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Automated percent mammographic density, mammographic
texture variation, and risk of breast cancer: a nested case-
control study
Erica T. Warner 1✉, Megan S. Rice1,2, Oana A. Zeleznik 2, Erin E. Fowler3, Divya Murthy2, Celine M. Vachon 4, Kimberly A. Bertrand5,
Bernard A. Rosner2, John Heine3 and Rulla M. Tamimi2,6,7

Percent mammographic density (PMD) is a strong breast cancer risk factor, however, other mammographic features, such as V, the
standard deviation (SD) of pixel intensity, may be associated with risk. We assessed whether PMD, automated PMD (APD), and V,
yielded independent associations with breast cancer risk. We included 1900 breast cancer cases and 3921 matched controls from the
Nurses’ Health Study (NHS) and the NHSII. Using digitized film mammograms, we estimated PMD using a computer-assisted
thresholding technique. APD and V were determined using an automated computer algorithm. We used logistic regression to
generate odds ratios (ORs) and 95% confidence intervals (CIs). Median time from mammogram to diagnosis was 4.1 years
(interquartile range: 1.6–6.8 years). PMD (OR per SD:1.52, 95% CI: 1.42, 1.63), APD (OR per SD:1.32, 95% CI: 1.24, 1.41), and V (OR per SD:1.32,
95% CI: 1.24, 1.40) were positively associated with breast cancer risk. Associations for APD were attenuated but remained statistically
significant after mutual adjustment for PMD or V. Women in the highest quartile of both APD and V (OR vs Q1/Q1: 2.49, 95% CI: 2.02,
3.06), or PMD and V (OR vs Q1/Q1: 3.57, 95% CI: 2.79, 4.58) had increased breast cancer risk. An automated method of PMD assessment is
feasible and yields similar, but somewhat weaker, estimates to a manual measure. PMD, APD and V are each independently, positively
associated with breast cancer risk. Women with dense breasts and greater texture variation are at the highest relative risk of breast
cancer.
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INTRODUCTION
Mammographic density is one of the strongest risk factors for
breast cancer, with a four- to six-fold greater breast cancer risk
in women with the highest vs. lowest levels of density1–3.
Research identifying mechanisms for these associations, or how
changes in density affect risk, are limited by our reliance on
visual estimation (i.e., Breast Imaging Reporting Data and
Reporting System (BI-RADS)) or operator-assisted thresholding
methods which require inputs by a trained user (e.g., Cumulus)4,
that are labor intensive and prone to intra- and inter-reader
variability5. To address this need we developed APD, an
automated approach to estimate percent mammographic
density (PMD). APD is moderately correlated with operator-
assisted thresholding methods (r= 0.70), and in a Mayo Clinic
case-control study yielded stronger risk estimates when
comparing extreme quartiles (operator-assisted odds ratio
[OR]: 3.8, 95% confidence interval [CI] 2.4–6.0 vs. automated
OR: 5.2, 95% CI 3.3–8.2)6 may help us to better understand how
dense tissue is influencing breast cancer risk.
Comparing mammograms from women with similar PMD,

there may be considerable heterogeneity in the appearance of
dense tissue known as texture. This information is ignored in
standard measurements of PMD, yet, emerging evidence
demonstrates that it is related to breast cancer risk7,8. In
addition, several studies have demonstrated that texture
features are associated with breast cancer risk, independent

of PMD7,9–13. Using an automated image analysis system,
Manduca et al. identified features within several texture classes
whose association with breast cancer was of similar magnitude
to PMD10. A texture summary measure called ‘V’ captures gray-
scale variation in mammograms and was a significant predictor
of breast cancer in three Mayo Clinic cohort studies14.
Comparing extreme quartiles, V was more strongly associated
with breast cancer (relative risk [RR]: 3.5, 95% CI, 1.9–6.4) than
was PMD (RR: 2.2, 95% CI, 1.8–2.6). While studies have
demonstrated independent associations of texture features
and PMD, the interrelationship between texture, automated
and manual density, with respect to breast cancer risk remains
unclear.
In the current nested case-control study, we evaluated the

