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Theory for electric dipole 
superconductivity with an 
application for bilayer excitons
Qing-Dong Jiang1, Zhi-qiang Bao2, Qing-Feng Sun1,3 & X. C. Xie1,3

Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons 
undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in 
various bilayer systems. However, experimental measurements only provide indirect evidence for 
the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an 
electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric 
dipole superconductors. By using these equations, we discover the Meissner-type effect and the 
electric dipole current Josephson effect. These effects can provide direct evidence for the formation of 
the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

Since the idea of excitonic condensation was proposed about fifty years ago1–3, exciton systems have 
attracted a lot of interest. With the development of micromachining technology in the last two decades, 
high-quality bilayer exciton systems can be fabricated in the laboratories, in which one layer hosts elec-
trons and the other layer hosts holes4,5. Many new interaction phenomena have been experimentally 
reported in the bilayer exciton systems6–15, including the vanishing Hall resistance for each layer6, the 
resonantly enhanced zero-bias inter-layer tunneling phenomenon8, the large bilayer counterflow conduc-
tivity9, the Coulomb drag10–13, etc. These phenomena strongly imply the formation of the exciton con-
densate superfluid state, in which many excitons crowd into the ground state. Some theoretic works have 
proposed several methods to detect the superfluid state16–18. However, due to the charge neutral nature 
of an exciton, there exists no direct experimental confirmation of the superfluid state. Thus, whether the 
superfluid state really forms is still unclear.

Before any further discussion, we need first to point out the specificity of excitons in bilayer systems. 
Because the electrons and holes are separated in space and bound with each other by the Coulomb 
interaction, the exciton in a bilayer system can be seen as a charge neutral electric dipole (as shown in 
Fig. 1a). On the other hand, superconductivity has been one of the central subjects in physics. The super-
conductor state has several fascinating properties, such as zero resistance19, the Meissner effect20, the 
Josephson effect21, and so on, which have many applications nowadays22. It is now well known that the 
superconductor is the condensate superfluid state of the Cooper pairs23, which can be viewed as electric 
monopoles. In other words, the superconductor state is the electric monopole condensated superfluid 
state. Thus, it is natural to ask whether the electric dipole superfluid state possesses many similar fasci-
nating properties, just like its counterpart, the electric monopole superfluid state.

In this article, we will derive the London-type and Ginzburg-Landau-type equations of electric dipole 
superconductivity under an external electromagnetic field, and apply this theory to the bilayer exciton 
systems, revealing the basic characteristics of the electric dipole superconductors. Apart from the bilayer 
exciton systems, the electric dipole superconductor may also exist in other two or three dimensional 
systems, e.g., the Bose-Einstein condensate of ultracold polar molecules24–26. In fact, the ultracold polar 
molecules have been successfully produced in the laboratory over the past decade24–26. In addition, a new 
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quantum state was proposed recently27–29, a magnetic dipole superconductor named the spin supercon-
ductor. Both electric and magnetic dipole superconductors contain some similar properties.

It should also be pointed out that the exciton superfluid have indeed been investigated by a lot of 
references in the last fifty years1–3. The Ginzburg-Landau equations of the exciton superfluid have been 
derived and applied extensively. Notice that the exciton’s electric dipole is usually zero, or is neglected. 
So there is an essential difference between the electric dipole superconductor and the exciton superfluid. 
In addition, a few previous works have investigated the dipole superfluid16,17,30,31. For example, Balatsky 
et al. investigated the bilayer exciton system under an in-plane magnetic field and found that the phase 
of the condensate can couple to the gradient of the vector potential. Therefore, the dipolar supercurrent 
can be tuned by the in-plane magnetic field16. Rademaker et al. predicted a quantization of magnetic 
flux between two layers in bilayer exciton superfluid17. These previous works on electric dipole superfluid 
only focus on a special system, namely the bilayer exciton system, and mainly investigate the effect of the 
in-plane magnetic field between the two layers.

