results also showed 
that if higher doses of the comparator were necessary, then 
expected ROI would only be positive if very small trials were 
practicable.

Clinical trial simulation has typically been implemented 
within a model-informed drug development context,36 for 
example, to support design decisions based on predicted 
performance in statistical tests, in order to meet efficacy and 
safety objectives and obtain regulatory approval.37 Linking 
CTS results to an economic model designed to represent 
the reimbursement authorities approach to drug pricing is a 

natural extension that is consistent with an model-informed 
drug development approach. Poland and Wada38 presented 
a combined PK/PD and economic model to compare alter-
native dose regimens, including models for non-adherence. 
However, although the drug price was linked to the drug’s 
simulated efficacy and safety, it did not consider whether 
the drug would be reimbursed at these prices. There are 
further examples of linking pharmacometric and pharma-
coeconomic models39,40 but these do not explicitly consider 
trial design nor do they consider the relationship between 
potential pricing and trial results.

For the purpose of demonstrating the value of this inter-
disciplinary approach, the decision problem was simplified. 
In reality, there may be the need to consider the design and 
value of multiple phase III trials, as was the case for febux-
ostat.41 There are also multiple markets to consider and, 
therefore, multiple payers and reimbursement authorities 
with differing approaches to valuing medicines, with the 
additional complication that prices cannot be set in each 
market independently.42 Others have adopted more real-
istic decision contexts by, for example, linking the market 
share to trial outcomes,12,38 considering multistage/adaptive 
trials,10,43 and assuming imperfect implementation of a pol-
icy decision.44 As has been observed in previous research 
in this area,13 the value of information approach does not 
easily apply to a free market setting unless there is a means 
of linking pricing and sales volumes to trial outcomes. This 

Figure 3  Distributions of maximum reimbursement prices for selected trial sample sizes.
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general basic framework could be adapted to real-world 
decision problems, building in additional complexity as a 
particular case study requires.

This study assumed that regulatory approval would be 
granted, because both treatments were assumed safe and 
effective. It would be possible to define a utility function that 
incorporates both the probabilities of regulatory approval 
and reimbursement as a function of trial results.12 However, 
this implies that a regulator would accept an analysis of trials 
using informative priors such as in this study. It may be pos-
sible to avoid this by incorporating frequentist hypothesis 
test constrains within the Bayesian utility function.45

Furthermore, this study has assumed that the phase III 
trial is only used to inform the estimate of treatment efficacy, 
implying that the treatments considered are equivalent in 
terms of safety. This method could be extended to include 
simulation of safety outcomes, in order to predict bene-
fit-risk assessments in cases where treatments may differ in 
terms of safety.46 This also applies to other data that may be 
collected from a proposed trial, such as evidence regarding 
the utility of different health states or resource use that is 
sometimes derived from pivotal studies. The approach we 
have described also relies on being able to make valid pre-
dictions of treatment effects in a phase III trial population 
using models developed from earlier studies.

The technical challenge of performing a linked CTS and 
economic modeling exercise may be considered a limitation 
of this approach, however, much of the modeling effort al-
ready takes place within industry; PK/PD models are used 
extensively during drug development and economic mod-
eling is often required in order to secure reimbursement. 
The combined models incorporate a large number of input 
parameters and also require many simplifying assumptions, 
to which the results may be sensitive. This may be consid-
ered both a strength and a limitation, because although it 
reduces our confidence in the model accuracy, it does pro-
vide a framework to understand the impacts of alternative 
assumptions and parameter uncertainty.

Individual level CTS and economic modeling is likely to 
require significant computing resources to implement within 
a reasonable timeframe. This study benefited from access 
to a supercomputing cluster, although other applications 
may not be as computationally intensive. As this case study 
was used primarily to illustrate the methods, some param-
eters and parameter uncertainty were assumed rather than 
estimated, and the important issue of correlation between 
input parameters was not considered. Finally, the model of 
dose implementation that was used in which daily doses are 
missed at random independent of whether previous doses 
were taken is overly simplistic. Alternatively, more sophis-
ticated models may be used or replaced with real-world 
adherence data.

We have presented an interdisciplinary framework for trial 
design and sample size calculations linking several modeling 
approaches that are all implemented separately at different 
stages during drug development. It enables uncertainty to 
be propagated from aspects of drug pharmacology through 
to the predicted return on investment, where drug prices are 
contingent on the results of phase III testing. Such an ap-
proach may have value in supporting trial design decisions Ta
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and in identifying costly sources of uncertainty, and thus in-
form future research and development strategies.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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