independent and joint associations of PMD, APD, and V with breast
cancer risk, using data on 1900 breast cancer cases and 3921
matched controls in the Nurses’ Health Studies. Given demon-
strated positive associations between PMD and breast cancer risk,
one of our primary goals was to determine whether APD
performed similarly and could therefore be a more accessible
and reproducible mammographic breast density measure for use
in research. Another primary goal was to determine whether APD,
PMD, and V were each independently associated with breast
cancer risk. Finding independence between these measures would
provide further information about the interrelationships between
their underlying phenotypes.
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RESULTS
Participant characteristics
Table 1 presents participant characteristics at time of mammo-
gram according to case/control and menopausal status. The
median time from mammogram to diagnosis was 4.1 years with
an interquartile range from 1.6 to 6.8 years. Participant
characteristics according to image resolution and by exposure
quartile are presented in Supplementary Tables 1 and 2. Cases had
a mean age of 53.3 years compared to 52.6 years among controls.
Cases had a higher mean PMD (37.6% vs. 32.1%), APD (18.5% vs.
17.5%), and V (0.1 vs. −0.1) as compared with controls. Similar
differences were observed among pre- and postmenopausal
women. Hormone receptor status among cases was predomi-
nantly ER+/PR+ (54.5%).

PMD, APD, V, and breast cancer risk by menopausal status
PMD, APD, and V were moderately correlated (Supplementary Fig.
3) and each was positively associated with breast cancer risk
(Table 2). V was more strongly correlated to APD than PMD (r=
0.83 vs. r= 0.61). Compared to the lowest quartile (Q1), individuals

in the highest quartile (Q4) of PMD were almost three times more
likely to develop breast cancer (OR: 2.90, 95% CI: 2.39, 3.52; p
trend < 0.01). PMD associations were stronger among premeno-
pausal (Q4 vs. Q1 OR: 3.56, 95% CI: 2.49, 5.08; p trend < 0.01)
compared to postmenopausal women (Q4 vs. Q1 OR: 2.32, 95% CI:
1.78, 3.04; p trend < 0.01). With adjustment for V, the association
was somewhat attenuated, but remained significant overall (Q4 vs.
Q1 OR: 2.36, 95% CI: 1.90, 2.94; p trend < 0.01), and among
premenopausal (Q1 vs. Q4 OR: 2.86, 95% CI: 1.94, 4.21; p trend <
0.01) and postmenopausal women (Q4 vs. Q1 OR 1.91, 95% CI:
1.41, 2.59; p trend < 0.01). For APD, compared to Q1, women in Q4
were twice as likely to develop breast cancer (overall: OR: 2.10,
95% CI: 1.75, 2.51; p trend < 0.01; premenopausal: OR: 2.27, 95% CI:
1.67, 3.08; p trend < 0.01; postmenopausal OR: 2.04, 95% CI: 1.59,
2.62; p trend < 0.01). When adjusted for V, comparing Q4 vs. Q1
was associated with a 36% increased breast cancer risk overall (OR:
1.36, 95% CI: 1.04, 1.77; p trend= 0.05), 55% among premeno-
pausal (OR: 1.55, 95% CI: 1.03, 2.32; p trend= 0.05), and 25%
among postmenopausal women (OR: 1.25, 95% CI: 0.85, 1.84; p
trend= 0.53). Lastly, for V, compared to women in Q1, those in Q4
were more than twice as likely to develop breast cancer (overall

Table 1. Participant characteristics at time of mammogram for breast cancer cases and controls by menopausal status.

