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Simple Summary: The present study demonstrates severity-dependent effects of a thoracic T8 injury
on cardiometabolic dysfunctions in adult mice. While these chronic cardiometabolic issues can be
multifactorial, the data indicate that systemic inflammatory response is likely to be involved. These
findings are supportive of the role of systemic inflammation following SCI being critical in identifying
therapeutic targets and predicting long-term outcomes.

Abstract: Changes in cardiometabolic functions contribute to increased morbidity and mortality after
chronic spinal cord injury. Despite many advancements in discovering SCI-induced pathologies,
the cardiometabolic risks and divergences in severity-related responses have yet to be elucidated.
Here, we examined the effects of SCI severity on functional recovery and cardiometabolic functions
following moderate (50 kdyn) and severe (75 kdyn) contusions in the thoracic-8 (T8) vertebrae in mice
using imaging, morphometric, and molecular analyses. Both severities reduced hindlimbs motor
functions, body weight (g), and total body fat (%) at all-time points up to 20 weeks post-injury (PI),
while only severe SCI reduced the total body lean (%). Severe SCI increased liver echogenicity starting
from 12 weeks PI, with an increase in liver fibrosis in both moderate and severe SCI. Severe SCI mice
showed a significant reduction in left ventricular internal diameters and LV volume at 20 weeks
PI, associated with increased LV ejection fraction as well as cardiac fibrosis. These cardiometabolic
dysfunctions were accompanied by changes in the inflammation profile, varying with the severity of
the injury, but not in the lipid profile nor cardiac or hepatic tyrosine hydroxylase innervation changes,
suggesting that systemic inflammation may be involved in these SCI-induced health complications.

Keywords: spinal cord injury severity; cardiometabolic disease; liver and cardiac dysfunctions; fibrosis

1. Introduction

It is estimated that there are 245,000 to 353,000 persons suffering from SCI in the
United States, with approximately 17,500 new cases each year [1]. These injured indi-
viduals are known to face lifelong locomotor disabilities, resulting from the injury to the
central nervous system leading to neural cells loss, axon degeneration, and other cellular
events at the injury site [2,3]. What is less known is that people living with SCI experience
numerous detrimental medical complications that have great influence on their quality
of life, including diabetes and cardiovascular disease [4,5]. Individuals with chronic SCI
are prone to cardiometabolic disease [6–9]. In the general population, risk factors, such as
metabolic syndrome (MS), obesity, glucose intolerance, hypertension, high blood triglyc-
erides levels, and decreased high-density lipoprotein (HDL) [10,11], increase the prevalence
of cardiovascular disease (CVD) [12,13]. In the general population, more than a third of US
individuals suffer from MS [14,15]. MS symptoms are more prevalent in SCI patients than
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in the general population. In a recent study, it was estimated that more than 50% of SCI
patients have symptoms of MS [16]. Increased lipid profile, an important biomarker for
MS, induces insulin resistance, systemic inflammation, and oxidative stress [17]. The high
prevalence of MS and decreased physical activity affect the balance between energy intake
and energy expenditure and predispose these individuals to MS. In this regard, individuals
suffering from SCI have reduced physical activity, systemic inflammation, and changes
in the distribution pattern of adipose tissue in the body, which can all participate in the
development of MS in these population [18,19].

SCI not only effects motor and sensory function within the central nervous system, but
also disrupts the peripheral neural circuitry and signals to vital organs in the body, resulting
in severe long-term complications outside of the central nervous system [4]. A large body of
evidence indicates that SCI has major effects on body composition and metabolism [20–22],
which can lead to a variety of risk factors including obesity [7,23,24], lower limbs skeletal
muscle atrophy [25,26], decreased daily energy expenditure [13], changes in glucose-insulin
homeostasis [21,22,27], and cardiovascular disease [28]. Assessment of body composition
following SCI is critical to predict the development of cardiometabolic diseases, but is
not commonly accessible in clinical evaluations [29,30]. Data from both humans and
experimental animals indicate that in the early stages of SCI, body weight is decreased due
to the reduction in lean body mass and fat depots [31,32]. These changes depend on the
injury severity, level of injury, and duration of the injury [22,33].