Below we first derive the London-type and Ginzburg-Landau-type equations of the electric dipole 
superconductor. These equations can be applied to all electric dipole superconductors independent of 
specific systems and we apply them to study various physical properties of the electric dipole supercon-
ductor. By using these equations, we find that the Meissner-type effect and the Josephson effect of the 
electric dipole current. With the Meissner-type effect, an external magnetic field gradient can cause a 
super electric dipole current in an electric dipole superconductor, and a super electric dipole current 
can further generate a magnetic field gradient that is against the gradient of the external magnetic field. 
Considering the bilayer exciton systems, we show that the magnetic field induced by the super dipole 
current is measurable by today’s technology. We also show that the frequency in the AC Josephson effect 
of the electric dipole current is equal to that of the AC Josephson effect in the normal superconductor. 
These new effects discovered in this work can not only provide direct evidence for the existence of the 
exciton condensate superfluid state in the bilayer systems, but also pave new ways to drive an electric 
dipole current.

Results
London-type equations of the electric dipole superconductor. Considering a bosonic electric 
dipole condensate superfluid state, namely the electric dipole superconductor, under an external electric 
field, the force on the electric dipole p0 is

( )= ⋅ ∇ = ( )
⁎m d
dt

F p E v
10

which accelerates the dipole. Here, E is the electric field, m* is the effective mass of the dipole and v is 
its velocity. The moving electric dipole induces an electric dipole current. Due to the electric dipole p0 
being a vector, the electric dipole current has to be described by a tensor p. Here  ijp,  (i,j ∈  {x,y,z}) 
describes the i-direction current with the electric dipole pointing to the j-direction. In analogy with the 
spin current (or the magnetic dipole current)32,33, the electric dipole current can be described by 
 nvpp 0=  with the dipole density n in the classical system or  vpRep 0( )ψ ψ= ⁎  with the wave function 

Figure 1. A side view of the exciton in bilayer system and the induced supercurrent by magnetic field 
gradient. (a) The top and bottom layers host holes and electrons respectively, and the middle blue block 
stands for the interlayer barrier which prevents tunneling between the two layers. (b) The left (right) panel 
shows the induced super electric dipole current for magnetic field gradient ∂Bz/∂z <  0 (∂Bz/∂z >  0). The 
arrows on the blue lines denote the direction of positive charge flow in each layer.
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ψ in the quantum system. In this work, we focus on the situation where the direction of the electric 
dipole p0 is fixed in the z-direction (as is the case in a bilayer exciton system), thus we only need a vec-
tor Jp =  np0v to describe the electric dipole current with  pJ pp 0= ˆ , where p pp0 0 0= ˆ  and p ez0 =ˆ  is the 
unit vector in the direction of p0. To combine Jp =  np0v and Eq. (1), the derivative of Jp with respect to 
time is

d

dt
p

J
E 2

p
0( )β= ⋅ ∇ , ( )

ˆ

where np m0
2β = / ⁎. We can see that, just as E accelerates the super electric current22, p E0( )⋅ ∇ˆ  accel-

erates the super electric dipole current. Taking curl on both sides of the equation (2) and using the 
Maxwell equation34 ∇  ×  E =  − ∂B/∂t, we have pJ B

t p t 0( ) ( )β∇ × = − 
 ⋅ ∇ 


∂
∂

∂
∂

ˆ . This equation suggests 
that we can find a conserved quantity, p CJ Bp 0( )β∇ × + ⋅ ∇ =ˆ  with the constant C being independ-
ent of the time t. In the present case, p ez0 =ˆ  and p

z0 ⋅ ∇ =
∂
∂

ˆ . As a result, if the dipole current Jp =  0 
deep inside the dipole superconductor, the variation of the magnetic field along the z direction, 

z
B∂
∂

, is 
always invariant with the time. Let us discuss the constant C. First, we consider a limiting case when the 
external magnetic field Bext is zero. Then if Jp is zero, the magnetic field Bind induced by Jp is also zero, 
the total magnetic field B =  Bext +  Bind =  0 and the constant C is zero. Obviously, in this case, the free 
energy of the system is the lowest and it is lower than the case with a non-zero constant C. Thus we take 
C to be zero due to the requirement of thermodynamic stability. Second, when the external magnetic 
field Bext changes from zero to a finite value, the constant C remains zero because that it is a conserved 
quantity. Thus, we get the London-type equation for Jp,