All Premenopausal Postmenopausal

Cases (N= 1900) Controls (N= 3921) Cases (N= 844) Controls (N= 1877) Cases (N= 947) Controls (N= 1800)

Mean (SD)

Age (years) 53.3 (9.0) 52.6 (8.9) 45.8 (4.5) 46 (4.4) 60.1 (6.9) 59.6 (7.5)

BMI (kg/m2) 25.6 (4.9) 25.9 (5.3) 25.1 (5.0) 25.6 (5.4) 25.9 (4.7) 26.1 (5.1)

PMD 37.6 (19.8) 32.1 (19.6) 46.1 (18.4) 39.3 (19.1) 29.7 (17.9) 24.9 (17.2)

APD 18.5 (4.5) 17.5 (4.7) 19.8 (3.8) 18.7 (4.2) 17.3 (4.7) 16.2 (4.9)

V 0.1 (0.9) −0.1 (1.0) 0.4 (0.9) 0.1 (0.9) −0.1 (1.0) −0.3 (0.9)

Year of mammogram 1994.9 (4.5) 1995.8 (4.8) 1996.4 (4.3) 1996.8 (4.4) 1993.8 (4.2) 1994.9 (4.9)

Year of diagnosis 1999.4 (4.4) 2001 (4.2) 1998.1 (4.2)

N (%)

Cohort

NHS 1179 (62.1) 2163 (55.2) 256 (30.3) 546 (29.1) 836 (88.3) 1458 (81)

NHSII 721 (37.9) 1758 (44.8) 588 (69.7) 1331 (70.9) 111 (11.7) 342 (19)

HT use

Never 1109 (58.4) 2505 (63.9) 844 (100) 1877 (100) 234 (24.7) 540 (30)

Past 574 (30.2) 949 (24.2) 510 (53.9) 832 (46.2)

Current 177 (9.3) 404 (10.3) 168 (17.7) 373 (20.7)

Unknown 40 (2.1) 63 (1.6) 35 (3.7) 55 (3.1)

ER status

ER+ 1253 (65.9) 565 (66.9) 616 (65)

ER− 279 (14.7) 135 (16) 131 (13.8)

Unknown 368 (19.4) 144 (17.1) 200 (21.1)

PR status

PR+ 1070 (56.3) 513 (60.8) 496 (52.4)

PR− 429 (22.6) 178 (21.1) 228 (24.1)

Unknown 401 (21.1) 153 (18.1) 223 (23.5)

ER/PR status

ER+/PR+ 1036 (54.5) 500 (59.2) 476 (50.3)

ER+/PR− 188 (9.9) 56 (6.6) 120 (12.7)

ER−/PR− 241 (12.7) 122 (14.5) 108 (11.4)

Unknown 435 (22.9) 166 (19.7) 243 (25.7)

BMI body mass index, PMD percent mammographic density, V variation measure, HT Postmenopausal hormone therapy, ER estrogen receptor, PR progesterone
receptor.
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OR: 2.16, 95% CI: 1.81, 2.58; p trend < 0.01; premenopausal OR:
2.46, 95% CI: 1.83, 3.31; p trend < 0.01; postmenopausal OR: 2.09,
95% CI: 1.64, 2.67; p trend < 0.01). Adjustment for PMD or APD
attenuated the associations, but V remained associated with
breast cancer risk. Associations did not differ by tumor hormone
receptor status (Supplementary Table 3) and were strongest
among high-resolution images (Supplementary Table 4).

PMD, APD cross-classified with V and breast cancer risk
V was positively associated with breast cancer risk within each
quartile of either PMD or APD (Table 3). Women in Q4 of PMD and
V had more than three times higher risk of breast cancer
compared to women in Q1 of PMD and V (OR: 3.57; 95% CI: 2.79,
4.58; p interaction= 0.75). Women in Q4 of PMD, but Q1 of V had
more than twice the risk of breast cancer compared to those who
were low on both measures (OR: 2.50, 95% CI: 1.51, 4.14). High V
(Q4) coupled with low PMD (Q1) was not associated with
increased risk of breast cancer (OR: 1.40, 95% CI: 0.48, 4.07).
Similarly, women in the highest APD and V quartiles, had two and
a half times greater risk of breast cancer compared to those with
the lowest APD and V (OR: 2.49, 95% CI: 2.02, 3.06; p
heterogeneity= 0.75). The patterns were similar, though the
magnitude of association was stronger when analyses were
restricted to high-resolution images only (Supplementary Table 5).