The liver is a key organ regulating many metabolic processes in the body, and plays a
vital role in body energy metabolism [34]. Under normal physiological conditions, digested
food components such as glucose, amino acids, and fatty acids are transported to the
liver. The liver metabolizes glucose into pyruvate for ATP production and produces the
substrates required to synthesize fatty acids through lipogenesis. These fatty acids can
be stored as lipid droplets and membrane structures in the hepatocytes or secreted into
blood circulation. During starvation, liver gluconeogenesis induces glucose production
and promotes lipolysis. These metabolic pathways are highly regulated through neuronal
(the sympathetic and parasympathetic system) and hormonal (insulin and glucagon) path-
ways [35]. Therefore, liver dysfunction may lead to many complications including type
2 diabetes, insulin resistance, and nonalcoholic fatty liver diseases (NAFLD) [36]. Although
SCI increases the prevalence of MS, only a few human studies have examined liver function
following SCI. Using ultrasound imaging, Sipski et al. reported that approximately 80%
of chronic SCI patients exhibited liver abnormality [37]. A recent study by Rankin et al.
used magnetic resonance imaging (MRI) to demonstrate increased liver adiposity during
chronic SCI which impacts the metabolic profile, highlighting the critical need to measure
liver adiposity following SCI [38]. In a rat SCI model, Sauerbeck et al. reported hepatic
changes including increased lipid infiltration and inflammation in the liver as early as
3 weeks PI [39]. The systemic inflammation and increased inflammatory cytokines in the
liver following SCI may significantly induce liver dysfunction [40,41]. Understanding the
progression of metabolic diseases could help identify points of intervention to increase the
life expectancy and quality of life of individuals with SCI.

CVD is the leading cause of mortality among SCI individuals [42]. Depending on the
severity and injury level, SCI may disrupt the innervation to the heart, causing cardiovascu-
lar autonomic dysfunction, leading to blood pressure and heart rate dysregulation [43–46].
In humans, patients with cervical and high-thoracic level injuries are more likely to develop
CVD [47], probably due to the change in sympathetic nervous activity. For this reason,
most of the data from experimental animals are focused on the SCI above the sixth thoracic
vertebra (T6) [48]. This includes T5 complete transection in rats [49,50] and T3 moderate
or severe contusion in rats [51,52] which can lead to significant changes in cardiovascular
function. While thoracic and lumbar SCI represent 50% of the injuries and 40% the clinical
studies which assessed the effects of low-thoracic/lumbar SCI on CVD in humans [47], the
effects of low-thoracic/lumbar SCI in pre-clinical models have not been assessed. Addi-
tionally, very few studies have assessed the cardiovascular (and metabolic) dysfunctions
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at chronic time points in animal models. In the present study, we focused on evaluating
the impact of thoracic-8 vertebrae (T8) SCI contusions on the cardiometabolic function
following long term injury. The aim is to examine the changes in cardiometabolic functions
following SCI without altering the sympathetic control of the heart at chronic time points
in mice. Male mice received T8 contusions at two severity levels and were monitored
by echocardiography, EchoMRI, GTT, body weight, behavior assessments of functional
regeneration, and histological evaluation of the liver, heart, and spinal cord after 20 weeks.
Results revealed new aspects of cardiometabolic alterations that occur after SCI, revealing
the critical role that SCI severity plays on CVD.

2. Materials and Methods
2.1. Animal Care and Procedure for SCI

All experimental animal procedures were approved by the Texas A&M University
Institutional Animal Use and Care Committee (IACUC). C57BL/6 mice were purchased
from Taconic and bred in our vivarium. Six-month-old male mice were randomly assigned
to one of three treatment groups: sham, moderate (50 kdyn), or severe (75 kdyn) SCI. Each
cage housed up to 5 mice, which were housed in a climate-controlled facility in ventilated
cages with a 12-h light/dark cycle. All mice were fed a control diet with ad libitum access
to water. SCI was induced by contusion to the spinal cord as previously described [53].
Briefly, mice were anesthetized by 3% induction and maintained on 1.5% of isoflurane
inhalation and the surgical site at thoracic T8 was shaved and sterilized by isopropyl
alcohol. The surgical site was incised, and a partial dorsal laminectomy was performed
at T8-9 to expose the spinal cord without penetrating the dura. SCI was induced using
the NYU-MASCIS weight-drop impactor [54] at 50 kdyn for moderate and at 75 kdyn for
severe SCI (2-sec dwell time). The back muscles were sutured, and the skin was closed
with surgical glue. Sham mice received only a laminectomy identical to the other groups
without a contusion. After surgery, all mice received saline solution and buprenorphine
(0.05 mg/kg, Par Pharmaceutical Chestnut Ridge, Chestnut Ridge, NY, USA) daily for
3 days for hydration and pain, respectively, and penicillin (5 mg/kg/day, Bayer Healthcare
LLC, Animal Health Division Shawnee Mission, Shawnee, KS, USA) once daily for 7 days
to prevent secondary infection. Mice were monitored daily, with their bladder expressed
manually twice every day until the mice were able to urinate without assistance or till the
end of the experiment.

2.2. Behavioral Assessment

Motor functional recovery of hindlimbs was assessed by the Basso Mouse Scale (BMS)
and rotarod tests. BMS test was performed as previously described [55,56]; mice were
observed for 5 min by two observers blinded to injury type groups. Many features were
noted, including ankle movements, stepping pattern, coordination, paw placement, trunk
instability, and tail position, with a minimum score of 0 (no movement) to a maximum
score of 9 (normal locomotion). Both observers agreed on each of the final scores for each
mouse and the average score of all mice within a group is considered the final score for
that group.