( )β∇ × = − ⋅ ∇ . ( )p̂J B 3p 0

Equations (2) and (3) play similar roles as the London equations for normal superconductors22, so we 
call them the first and the second London-type equations for the electric dipole superconductor. Equation 
(3) implies that the gradient of a magnetic field B will induce a super electric dipole current. As is shown 
in Fig. 1b, if the gradient of magnetic field ∂Bz/∂z <  0, the super dipole current flows in the counterclock-
wise direction (left panel of Fig. 1b); if ∂Bz/∂z >  0, the super dipole current flows in the clockwise direc-
tion (right panel of Fig.  1b). In addition, the super dipole current can also have a feedback for an 
external magnetic field. The magnetic field generated by a moving electric dipole p0 with velocity v is 
equivalent to that generated by a static magnetic moment m =  − v ×  p0

34,35. As a consequence, the mag-
netic field induced by the super dipole current Jp is equivalent to that induced by the static magnetic 
moment distribution (magnetization) n pM m J p 0= = − × ˆ . In materials, the last Maxwell equation 
takes the form ∇  ×  B =  μ0(jf +  ∇  ×  M +  ∂D/∂t)34, where jf stands for the free electric current and D is 
the effective electric field. In the equilibrium case, ∂D/∂t =  0 and with no free electric current present, 
only the super dipole current exists, so we obtain the magnetic field equation in the electric dipole super-
conductor:

pB J 4p0 0( )μ∇ × = − ∇ × × . ( )ˆ

The London-type equation (3) and the magnetic field equation (4) govern the magnetic field and 
the super dipole current in an electric dipole superconductor. An alternative set of equations that are 
equivalent to equations (3) and (4) are given in Methods. From equations (3) and (4), we can obtain the 
Meissner-type effect against the gradient of an external magnetic field, which will be studied below. We 
can see the effect of equation (3) by considering a massless Dirac particle for which the factor β →  ∞. In 
this case, the total magnetic field gradient ∂zBz has to vanish everywhere inside an electric dipole super-
conductor in order to satisfy the equation (3). This means that the gradient ∂zBz is completely screened 
out.

Ginzburg-Landau-type equations of the electric dipole superconductor. Since the electric 
dipole condensate is a macroscopical quantum state, we can use a quasi-wave function (or the order 
parameter) ψ(r) to describe it. Then its free energy can be written as Fs =  ∫Vfsdr, where fs is the free energy 
density. In analogy with the superconductor, fs can be expressed as:

f f T
T

m
r r

p p B r B
2 2 2 5s n

2 4 0

2
2

0

( )
α ψ

β
ψ

ψ

μ
= + ( ) ( ) +

( )
( ) +

+ × ( )
+ ,

( )

ˆ
⁎

where fn is the density of free energy in normal state and the momentum operator ip = − ∇ˆ . The two 
terms α(T)|ψ(r)|2 and β(T)|ψ(r)|4/2 are the lower order terms in the series expansion of the free energy 
fs, which have similar meanings as those in the normal superconductor22,36. Particularly, the gauge invar-
iant term |(p +  p0 ×  B)ψ(r)|2/2m* can be viewed as the kinetic energy of the electric dipole 
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superconductor (see Methods). Substitute B =  ∇  ×  A and minimize the free energy with respect to ψ* 
and the magnetic vector potential A respectively, we get (see Methods)

T T
m

p p B

2
0 6

2 0
2

α ψ β ψ ψ
ψ

( ) + ( ) +

 + × 

 = , ( )

ˆ
⁎

( )μ∇ × = − ∇ × × , ( )p̂B J 7p0 0

where

p

m
iJ p B

2
2 8p

0
0

2 ψ ψ ψ ψ ψ= 
 ( ∇ − ∇ ) + × 

. ( )⁎
⁎ ⁎

Equations (6) and (8) are the first and the second Ginzburg-Landau-type equations, respectively. They 
provide a full phenomenological description of the dipole superconductor. Since the velocity operator is 

mv p p B0( )= + × /ˆ ˆ ⁎, the super electric dipole current can be expressed as 
p Re iv p B2