Independent associations of PMD and APD with breast cancer
risk
PMD and APD measures were independently associated with
breast cancer risk (Table 4). Without adjustment for APD, each SD
increase in PMD was associated with a 52% increased breast
cancer risk (OR: 1.52, 95% CI: 1.42, 1.63). With adjustment for APD,
the association was attenuated but remained significant (OR: 1.43,
95% CI: 1.33, 1.55). Similarly, without adjustment for PMD, APD
was associated with a 33% increased breast cancer risk per SD.
After adjustment for PMD, there was a 14% increase in breast
cancer risk per SD (OR: 1.14, 95% CI: 1.06, 1.22).

DISCUSSION
In this large, nested case-control study, we investigated the
associations of PMD, APD, and V, a summary measure of
mammographic greyscale variation, with breast cancer risk among
1900 breast cancer cases and 3921 controls. This study adds to the

literature by simultaneously evaluating two density breast
measures (PMD and APD) and a texture measure V. We
demonstrated that PMD, APD, and V were independently
associated with breast cancer risk. However, PMD was more
strongly associated with breast cancer risk than were APD or V.
When PMD and APD were modeled together, the association of
APD with breast cancer risk was more attenuated than PMD.
Associations were generally stronger among premenopausal
women and high-resolution images but did not vary by hormone
receptor status.

Table 3. ORs and 95% CIs for the associations between breast cancer risk and APD and PMD, cross-classified with V, in NHS/NHSIIa.

V

PMD Quartile 1 < −0.76 Quartile 2 −0.76–< −0.09 Quartile 3 −0.09–0.56 Quartile 4 > 0.56 p interaction

Quartile 1 < 16 Ref 1.28 (0.96, 1.69) 1.32 (0.86, 2.04) 1.40 (0.48, 4.07) 0.75

Quartile 2 16–<30 1.35 (1.00, 1.83) 1.71 (1.31, 2.22) 1.83 (1.38, 2.43) 1.67 (1.17, 2.38)

Quartile 3 30–<46 1.43 (0.89, 2.28) 2.01 (1.47, 2.73) 2.01 (1.53, 2.64) 2.73 (2.11, 3.52)

Quartile 4 ≥ 46 2.50 (1.51, 4.14) 2.94 (2.12, 4.09) 3.22 (2.45, 4.24) 3.57 (2.79, 4.58)

APD p interaction

Quartile 1 < 14 Ref 1.50 (1.10, 3.04) 1.81 (0.88, 3.73) 2.81 (0.62, 12.7) 0.75

Quartile 2 14–<18 1.52 (1.12, 2.07) 1.56 (1.26, 1.93) 2.01 (1.54, 2.64) 2.10 (1.38, 3.21)

Quartile 3 18–<21 0.56 (0.13, 2.50) 1.52 (1.15, 2.02) 1.61 (1.27, 2.03) 2.19 (1.70, 2.80)

Quartile 4 ≥ 21 Not estimated 2.02 (1.25, 3.26) 2.09 (1.62, 2.69) 2.49 (2.02, 3.06)

OR odds ratio, CI confidence interval, PMD percent mammographic density, APD automated percent density, V variation measure, NHS Nurses’ Health Study,
NHSII Nurses’ Health Study II.
aModels are adjusted for: Age (continuous), fasting status, time of blood draw, body mass index (kg/m2), menopausal status (premenopausal, postmenopausal,
unknown), hormone therapy use (never, past, current, unknown), mammography read batch (batch 1, batch 2, batch 3).