Rotarod testing was performed as previously described [55], with one individual
blinded to injury type performed the test. Mice are placed on a rod (Ugo Basile, Gemonio,
Germany) rotating at increasing speeds from 5 to 50 rpm in 3-min intervals with constant
acceleration. The latency to fall (in seconds) was averaged between two trials per session.
Mice are first acclimated to the test for two sessions for five days the week before injury,
and one additional session one day before injury (baseline). Both BMS and rotarod tests
were performed at baseline and then at day 3, 7, 14, 21, 28, and then every two weeks up to
140 days PI.
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2.3. Body Composition Analysis

All mouse body compositions (fat tissue % and lean tissue %) were determined
by an EchoMRI-100 quantitative magnetic resonance whole body composition analyzer
(EchoMRI-100H, Echo Medical Systems, Houston, TX) as previously described [57]. Each
mouse was weighed and scanned without anesthesia. Mice were scanned at baseline prior
to injury and then at 4-, 8-, 12-, 16-, and 20-weeks PI. The body weight of each mouse was
collected using a digital scale at 7, 14, 21, and 28 days and then monthly thereon until the
end of the experiment.

2.4. Liver Ultrasound Image Acquisition and Analysis

Mice liver parenchyma was assessed for changes in structures before and after SCI us-
ing ultrasound imaging as described previously [58] with modifications as described below.
Briefly, mice were anesthetized with 3% isoflurane and maintained with 1.5% isoflurane.
Heart rate and temperature were monitored throughout the procedure. The abdominal
cavity was shaved before applying Nair to remove the remaining hair. Ultrasound gel was
then placed on the mouse’s abdomen as a final step before the probe was applied to image
the liver and kidney. The images were taken using a VisualSonics 3100 high frequency
machine along with MX 550 D transducer probe. For consistency, two-dimensional B-mode
images were acquired with the following acquisition settings (frequency = 40 MHz, frame
rate = 165 fps, gain = 35 dB, depth = 15 mm, width = 14.08 mm, dynamic range = 60 dB).
Images captured the entirety of both organs separately. After imaging, mice were allowed
to recover in a cage and observed for signs of pain or discomfort. The echogenicity of
the liver was examined and analyzed using ImageJ software as previously described [58]
with modifications described below. Three regions of interest (ROI) plane were selected
manually surrounding the portal vein excluding the hepatic vessels and imaging artifacts
(area circle size 1 cm2). The mean gray value of each of the three circles was calculated at
three different areas for each ROI plane, averaged, and analyzed for each mouse. The same
procedure was applied to the kidney images (around the cortex area), except for the circle
area size of 0.5 cm2, which was used as an internal control. The intensity of liver images
was normalized to the kidney images for each mouse. Data are presented as a hepatic to
renal (H/R) ratio.

2.5. Echocardiography Analysis

Mice were scanned with echocardiogram to assess cardiac structure and function at
different time points as previously described [59]. Mice were imaged under anesthesia
with isoflurane (induction at 3% and then maintained on 1.5%) with a heart rate of 400 to
500 beats per minutes. Chest hair was removed, and warm ultrasound transmission gel
was applied. Parasternal short axis view of the heart with M-mode echocardiograph was
acquired using VisualSonics 3100 high frequency machine along with MX 550 D transducer
probe with 40 MHz center frequency. Parasternal long axis B-mode ultrasound was used
as a reference image for the M-mode acquisition of the short axis. To ensure comparison
between all measurements, focus was emphasized on the midventricular level of the heart,
by identifying the papillary muscles. Left ventricle measurements were performed using
the auto LV analysis tool by tracing the internal diameters of the ventricle, averaged from
three consecutive cycles for each animal [59–63]. To limit noise caused by respiratory
movements, images were acquired when the mice was not actively breathing, as assessed
with the respiratory rate provided with the ultrasound system. The functional parameters
and anatomical measurements of LV that were assessed include (left ventricle internal
diameter (LVID), left ventricular (LV) mass, left ventricular posterior wall thickness (LVPW),
left ventricular anterior wall thickness (LVAW), cardiac output (CO), stroke volume (SV),
ejection fraction (EF), and fractional shortening (FS) as previously described [59–61].
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2.6. Glucose Metabolism

Intraperitoneal glucose tolerance test (IPGTT) was performed before SCI surgery and
at 14 weeks and 20 weeks PI as previously described [59]. Briefly, after mice fasted for
16 h, a baseline fasting blood glucose level was recorded before each mouse received
intraperitoneal administration of 20% (2 g/kg) glucose solution (Sigma, Kawasaki, Japan).
Blood glucose levels were recorded 15, 30, 60, and 90 min after administration. Blood
glucose levels were quantified using a glucose meter (Bayer Contour Next EZ blood
glucose meter, Bayer HealthCare, IN, USA) by taking a blood sample (<5 µL) from a small
incision made at the tip of the tail using clean surgical scissors. Area under the curve (AUC)
for blood glucose levels in each mouse during IPGTT was calculated using GraphPad Prism
(Prism 9.0, GraphPad Software, San Diego, CA, USA).