p

m0 2 0
20 ψ ψ ψ ψ ψ ψ ψ( ) = 

 ( ∇ − ∇ ) + × 
ˆ⁎ ⁎ ⁎

⁎
. Comparing the expression p Re v0 ψ ψ( )ˆ⁎  and 

equation (8), we find that Jp is exactly the super dipole current density. It should be noted that equation 
(7) is the same as the magnetic field equation (4). It indicates that the Ginzburg-Landau-type theory gives 
a more general result. Next we derive the London-type equations from the Ginzburg-Landau-type equa-
tions. The order parameter ψ(r) can be written as |ψ(r)|eiθ(r), where |ψ(r)|2 is proportional to the density 
of dipoles n and θ represents the phase. For simplicity, we assume the amplitude |ψ| is the same every-
where in the dipole superconductor, whereas the phase θ(r) are allowed to change in order to account 
for the super dipole current. Substitute ψ =  |ψ(r)|eiθ(r) into equation (8), we get J p Bp

p n

m 0
0 ( )θ= ∇ + ×⁎ . 

Furthermore, if we take curl on both sides, the London-type equation (3) is recovered. It indicates that 
the London-type equations can be obtained from the Ginzburg-Landau-type equations, which shows the 
validity and consistency of our theory.

Meissner-type effect of the electric dipole superconductor. In the following, we use the 
London-type equations to analyse the Meissner-type effect. We begin by considering a two-dimensional 
circular electric dipole superconductor with a radius rout located in a non-uniform external magnetic field 
Bext created by a cylindrical hollow conductor with an inner (outer) radius Rin (Rout) and a height h 
(shown in Fig. 2a). The distance between the cylindrical hollow conductor and the dipole superconduc-
tor is t. Figure 2b depicts the cross-section of the device. A uniform electric current along the azimuthal 
direction in the hollow conductor creates a non-uniform magnetic field with a gradient Bz z

ext∂  (see 
Supplementary), which can induce a super dipole current in the electric dipole superconductor. Substitute 

Bz z
ext∂  into the London-type equation (3), considering the rotational symmetry of the whole device and 

Figure 2. Meissner-type effect of the electric dipole superconductor. (a) The schematic diagram of the 
device consisting of a cylindrical hollow conductor and a circular bilayer exciton system (the electric dipole 
superconductor), and (b) the cross section of the device. Rin (Rout) is the inner (outer) radius of the hollow 
conductor, and rout is the radius of the dipole superconductor. m is the middle plane of the bilayer exciton, 
and l is distance between dipole superconductor and the point Q where magnetic field can be measured. h 
and d are, respectively, the thickness of the conductor and the dipole superconductor and t is the distance 
between them. (c,d) The induced super dipole current Jp and the gradient of the induced magnetic field 

Bz z
ind∂  in the middle plane m versus radius r. (e) The induced magnetic field Br

ind versus the distance l. The 
parameters are Rin =  1 mm, Rout =  1 cm, h =  1.5 cm, t =  0.1 mm, and rout =  1 mm, and the thickness d =  13 nm 
and d =  10 nm, respectively.
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∇  ⋅  Jp =  0, we can obtain the super electric dipole current density Jp at radius r (flowing in the azimuthal 
direction):

J r
r

r dr B r z[ ] 9p

r

z z
ext

0∫
β

( ) =
−

′ ′ ∂ ( ′, ) . ( )

In the following, we consider that the electric dipole superconductor is the bilayer exciton system (see 
Fig.  1a). Then the super electric dipole current can be viewed as a counterflow electric current in the 
bilayer as shown in Fig. 1b and thereby induces a magnetic field Bind. Since the counterflow current in 
bilayer and the rotational symmetry about the z axis, the induced magnetic field Bind in middle plane m 
only has the nonzero r-component Br

ind. Although the z-component B 0z
ind = , the induced gradient 

Bz z
ind∂  does not vanish. Figure 2d,e show Bz z

ind∂  and Br
ind in plane m which can easily be calculated from 

the Biot-Savart law (see Supplementary).
In the calculation, we take cylindrical hollow conductor sizes as Rin =  1 mm, Rout =  1 cm and h =  1.5 cm. 