Table 4. ORs and 95% CIs for the associations between breast cancer
risk and APD and PMD with mutual adjustment, in NHS/NHSIIa.

PMD Not adjusted for APD Adjusted for APD

Quartile 1 < 16 Ref Ref

Quartile 2 16–<30 1.47 (1.23, 1.75) 1.33 (1.11, 1.61)

Quartile 3 30–<46 1.97 (1.64, 2.37) 1.66 (1.35, 2.05)

Quartile 4 ≥ 46 2.90 (2.39, 3.52) 2.40 (1.91, 3.00)

p trend <0.0001 <0.0001

Per 1 SD 1.52 (1.42, 1.63) 1.43 (1.33, 1.55)

APD Not adjusted for PMD Adjusted for PMD

Quartile 1 < 14 Ref Ref

Quartile 2 14–<18 1.52 (1.28, 1.80) 1.32 (1.11, 1.57)

Quartile 3 18–<21 1.57 (1.31, 1.87) 1.15 (0.96, 1.40)

Quartile 4 ≥ 21 2.10 (1.75, 2.51) 1.40 (1.15, 1.70)

p trend <0.0001 0.0048

Per 1 SD 1.33 (1.24, 1.41) 1.14 (1.06, 1.22)

OR odds ratio, CI confidence interval, PMD percent mammographic density,
APD automated percent density, V variation measure, NHS Nurses’ Health
Study, NHSII Nurses’ Health Study II.
aModels adjusted for: Age (continuous), fasting status, time of blood draw,
body mass index (kg/m2), menopausal status (premenopausal, postmeno-
pausal, unknown), hormone therapy use (never, past, current, unknown),
mammography read batch (batch 1, batch 2, batch 3). PMD adjusted for
continuous automated percent MD and vice versa.
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We observed independent and joint effects of V, APD, and PMD
on breast cancer risk demonstrating that both the relative amount
of fibroglandular tissue and its greyscale variation contribute to
breast cancer risk. While all three measures were associated with
breast cancer risk, PMD had the strongest magnitude of
association. This differs from the Mayo Clinic Studies, where V
yielded higher risk estimates than PMD in two of three included
cohorts, and in one they were equivalent6,14. In that study the
authors conclude that V and PMD are at least equivalent and our
findings are consistent with an interpretation that these factors
are at least equivalent in their association with breast cancer risk.
Further study is required to determine their precise interrelation-
ship. As reviewed in Gastounioti et al. (2016) parenchymal texture
classifiers have been assessed with respect to breast cancer risk in
at least 20 studies8. A prospective cohort study by Wanders et al.
(2018) found that percent dense volume and texture, as assessed
using an algorithm the authors previously developed15, were each
associated with breast cancer risk12. While risk prediction was not
the goal of our study, Winkel et al. (2016) found that combining
measures of PMD (BI-RADS), parenchymal patterns (Tabar’s
classification), and an automated texture measure, improved
breast cancer risk prediction. The area under the curve (AUC) for
either measure alone ranged from 0.63 to 0.65, while inclusion of
all three yielded an AUC of 0.6916. Importantly, while these
features may ultimately improve breast cancer risk prediction,
they can also yield insights into breast cancer etiology by
identifying specific breast structures implicated in cancer
development.
Despite the somewhat stronger associations observed for PMD,