2.7. Triglyceride, Cholesterol, and Insulin Analysis

Liver samples were analyzed for triglyceride content and concentration. Liver medial
lobe samples were collected fresh from each mouse right before perfusion. Samples were
then immediately flash frozen using liquid nitrogen and stored at −80 ◦C until testing.
Approximately 0.25 g of liver tissue were homogenized in 2:1 chloroform methanol, mixed
with 1 mol/L CaCl2, and centrifuged for 15 min at 13,000 rpm at 4 ◦C as previously
described [64]. Then, 400 µL of the lower lipid phase was removed and placed in a
fume hood to allow for evaporation. Once evaporated, the samples were reconstituted in
isopropanol and directly analyzed using InfinityTM Triglycerides Liquid Stable Reagent (Cat.
No. TR22421, ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. The resulting assay values were then normalized to the liver tissue mass to
produce absorbed triglyceride content (µg/mg).

Plasma samples were analyzed for triglyceride content, cholesterol, and insulin con-
centrations. Blood samples were collected from the submandibular vein at 18 weeks post
SCI and centrifuged at 14,000 rpm for 15 min at 4 ◦C to separate the plasma. Plasma
triglyceride concentrations (mg/dL) were analyzed using InfinityTM Triglycerides Liquid
Stable Reagent according to the manufacturer’s instructions. Free cholesterol concen-
tration (µM) was determined using InvitogenTM Amplex® Red Cholesterol Assay Kit
(Cat. No. A12216, ThermoFisher Scientific) per the manufacturer’s instructions. Lastly,
plasma insulin concentrations (ng/mL) were assessed using Ultra-Sensitive Mouse Insulin
ELISA Kit (Cat. No. 90080, Crystal Chem, Elk Grove Village, IL, USA) according to the
manufacturer’s instructions.

2.8. Histological Analysis of Heart and Liver Tissues

Mice were perfused. Heart and liver tissues were removed and fixed in 4% paraformalde-
hyde (PFA) in 1× PBS for 24 h before incubating in 15% then 30% sucrose solution for
24 h each. Heart samples were then cut in the middle across the transverse plane. The
lower parts of the hearts (containing the apex) were embedded. Left lobe liver sections
were embedded such that the tissue closest to the portal triad would be sectioned. Both
heart and liver tissues were placed in OCT compound (Cat. No. 625501-01, Sakura Finetek,
Torrance, CA, USA, Inc., Torrance, CA, USA) for embedding. Heart cross sections from
the middle point of the heart and left lobe of liver transverse sections were cut at 8 µm
thickness with 50µm between each section using a cryostat (Leica Biosystems CM3050
S). Sections were stained with Masson’s trichrome staining (Sigma-Aldrich, HT15-1KT)
according to the manufacturer’s instructions to examine perivascular accumulation of
collagen in the tissue. Analysis and quantification of fibrotic areas were performed as
previously described [65] where 3–4 sections per tissue were imaged at 20× on a Zeiss Axio
Observer 7 fluorescent microscope. Quantification of the left ventricle and liver sections
was performed using ImageJ software (NIH, Bethesda, MD, USA). Briefly, the total area for
each image was computed and the color-based threshold tool was used to highlight the
fibrotic (blue) regions of tissue in each image. To ensure standardization, the hues were set
at 130 and 190 for each fibrotic image.



Biology 2022, 11, 495 6 of 24

LV thickness was measured using Zen Lite software. For each mouse, 3–4 represen-
tative heart sections were chosen. For each section, the LVAW and LVPW thickness was
measured by drawing three lines spanning the entire wall thickness and then averaging
the length of three drawn lines. The precise locations of these lines were chosen to measure
the thickness at the best tissue structural integrity (i.e., no tears resulting from mounting)
and avoiding the regions surrounding the papillary muscles.