The current density in conductor j =  108 A/m2, which generates the non-uniform external magnetic field 
Bext. The bilayer exciton specimen, the electric dipole superconductor, is below the conductor with 
t =  0.1 mm and the radius rout =  1 mm. Here the specimen is just in the hollow region of the conductor, 
because Bz z

ext∂  is relatively large there (see Supplementary). The two-dimensional carrier density in each 
layer n is chosen 1012 cm−2 and the effective mass of exciton m* =  0.01 me with the electron mass me. 
Figure 2c,d,e show respectively the induced super dipole current density Jp, the induced magnetic field 
gradient Bz z

ind∂  and Br
ind versus radius r for bilayer thickness d =  3 nm and d =  10 nm. A quite large Jp is 

induced near the edge of the specimen, in which the corresponding electric current density in each layer 
near the edge is about 15 A/m. From Fig. 2d, we find that the induced gradient B rz z

ind∂ ( ) counteracts the 
external field gradient B rz z

ext∂ ( ). This is a Meissner-type effect in the dipole superconductor against the 
gradient of a magnetic field. Notice that it is not against the magnetic field. This is the main difference 
between the dipole superconductor and (monopole) superconductor. Also notice in Fig. 2d, B rz z

ind∂ ( ) is 
much smaller than B rz z

ext∂ ( ) because the thickness d of the dipole superconductor is very small now. If 
for the thick dipole superconductor or for very small m*, B rz z

ind∂ ( ) can almost be of the same value as 
B rz z

ext∂ ( ), then the gradient of the total magnetic field vanishes inside of the dipole superconductor. 
Figure 2e shows the induced magnetic field Br

ind by the super dipole current, which can reach about 0.05 
Gauss. This magnetic field can be accurately detected by the today’s technology. In addition, a recent 
work has successfully used the SQUID to detect a tiny edge current (around 0.5 A/m) in the Hall speci-
men37. In our case, the edge current density is around 10 A/m, so it should be detectable using the same 
method.

The detection of the zero dipole resistance. The most remarkable phenomenon of the 
Bose-Einstein condensate macroscopic quantum system is superfluid, e.g. the zero resistance phenome-
non of the (monopole) superconductor19,22. For the dipole superconductor, the dipole resistance is zero, 
i.e. the electric dipole can flow without dissipation. In the following, we suggest a method to detect the 
zero dipole resistance.

From the first London-type equation (2), we know that a variation of an electric field ∂zE can excite 
a super dipole current. This excited super dipole current will maintain for a very long time if the dipole 
resistance is zero. Now, consider an annular dipole superconductor specimen. This annular specimen is 
placed below the cylindrical hollow conductor (see Fig.  3a,b), and there Bz z

ext∂  is relatively small and 
Az

ext∂ θ  is quite large38 (see Supplementary). First, let the hollow conductor have an azimuthal electric 
current j and then cool the specimen into the dipole superconductor state. Next, we abruptly turn off the 
current j in the conductor. In this process, an azimuthal dipole current Jp will be excited. From the 

Figure 3. The proposed device for detection of a zero dipole resistance. (a,b) The schematic diagram of 
the proposed device and its cross section. The electric dipole superconductor is in annular shape with an 
inner radius rin and a outer radius rout. Other symbols appeared in these figures have the same meanings as 
those in Fig. 2a,b. (c,d) The super electric dipole current and its induced magnetic field Br

ind with the sizes 
of the dipole superconductor rin =  7 mm and rout =  9 mm. The other parameters are the same as in Fig. 2.
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equation (2) and E
t
A= −∂
∂

, we have d J dt E A[ ]p z
ext

t z
extβ β/ = ∂ = − ∂θ θ

∂
∂

. Integrating over the time t, we 
obtain the excited super dipole current:

J A 10p z
extβ= ∂ , ( )θ

where the vector potential A ext
θ  is that before the current in the conductor was turned off. Here we have 

used A 0ext =θ  after the current turned off and Jp is almost zero at the beginning. Figure 3c,d show the 
excited super dipole current Jp and the magnetic field Br

ind induced by Jp. From which we find that Jp and 
Br

ind are quite large. Moreover, this excited super dipole current Jp does not decay for a very long time 
because of the zero dipole resistance. So one can measure the non-decayness of Jp to confirm the zero 
dipole resistance.