validation of APD has important implications for future
research17,18. Manual measures are subject to reader differences19,
measurement error20, and are time-intensive. An automated
measure, such as APD, can provide a more reliable measure,
suitable for use in risk assessment, mandatory breast density
notification, and measuring changes in density. Inconsistent
breast density measurement could bias study results toward the
null21, lead to unreliable risk stratification if included in risk
assessment models, or misinformed decision-making regarding
screening intervals and modalities after legally mandated breast
density notification22,23, and reduce reliability when assessing
change in PMD24. We have demonstrated that including breast
density in a breast cancer risk assessment model improves
discriminatory accuracy25,26 and a recent paper shows that the
Tyrer–Cuzick model with density can provide useful data at on risk
for at least 10 years27. However, those estimates were based on a
single baseline breast density assessment. Cuzick et al24. noted
that the reliability for change in BI-RADS density was only
moderate (r= 0.48–0.67) when evaluating mammograms 10 years
apart. As changes in PMD over time are likely to be small28, a
continuous measure, more sensitive than BI-RADS which has just
four categories, is needed. In recent years, several automated
measurement tools have been developed to assess volumetric or
area-based breast density18,29–32. These new measurement
approaches are essential for PMD use in breast cancer risk
assessment and screening decision-making. Yet, our finding that
PMD yielded stronger associations with breast cancer risk than did
APD or V, two automated measures, suggests that there is
information captured through operator-assisted thresholding that
is not captured through automation. Continued effort is needed to
compare the strengths and weaknesses of these approaches and
develop standardized methods for clinical PMD assessment.
Study strengths include the use of prospective data from the

Nurses Health Studies, two cohorts with validated disease
ascertainment, and comprehensive data on breast cancer risk
factors, tumor hormone receptor status, measures of PMD, APD,
and texture features. This study has several important limitations.
Our study focused on V, a summary texture measure, but there are
many other features that have potential implications. For example,

Malkov et al. (2016) examined 46 breast texture features and
identified 15 that were significantly associated with breast cancer
risk (p < 0.05), several of which were only weakly correlated with
PMD9. In future studies, we will assess the relative importance of
multiple features, independently and in combination with PMD.
There is potential measurement error in the exposure assessment,
particularly given that mammograms in this study were collected
from across the United States across many years and images had
multiple image resolution levels. To address this, we conducted
sensitivity analyses and found the strongest associations among
high-resolution images. This study utilized digitized film mammo-
grams. As of November 1, 2019, 99.9% (21,156/21,182) of all
accredited mammography units in the US are digital33. However,
Nielsen et al. found that while differences in population
characteristics and imaging technology did affect texture feature
measurement, these factors did not impact the association
between texture and breast cancer risk7. Further, Vachon et al.
showed that associations with breast cancer were similar between
full field digital mammogram image types (raw or processed) and
digitized film34, demonstrating that these measures are stable
phenotypes across image acquisition approaches and our findings
are valid despite the use of digitized film mammograms. The
relative consistency of our results compared to other studies with
different imaging modalities confirms this assertion. Lastly, the
Nurses’ Health Studies consist of predominantly white women.
Future studies should assess associations among more diverse
populations.
In conclusion, we demonstrate that APD is feasible and yields

risk estimates that are similar to, but somewhat weaker than, a
more labor-intensive and less reproducible manual measure. Our
finding of independent and joint associations of PMD, APD, and V
provides insights into breast cancer etiology. This study supports
existing evidence that the amount dense tissue and its hetero-
geneity are both important factors in breast cancer risk.

METHODS
Study population
Our study population includes 1900 breast cancer cases and 3921 matched
controls from the Nurses’ Health Study (NHS) and Nurses’ Health Study II
(NHSII). NHS began in 1976 with 121,700 female registered nurses aged
30–55 from 11 states. NHSII began in 1989 with 116,429 female registered
nurses, aged 25–42, from 14 states. Participants in each cohort completed
a baseline questionnaire at enrollment and are followed by biennially
mailed questionnaires to collect information on newly diagnosed diseases,
exposures, and covariates.