2.9. Tyrosine Hydroxylase (TH) Immunofluorescence Staining of the Heart and Liver

To assess if the T8 contusion SCI affected innervation of the heart and liver, both heart
and liver sections were stained for Tyrosine Hydroxylase (TH). Three consecutive transverse
heart and left lobe liver sections from each mouse were cut at 10 µm thickness and directly
mounted onto Superfrost® Plus MicroSlides (Cat. No. 48311-703, VWR, Radnor, PA, USA).
Sections were washed 3 times using 1× PBS and blocked for 1 h using 5% normal horse
serum diluted in 0.4% Triton X-100 in 1× PBS. Sections were incubated overnight at room
temperature in TH antibody (1:500, Cat. No. AB152, Millipore Sigma, Burlington, MA,
USA) diluted with 2% normal horse serum in 0.4% Triton X-100 in 1× PBS. After washing,
secondary antibody Alexa Fluor Plus 488 (1:500, Cat. No. A32814, ThermoFisher Scientific)
diluted with 2% normal horse serum in 0.4% Triton X-100 in 1× PBS was applied to the
sections for 2 h at room temperature. Sections were then incubated in DAPI (1:2000, Cat. No.
62248, ThermoFisher Scientific) and washed 3 times using 1× PBS and cover slipped for
examination under the microscope. Images were taken at 20× magnification on a Zeiss Axio
Observer 7 fluorescent microscope. Each image was acquired as a z-stack and the maximum
projection was used for quantification. For heart sections, 3 images for each region of the
LV anterior wall (LVAW), LV posterior wall (LVPW), and LV lateral wall were quantified for
TH staining using Quantitative Pathology and Bioimage Analysis software (QuPath v0.3.0,
Scotland). In brief, pixel classifiers were programmed to distinguish between positive,
negative, and background staining. Total positive and negative areas (µm2) were generated
and the ratio of the two provided a percentage of TH positive staining within each section.
For each mouse, an average TH positive staining was calculated by averaging the percent
positive of the LVAW, LVPW, and lateral wall portions for all three heart sections. The
average percent positive for the three sections was then averaged to produce the final TH
percent positive value for each mouse.

Quantification of TH staining within the liver sections was done using QuPath v0.3.0.
Three liver sections were quantified per animal. For each liver section, 3 vessels between
100 µm and 200 µm were chosen for a complete and accurate analysis. A brush tracer tool
with a standardized diameter of 26 µm was used to create an annotation around the outer
edge of the vasculature. The border region was then filled in to include the entire vessel
within the annotation. For each liver section, an average TH positive staining percentage
was calculated from the analysis of the three annotated vessels. An average TH positive
staining was calculated by averaging the percent positive for all three vessels per sections,
followed by averaging the percent positive for the three liver sections to produce the final
TH percent positive value for each mouse.

2.10. Histological Analysis of SC Injury

To examine the degree of injury caused by the impactor, spinal cords were harvested
from contused mice at 20 weeks PI. Mice were anesthetized with intraperitoneal injection
of 100 µL of Sodium pentobarbital (Fatal-Plus®) before being euthanized via perfusion
with 4% paraformaldehyde (PFA) in 1x phosphate buffer solution (PBS) (Cat. No. 14200075,
Life Technologies, Carlsbad, CA, USA). Samples were soaked in 15% and 30% sucrose
overnight prior to embedding in OCT compound (Cat. No. 625501-01, Sakura Finetek
USA, Inc., Torrance, CA, USA), followed by longitudinal sectioning at a thickness of 25 µm
using a cryostat (Leica Biosystems CM3050 S). Fixed sections of spinal cord tissue were
washed (3× with 0.4% Triton X-100 in 1x PBS), then blocked using 5% normal horse
serum (VWR 102643-676, diluted in 0.4% Triton X-100 in 1× PBS) for 1 hour. Sections
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were incubated with primary anti-glial fibrillary acidic protein (GFAP) antibody (1:500, Cat.
No. 13-0300, ThermoFisher Scientific) diluted in 0.4% Triton X-100 in 1× PBS and incubated
at 25 ◦C overnight. The sections were then washed before being incubated with Alexa
Fluor Plus 488 secondary antibody (1:1000, Cat. No. A32814, ThermoFisher Scientific) in
0.4% Triton X-100 in 1× PBS for 1 hour and DAPI (1 µg/mL, Cat. No. 62248, ThermoFisher
Scientific) for 5 min. After being washed once more, the slices were mounted, and cover
slipped (Cat. No. F6182, Sigma) before being imaged at 20× on a Zeiss Axio Observer
7 fluorescent microscope. The contour (polygonal) tool in the Zen 3.2 (Carl Zeiss AG, Jena,
Germany) software was used to trace and measure lesion and cavity size. The lesion size
was measured by tracing the glial scar border labeled with GFAP surrounding a DAPI+
inner region. Cavity size was measured by measuring the region within the spinal cord
without any visible nuclei yet surrounded by GFAP labeled glial scar. Three spinal cord
sections per animal were imaged and analyzed.

2.11. Blood Cytokines Measurements

Plasma concentrations of IFN-γ, IL-10, IL-17A/CTLA8, IL-6, TNF-α, and IL-1β
were measured using MILLIPLEX® Mouse Cytokine/Chemokine Magnetic Bead Panel
(MCYTOMAG-70K-Millipore Sigma, Burlington, MA) according to the manufacturer’s
instructions. Briefly, approximately 100 µL of blood samples were collected from the sub-
mandibular facial vein using a sterile lancet in BD Microtainer® blood collection tubes
(cat# BD 365985). Blood samples were collected before SCI surgery and immediately prior
to necropsy. Samples were centrifuged at 15,000× g for 15 min to separate the plasma.
Plasma samples were stored at −80 ◦C until the assay was conducted. Plasma samples were
diluted 2-fold in Assay Buffer provided in the kit per the manufacturer’s recommendation.
Samples, quality controls, and standards were aliquoted into the provided 96-well plate in
duplicate followed by the antibody-immobilized beads. After a 16-h incubation at 4 ◦C and
respective wash steps, detection antibodies and Streptavidin-Phycoerythrin were added.
Washing was conducted using a hand-held magnet. After the completion of the protocol,
the plate was analyzed using a Luminex® 200TM (cat# LX200-XPON3.1) multiplex analyzer
with the xPONENT 3.1 software. The data represent the average mean fluorescent intensity
values from the duplicates. The values at the chronic 5-month timepoint were divided by
the baseline values to determine the “fold change from baseline” value plotted.