DC and AC electric dipole current Josephson effect. The Josephson effect is another highlight of 
the superconductor21. Below we use the Ginzburg-Landau-type equations of the electric dipole supercon-
ductor to discuss the dipole current Josephson effect in a dipole superconductor-insulator-dipole super-
conductor junction. From the Ginzburg-Landau-type equations (6) and (8) we can see that if B =  0, they 
are the same as the Ginzburg-Landau equations of the superconductor when A =  0. Therefore, the DC 
Josephson effect of the dipole superconductor and the (monopole) superconductor are similar, i.e., the 
super electric dipole current is jp =  j0 sin γ0, where γ0 =  γ1 −  γ2. j0 is the Josephson critical super dipole 
current, and γ1, γ2 are phases of the dipole superconductors.

Now we study the AC dipole current Josephson effect and consider an electric field variation ∂zEx. 
From the first Ginzburg-Landau-type equation (6), we can get the change of the phase when the super 
dipole current (in x-direction) passes through the Josephson junction. Its expression is 

dxp B ex0
1

1

2
0 ( )∫γ γ= + × ⋅ . Taking the derivative with respect to time, we get 

dxe e
t

p
z t x

B
1

20

 ( )∫= × ⋅γ∂
∂

∂
∂

. Substituting E
t
B = −∇ ×∂
∂

, we have γ =  γ0 −  ω0t with 

E dx
p

z x0 1

20

 ∫ω = − ∂ . As a result, the super dipole current can be written as jp =  j0 sin(γ −  ω0t). It shows 
that the dipole current is an alternating current, although the electric field spatial variation is 
time-independent. We can compare this with the (monopole) superconductor. For the superconductor, 
a time-independent electric field (or bias) can drive an AC Josephson current. Now a spatial variation of 
an electric field drives an AC dipole Josephson current.

Next, we consider that the dipole superconductor is the bilayer exciton system. Figure 4a shows the 
schematic diagram for the device of dipole current Josephson junction. A thin wire connects the left sides 
of the two layers, which enables the current to flow between them. Then, if we apply the voltages − V2 
and V2 to the right sides between the bilayer, it establishes an electric field in − x (x) direction in the 
bottom (top) layer (see Fig.  4a). This means that a spatial variation of electric field, ∂zEx, is added on 
junction, so an AC dipole Josephson current is driven and an alternating electric current emerges in the 
external circuit, although only a DC bias is added. For the bilayer exciton system, p0 =  ed and ∂zEx =  2Ex/d, 
so the frequency E dx V Ved

d x
e

0
2

1

2 2
2 1 ∫ω = − = ( − ). This frequency is the same with that of the AC 

Josephson effect of the superconductor21. The reason is as follows. In the electric current Josephson effect, 
two electrons form a Cooper pair, and the Cooper pair moves in response to external voltages. In the 

Figure 4. The electric dipole current Josephson junction. (a) The schematic diagram for the device of 
dipole current Josephson junction, the bilayer exciton system-insulator-bilayer exciton system junction. The 
left sides of the two layers are connected by a wire, and the right sides of the two layers are connected with 
voltages V2 and − V2, respectively. V1 and − V1 are the voltages of the left sides of the two layers. The red 
arrows denote the direction of the electric fields in the top layer and bottom layer, respectively, while the 
blue arrows represent the flowing direction of holes (electrons) in the top (bottom) layer. (b) The top figure 
and the bottom figure show the Cooper pairs (electron-electron pairs) in a ordinary superconductor under 
a voltage V2 −  V1 and the electric dipoles (electron-hole pairs) in an electric dipole superconductor under 
a bilayer counter voltage, respectively. Here the Cooper pairs and the electric dipoles feel the same electric 
forces.
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dipole current Josephson effect in the bilayer system, however, a pair consists of an electron and a hole, 
which moves in response to the counter voltages. The comparison between them is shown in Fig. 4b, in 
which the top figure shows the ordinary (monopole) superconductor and the bottom figure stands for 
the electric dipole superconductor. The only difference between them is that the voltages for the hole 
layer have different sign with those for the electron layer. It is clear that the electron-electron pairs feel 
the same electric force in the ordinary superconductor as the electron-hole pair in the dipole supercon-
ductor. Thus the frequencies of the alternating current should be the same in the two cases. The fact that 
the results are indeed exactly the same shows that these results of the dipole superconductor are reason-
able and credible. In addition, since its frequency is the same as that of the superconductor, it is not 
difficult to measure in an experiment because the latter has been observed for a long time. As a result, 
detecting the electric dipole current Josephson effect is another feasible method to verify the formation 
of the dipole superconductor.