Mammogram collection and processing
Mammogram collection was conducted within the NHS and NHSII breast
cancer case-control studies nested in the blood subcohorts35. One or two
controls were matched to breast cancer cases on age, menopausal status
at blood draw and diagnosis, current hormone therapy use, month, time of
day, fasting status at time of blood collection, and luteal day (NHSII timed
samples only). We collected pre-diagnostic screening mammograms
conducted as close as possible to the blood draw date, but before June
1, 2004 (NHS) or June 1, 2007 (NHSII). We collected additional
mammograms conducted around 1997 from NHSII cases and controls
who participated in the NHSII cheek cell collection. In total, mammograms
were collected from 2062 breast cancer cases and 4196 matched controls.
We excluded 162 cases and 275 controls due to missing data on V or BMI.
Film mammogram cranio-caudal (CC) views of each breast were digitized
with a Lumysis 85 laser film scanner or a VIDAR CAD PRO Advantage
scanner (VIDAR Systems Corporation, Herndon, VA, USA). The correlation
between percent density measures from the two scanners was 0.8836.
Cohort participants provided written informed consent. The study protocol
was approved by the institutional review boards of the Brigham and
Women’s Hospital and Harvard T.H. Chan School of Public Health, and
those of participating registries as required.
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Manual percent mammographic density (PMD)
PMD was assessed using Cumulus, a computer-assisted thresholding
software program (University of Toronto, Toronto, Canada), from digitized
film mammograms (craniocaudal view)37. PMD was calculated as dense
breast area divided by the total breast area. All images were assessed by a
single reader (within-person intra-class correlation coefficient > 0.90)38.
Observed inter-batch variability was accounted for using methods
described elsewhere39,40. PMD measures in the left and right breast were
averaged.

Automated percent mammographic density (APD)
This APD method detects small dense regions on a mammogram after
applying a wavelet high-pass filter and produces an output analogous to
that of the operator-assisted PMD. The basic algorithm and its validation
were described previously and details are provided in Supplementary
Methods6,41,42. To avoid the chest wall, detection is performed in
cranioclaudial views only. First, the breast area was detected creating a
binary mask shown in Supplementary Fig. 1 using a method described in
related work. Because the images in this study had high variability and
contained many artifacts in the non-breast area, automated segmentation
for each image was evaluated visually. When the breast area segmentation
was deemed not appropriate for further processing, manual intervention
was applied. The breast area detection performance is provided in the next
section. After this step, modifications to the APD algorithm were required
to account for the relatively low resolution of the mammograms used in
this study (171, 232, or 300 µm) described in detail in the next section; the
main modification is based on multiplying a given mammogram with a
noise field producing an image illustrated in Supplementary Fig. 2 and
then filtering this image in place of the raw image.

Automated percent mammographic density (APD) technique
and modifications
The density detection is based on the signal dependent noise
characteristic in mammograms, analyzed in the high-pass wavelet filtered
image. Due to the low resolution, the noise characteristic was not strong
enough to characterize the density in the filtered images, requiring
algorithm modifications. These modifications are described here within the
context of the algorithm flow described in the main report. In the
unmodified algorithm, the digitized images were first transformed (a pixel
mapping) described previously6 [and then processed with a high-pass
wavelet filter. The density detection is performed in two stages in the
wavelet filtered image, differing in thresholds based on predefined
significance levels (i.e., operating parameters). To boost the noise signal,
each transformed image was multiplied with a different realization of a
zero mean unit variance Gaussian noise field and then scaled to 14 bit
(integer) prior to applying the wavelet high-pass filter. Examples of this
process are shown in Supplementary Fig. 2. The automated density
detection was then performed by replacing a given transformed image
with its corresponding noise field exemplified in Supplementary Fig. 2.
These modified images were then filtered and the density detection was
constrained to the breast area using the algorithm described pre-
viously6,41,42. In the first stage, a reference variance (i.e., the global adipose
variance) is estimated using the entire breast area in the filtered image. A
small search window (4 × 4 pixels) is scanned across the filtered image. At
each window location, a chi-square statistical test is performed by
comparing the local variance calculated within the window with the
reference variance to decide if the region is dense or not as represented in
the raw image (i.e., larger local variation is more likely to correspond to a
region with high breast density in the raw image). The connection
between the local variation in the filtered image and the digitized (raw)
image density characteristics was demonstrated previously41,43. This
detection method is applied a second time in the filtered image by
updating (refining) the reference variance. The reference variance is
updated by calculating the variance across the breast area in the filtered
image using regions not labeled as dense in the first detection stage.
Because of the noise field multiplication modification, we used 300 images
(100 images from each resolution) as a test set to adjust the algorithm’s
parameters. Each training image had the corresponding density deter-
mined with Cumulus. The operating points were determined by finding
the parameters that gave the optimal correlation with the Cumulus
measures. These correspond to significance levels used in the first and
second detection stages discussed above respectively: 0.001 and 0.0001.
The entire dataset was then processed.