2.12. Statistical Analysis

Two-way ANOVA test was followed by Tukey’s multiple comparison post hoc analysis
to assess the differences between the groups. All analyses were performed using GraphPad
Prism (Prism 9.0, GraphPad Software, San Diego, CA, USA). Differences were considered
significant at p ≤ 0.05, tendencies at p ≤ 0.10. Data are presented as means ± SEM.

3. Results
3.1. Experimental Design and Data Collection

To examine the impact of SCI severity after T8 contusion on the cardiometabolic
functions, six month old male mice (corresponding to ~25 years old in humans, when the
first peak of SCI is observed [66]) were randomly sorted into sham, moderate SCI (50 kdyn),
or severe SCI (75 kdyn) groups. There was n = 6 for sham, n = 8 for moderate SCI, and n = 9
for severe SCI at the beginning of the experiment. Mice were tested for parameters of body
weight, EchoMRI, echocardiography and liver ultrasound imaging, IPGTT, and BMS and
Rotarod scores as described in the experimental shown in Figure 1 and Table 1.
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tolerance test (IPGTT), and body weight (BW). At day 0, T8 contusion SCI was induced, and the same
measurements were performed at 4, 8-, 12-, 16-, and 20-weeks post-injury. IPGTT was performed
only at the 12 and 20-week time point. Blood plasma was collected twice monthly. For behavioral
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6, 8, 10, 12, 14, 16, 18, and 20 post-injury. At week 20 post-SCI, animals were sacrificed, blood plasma
was collected, and tissues (hearts, livers, and spinal cords) were harvested for histological analyses.

Table 1. Summary of number of treatment groups; the experiments were performed up to 20 weeks
post SCI.

Number of Mice Set of Experiments

Mice Group Sham 50 kd 75 kd BMS & Rotarod Echocardiography
& Liver Ultrasound EchoMRI Blood Samples IPGTT

Pre SCI 6 8 9 + + + + +
W1 6 8 9 + - - - -
W2 6 8 9 + - - + -
W3 6 8 9 + - - - -
W4 6 8 9 + + + + +
W5 6 8 9 - - - - -
W6 6 8 9 - - - + -
W7 6 8 9 - - - - -
W8 6 8 8 + + + + +
W9 6 8 8 - - - - -

W10 6 8 6 - - - + -
W11 6 8 6 - - - - -
W12 6 8 6 + + + + +
W13 6 8 6 - - - - -
W14 6 8 6 - - - + -
W15 6 8 6 - - - - -
W16 6 8 6 + + + + +
W17 6 8 6 - - - - -
W18 6 8 5 - - - + -
W19 6 8 5 - - - - -
W20 6 8 5 + + + + +

+: Yes, -: No.
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3.2. Sustained Reduction of Motor Function after Chronic SCI

Motor functional recovery was assessed following SCI by BMS and Rotarod at multiple
timepoints. BMS scores are shown in Figure 2A. Sham mice were not affected by the sham
surgical procedure without contusion. For mice that received moderate SCI, the BMS
scores dropped to 1.06 ± 0.32 at day 2 after SCI and gradually recovered up to a score of
3.25 ± 0.55 at the end time point (20 weeks). For mice that received severe SCI, BMS scores
dropped near to 0.55 ± 0.43 at day 2 after SCI and gradually recovered up to a score of
2.6 ± 1.05 at the end time point. Interestingly, some differences emerged between moderate
and severe SCI mice, where severely injured mice showed a significantly decreased recovery
timeline compared to moderately injured mice. Rotarod assessment was also performed
to determine the extent of hindlimb function on mice (Figure 2B). Mice from both injuries
exhibited a significant decrease on time on the rotarod after SCI compared to sham controls.
No significant differences were observed between severe and moderate injured mice. There
was significant attrition in SCI severe group. Indeed, while all the sham and moderately
injured mice survived the 20 weeks timepoint, 45% of the severely injured mice died prior
to the study endpoint of 20 weeks (only 5/9 survived, Figure 2C).
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Figure 2. Behavioral testing after SCI. BMS scores (A), Rotarod score (B). Behavioral tests performed
at baseline before injury and on days 2, 7, 14, 21, 28, and then monthly PI. (C) Percent survival during
the experiment. Repeated measures two-way ANOVA: Tukey’s multiple comparisons test was used
to determine the differences between the groups. Data presented as means ± SEM, n = 5–9 per group.
* p ≤ 0.03, ** p ≤ 0.002, *** p ≤ 0.001.