Discussion
In conclusion, we view the exciton condensate superfluid state in bilayer electron system as an electric 
dipole superconductor state. Then, from the properties of the electric dipoles in an external electromag-
netic field, we derive the London-type and the Ginzburg-Landau-type equations for an electric dipole 
superconductor. These equations are universal to all dipole superconductors and can also be used to study 
various properties of a dipole superconductor. By using these equations, we discover the Meissner-type 
effect against the gradient of the magnetic field and the DC and AC dipole current Josephson effects, and 
also suggest a method to detect the zero dipole resistance. These new effects discovered in this work can 
not only provide direct evidence for the existence of the exciton superfluid in bilayer electron systems, 
but also pave new ways to drive an electric dipole current.

Methods
An alternative set of equations for the electric dipole superconductor. Starting from Eqs. (3) 
and (4), we can get an alternative set of equations to describe the electric dipole superconductor in the 
steady state. First of all, make some simplification on Eq. (4), i.e,

( )
( )( )

( )

μ

μ μ

μ

∇ × = − ∇ × ×

= − ⋅ ∇ − ∇ ⋅

= − ⋅ ∇ . ( )

ˆ

ˆ ˆ

ˆ

p

p p

p

B J

J J

J 11

p

p p

p

0 0

0 0 0 0

0 0

The term ∇  ⋅  Jp is taken to be zero in the steady state because of the conservation of the super electric 
dipole current in material. By taking curl on both sides of the London-type equation (3), one has 

pJ Bp 0( ) ( )β∇ × ∇ × = − ⋅ ∇ (∇ × )ˆ . Combining this equation and Eq. (11), we obtain the equation 
for the super electric dipole current density

pJ J 12p p0 0
2( ) μ β∇ × ∇ × = ( ⋅ ∇) , ( )ˆ

where the characteristic dimensionless ratio np m0 0 0
2μ β μ= / ⁎ governs the screening strength. If we take 

curl on both sides of Eq. (11), it transforms into pB J p0 0 ( )( )μ∇ × (∇ × ) = − ⋅ ∇ ∇ ×ˆ . Combine this 
equation and the London-type equation (3), then we get the equation for magnetic field

pB B 130 0
2( )μ β∇ × (∇ × ) = ⋅ ∇ . ( )ˆ

Now, we have obtained an alternative set of Eqs. (12) and (13) describing the magnetic field and the 
super electric dipole current separately in the electric dipole superconductor.

The Hamiltonian of a moving electric dipole and the kinetic energy term of the electric dipole 
superconductor. An electric dipole moving with velocity v in magnetic field B can feel an electric 
field E′ =  v ×  B, and the corresponding energy is − p0 ⋅  E′ =  − p0 ⋅  (v ×  B) =  v ⋅  (p0 ×  B)34,35. Therefore, the 
Lagrangian of this electric dipole is ( )= − ⋅ ×ℒ ⁎m v v p B1

2
2

0 , where m* is the effect mass of the 
electric dipole. The canonical momentum is = = − ×∂

∂
ℒ ⁎mp v p B
v 0 . Thus the Hamiltonian of a 

moving electric dipole in a magnetic field is

= ⋅ − =

 + × 

 . ( )ˆ
ˆ

ℋ ℒ ⁎m
p v

p p B

2 14
0

2

The term p0 ×  B is analogous to the term eA/c for an electron in a magnetic field. So the kinetic 

energy term of the electric dipole superconductor can be written as: 
m

p p B r

2
0

2
( )ψ+ × ( )ˆ

⁎ .
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The derivation of the Ginzburg-Landau-type equations of the electric dipole superconduc-
tor. First of all, we minimize the free energy shown in Eq. (5) with respect to the complex conjugate 
of the order parameter ψ*. For the second and third terms of Eq. (5), we have

∫ ∫δ α ψ
β

ψ α ψ β ψ ψ δψ




( ) ( ) +

( )
( )




= ( ) ( ) + ( ) ( ) ( ) ( ) .