Breast area segmentation performance
This algorithm produced acceptable breast area detection in most
samples. However, there were both total and partial failures that were
corrected manually. In some instances, artifacts external to the breast area
remained that induced failures in subsequent segmentation processing
steps; these failures occurred ~3% of the images, which were corrected
manually. Approximately 6% on the images had a digitizing process
anomaly (i.e., the film was not position correctly when fed into the
digitizer) noted as bright wedges on the vertical borders of the images.
After the breast area detection, these over contrasted areas were removed
manually.

Automated summary measure of texture features (‘V’)
V is an automated measure that captures gray-scale variation on a
mammogram. The algorithm was described previously and is briefly
outlined here14,42. The breast is first segmented from the background. The
breast area is then eroded by 25% along a radial direction to eliminate the
region corresponding to where the breast was not in contact with the
compression paddle (an approximation) during the image acquisition44.
The erosion process is illustrated in Supplementary Fig. 1. This erosion step
reduces unwanted variation in the V calculation. V is calculated as the
standard deviation (SD) of the pixel values within the eroded breast area.
This is a continuous measure that is not synthetically normalized. There are
no operating parameters or thresholds required for this measure (i.e.,
training data is not required), although the background segmentation
processing required preliminary analyses. Because the mammograms were
at various resolutions, they were resolution-normalized prior to generating
V. The V distributions were also normalized to account for intensity scale
differences across the various forms of digitized mammograms. Extensive
additional processing steps were required and are described in related
work45. Example images with high and low levels of PMD and V are shown
in Supplementary Fig. 2.

Statistical analyses
We used unconditional logistic regression to determine the association
between PMD measures, V, and breast cancer risk, while adjusting for
matching factors and the following potential confounders: age at
mammogram (years), body mass index (kg/m2), menopausal status
(premenopausal, postmenopausal, unknown), hormone therapy use
(never, past, current, unknown), mammogram read batch (batch 1, batch
2, batch 3). APD, PMD, and V were categorized into quartiles based on their
distribution in controls. We tested for linear trend using category medians
as a continuous variable. We also evaluated each measure as a continuous
variable and present effect estimates for a one SD increase to account for
scale differences. To determine whether each measure was independently
associated with breast cancer risk, we present models for PMD or APD
adjusted for V, V adjusted for PMD or APD, and APD adjusted for PMD and
vice versa. To assess potential interaction, we used likelihood ratio tests
with nine degrees of freedom to compare a model with cross-classified
quartiles of PMD (or APD) and V to a model with PMD (or APD) and V in
quartiles. We conducted secondary analyses: (1) by estrogen (ER) and
progesterone (PR) receptor status (ER+/PR+, ER+/PR−, or ER−/PR−) and
(2) restricted to high-resolution images. All analyses use α= 0.05 for
statistical significance. All statistical tests were two sided. All analyses were
performed using SAS software (version 9.4 SAS Institute, Cary, NC, USA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1451175646. The data that support
the findings of this study are available from the Nurses’ Health Studies, however they
are not publicly available. Investigators interested in using the data can request
access, and feasibility will be discussed at an investigators’ meeting. Limits are not
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http://www.nurseshealthstudy.org/researchers.
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