3.3. Severity-Dependent Reduction of Body Weight and Body Composition

As expected, both moderate and severe groups lost weight within the first week post
SCI (Figure 3A). While this loss stabilized in the moderate group, the weight dropped
further by week 2 in the severely injured group. Both groups slowly regained some
weight over the 20-week period, without reaching their baseline levels. Both groups were
significantly lower than the sham group. While not statistically different, the moderate
group tend to recover weight better than the severe group. Fat and lean body composition
were measured using EchoMRI. By 4 weeks PI, the percentages of body fat and body lean
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were significantly reduced in the severe group compared to the sham group (Figure 3B,C).
Similarly, the moderate group presented a significantly reduced percentage of body fat
compared to sham (Figure 3B), while the percentage of lean body mass was also reduced
without reaching statistical difference (Figure 3C).
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Figure 3. Injury-severity dependent body composition changes. (A) Body weight (g), (B) percent-
age of body fat, and (C) percentage of lean body mass. Statistical analysis was performed using
repeated measures two-way ANOVA; Tukey’s multiple comparisons test was used to determine the
differences between the groups. Data presented as mean ± SEM, n = 6 (sham), 8 (moderate), and
5–9 (severe). * p ≤ 0.03, ** p ≤ 0.002, *** p ≤ 0.001 difference between sham and severe groups and
# p ≤ 0.03, ## p ≤ 0.002 difference between sham and moderate groups.

3.4. Severe SCI Induced Stronger Liver Pathology

Liver ultrasound analysis was performed prior to SCI and at 4-, 8-, 12-, 16-, and
20-weeks PI to examine the liver shape and structure (Figure 4A). By 12 weeks PI, the severe
group tended to be increased in the liver echogenicity, although not reaching statistical
levels compared to the sham and moderate injured groups (Figure 4B). Histological analysis
of the liver at 20 weeks exhibited a significant increase in fibrotic tissues in severely injured
mice and a non-significant upward increase in moderate group, compared to the sham
animals (Figure 4C,D).

3.5. Severe SCI Induced Cardiac Dysfunction

Echocardiography was performed to assess cardiac structure and function following
SCI. In the severe SCI group, LVID during systole (LVID;s) was reduced at 16 weeks PI
and reached statistical significance at 20 weeks PI (Figure 5A). No significant reduction
in LVID during diastole (LVID;d) was observed (Figure 5B). The reduction of LVID;s was
associated with the reduction in LV volume (Figure 5C) and no significant difference in
LV volume was observed in LVID;d (Figure 5D). Interestingly, both ejection fractioning
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(EF) and fractional shortening (FS) trended upward at 16 weeks and significantly increased
at 20 weeks PI in the severely injured group compared to the sham and moderate group
(Figure 5E,F, respectively). Masson’s trichrome staining of the left ventricular sections
showed significant change in collagen accumulation in severe SCI and an upward trend in
the moderate group compared to their sham controls (Figure 6A,B). While there were no
significant differences in other cardiac parameters such as LV mass, SV, CO, HR, and LVPW
and LVAW thickness using echocardiography scanning (Table 2), histological analysis of the
LVPW and LVAW thicknesses revealed a significant increase in LVPW and LVAW thickness
compared to moderate and sham groups, respectively (Figure 6C).
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Figure 4. Injury-severity dependent reduction in liver function. SCI induced liver intensity and
fibrosis. (A) Representative images of liver show echogenicity of the liver parenchyma increased in
the severe group compared to sham group using ultrasound imaging at 20 weeks PI of sham and
severe SCI. Red circles located on the liver images represent areas of interest that were quantified.
(B) Severe SCI increased liver intensity after 12 weeks PI compared to sham group. Kidney tissue
was used as the internal control with data represented as a ratio of hepatic/renal percent change
from baseline measurements. (C) Representative liver sections stained with Masson’s trichrome of
sham, moderate-SCI, and severe-SCI at 20 weeks PI. (D) Quantification of collagen contents (blue)
in the liver. SCI significantly increased fibrotic tissue in severe injured group and there is a trend
towards an increase in the moderate group compared to the sham control. Scale bar = 100µm. Values
presented as mean ± S.E.M of 3–4 sections/mouse; n = 6 (sham), 8 (moderate), and 5–9 (severe).
Data analyzed by two-way ANOVA. Tukey’s multiple comparisons test was used to determine the
differences between the groups; one-way ANOVA for D. * p ≤ 0.03, ** p ≤ 0.002, *** p ≤ 0.001.
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Figure 5. Injury-severity dependent development of cardiac dysfunction. Echocardiography as-
sessment. (A) Left ventricular internal diameter during systole (LVID;s) and (B) during diastole
(LVID;d). (C) LV volume during systole and (D) LV volume during diastole. (E) Ejection fraction (EF)
and (F) fractional shortening (FS). n = 6 (sham), 8 (moderate), and 5–9 (severe). Data analyzed by
two-way ANOVA. Tukey’s multiple comparisons test was used to determine the differences between
the groups. Data presented as mean ± SEM, * p ≤ 0.03, ** p ≤ 0.002, *** p ≤ 0.001.