( )
⁎d T

T
d T Tr r r r r r r r

2 {[ ] } 15V V

2 4 2

For the fourth term, we get






∫ ∫
( )

( )

( ) ( )

δ
ψ

δψ ψ

δψ ψ

+ × ( )
=












∇ ( )






 − ∇ + × ( )

+ 
 × ( ) 


 − ∇ + × ( ) . ( )

ˆ
⁎ ⁎

⁎

⁎
⁎ }

d
m

d i
m

i

m
i

r
p p B r

r r p B r

p B r p B r

2 2
1

2 16

V V

0

2

0

0 0

It should be noted that










∫

∫

( )

( )

( )

δψ ψ

δψ ψ

δψ ψ

∇ ( ) − ∇ + × ( )

= ⋅ ( ) − ∇ + × ( )

− ∇ ⋅  − ∇ + × ( ) . ( )

∮
⁎

⁎

⁎
⁎

⁎
⁎

{ }

{ }
{ }

d i
m

i

i
m

d i

i
m

d i

r r p B r

S r p B r

r p B r

2

2

2 17

V

V

0

0

0

Combining Eqs. (15), (16) and (17), we can obtain:

T T
m

r r r
p p B r

2
0 18

2 0
2

α ψ β ψ ψ
ψ

( ) ( ) + ( ) ( ) ( ) +

 + × 

 ( ) = , ( )

ˆ
⁎

and

i p B r 0 19n0 ψ
− ∇ + × 

 ( ) = . ( )

Eq. (18) is the first Ginzburg-Landau-type equation and Eq. (19) is the boundary condition for the 
first Ginzburg-Landau-type equation, where the subscript n stands for the component perpendicular to 
the surface. Here, we emphasize that this boundary condition is actually the requirement of the varia-
tional principle. In fact, if we substitute Eq. (19) into Eq. (8), we can get JPn =  0, which means that there 
is no electric dipole current entering or leaving the electric dipole superconductor. Similar discussions 
on boundary condition of the [monopole] superconductor can be found in the original paper written 
by Ginzburg and Landau36.

Next, we minimize the free energy with respect to the vector potential A. For the fourth term of Eq. 
(5), we have









∫
∫

∫

∫

( )

( )

( )

( )

( )

δ
ψ

δ ψ

ψ

δ ψ ψ

δ ψ ψ

δ ψ ψ

+ × ( )

= 
 × (∇ × )

⋅  ∇ + × (∇ × ) 
 + .

= (∇ × ) ⋅  ∇ + × (∇ × ) 
 ×

+ .

= ⋅ ∇ × 
 ∇ + × (∇ × ) 

 ×

+ ⋅ × 


 ∇ + × (∇ × ) 

 ×



+ . . ( )

∮

ˆ
⁎

⁎

⁎

⁎
⁎

⁎
⁎

⁎
⁎

{ }
{ }

{ }

{ }

d
m

m
d

i c c

m
d i

c c

m
d i

m
d i

c c

r
p p B r

r p A

p A

r A p A p

r A p A p

S A p A p

2
1

2

1
2

1
2

1
2

20

V

V

V

V

0

2

0

0

0 0

0 0

0 0

If we variate the last term of Eq. (5) with respect to vector A, we get
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∫ ∫δ
μ

δ
μ

δ
μ

∇ ×
= ⋅

∇ × (∇ × )
+ ⋅

× (∇ × )

( )
∮d d dr

A
r A

A
S

A A
2

[ ]
21V V

2

0 0 0

Combining Eqs. (20) and (21), we can get the second Ginzburg-Landau-type equation, i.e.,

pB J 22p0 0( )μ∇ × = − ∇ × × , ( )ˆ

where

p

m
iJ p B

2
2

23p
0

0
2 ψ ψ ψ ψ ψ≡






( ∇ − ∇ ) + ×






.

( )⁎
⁎ ⁎

It should be noted that in the derivation the surface integral vanishes due to the requirement of free 
energy minimization22,36.
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