3.6. No Changes in Glucose or Lipids Metabolism after Chronic SCI in Mice

Using IPGTT, we did not observe any significant changes in glucose metabolism up to
20 weeks PI. This is consistent with previous reports which state that SCI induces slight
change in serum glucose at 23 days PI [67]. IPGTTs were performed prior to injury, then
at 14- and 20-weeks PI. Results showed that the glucose concentrations and area under
the curve (AUC) were similar between the groups pre-injury (Figure 7A). No significant
differences were observed in glucose concentration and AUC at 14- and 20-weeks PI
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between any of the groups (Figure 7B,C). Fasting glucose concentrations were also similar
between all groups up to 20 weeks PI (Figure 7D).

Table 2. Parameters of echocardiography results of sham, moderate, and severe SCI at different
time points. Data are means ± S.E.M; n = 5–9 per group. Parameters of cardiac structure and
function in mice before SCI and at 4-, 8-, 12-, 16-, and 20-weeks post-SCI of sham, moderate (50-kdyn),
and severe (75-kdyn) mice. HR, heart rate; SV, stroke volume; CO, cardiac output; LV Mass, left
ventricular mass; LVAW;s, LV anterior wall thickness at the end of systole; LVAW;d, LV anterior wall
thickness at the end of diastole; LVPW;s, LV posterior wall thickness at the end of systole; LVPW;d,
LV posterior wall thickness at the end of diastole; LVID;d, LV anterior diameter at the end of diastole.

Parameters Surgery HR
(BPM)

SV
(µL)

CO
(mL/min)

LV Mass
(mg)

LVAW;s
(mm)

LVAW;d
(mm)

LVPW;s
(mm)

LVPW;d
(mm)

Time

Baseline
Sham 494 ± 31.8 38.6 ± 3.1 18.8 ± 1.2 128 ± 13.2 1.5 ± 0.1 1.0 ± 0.1 1.4 ± 0.1 1.1 ± 0.1

Moderate 449 ± 14.7 35.5 ± 2.8 15.8 ± 1.1 134 ± 16.6 1.4 ± 0.1 0.9 ± 0.5 1.7 ± 0.1 1.3 ± 0.2
Severe 447 ± 15.2 38.1 ± 3.2 17.1 ± 1.6 117 ± 4.8 1.3 ± 0.0 0.94 ± 0.0 1.4 ± 0.1 1.0 ± 0.1
Sham 493 ± 21.8 35 ± 3.2 17.1 ± 1.3 119.4. ± 5.5 1.3 ± 0.1 0.94 ± 0.0 1.46 ± 0.1 1.1 ± 0.1

Moderate 482 ± 12.5 32 ± 3.3 15.5 ± 1.7 121 ± 10.2 1.4 ± 0.1 0.97 ± 0.0 1.6 ± 0.1 1.2 ± 0.14weeks
Severe 497 ± 12.4 32.9 ± 2.1 16.4 ± 1.3 134 ± 17.8 1.45 ± 0.1 1.1 ± 0.1 1.56 ± 0.1 1.1 ± 0.1

8 weeks
Sham 451 ± 21.1 40.2 ± 2.8 17.9 ± 0.7 103.3 ± 5.9 1.25 ± 0.1 0.9 ± 0.01 1.1 ± 0.0 0.8 ± 0.0

Moderate 478 ± 20.1 37.7 ± 1.1 17.9 ± 0.6 119.2 ± 12.1 1.5 ± 0.1 1.0 ± 0.1 1.3 ± 0.1 0.87 ± 0.1
Severe 472 ± 16.2 35.8 ± 3.2 16.9 ± 1.7 113.3 ± 18.8 1.4 ± 0.1 0.9 ± 0.0 1.4 ± 0.1 0.98 ± 0.1
Sham 498 ± 16.3 36 ± 3.9 17.8 ± 1.8 143 ± 16.6 1.4 ± 0.1 1.0 ± 0.1 1.5 ± 0.1 1.16 ± 0.2

Moderate 492 ± 17.7 36.7 ± 1.5 18 ± 1.0 110.4 ± 7.5 1.3 ± 0.5 0.9 ± 0.0 1.2 ± 0.1 0.89 ± 0.112 weeks
Severe 519 ± 15.7 37..5 ± 0.5 19.4 ± 0.5 110.6 ± 7.6 1.3 ± 0.1 0.9 ± 0.0 1.25 ± 0.1 0.89 ± 0.1

16 weeks
Sham 501 ± 24.7 35.9 ± 4.5 17.9 ± 2.3 118.7 ± 9.1 1.3 ± 0.1 0.9 ± 0.0 1.5 ± 0.1 1.1 ± 0.1

Moderate 476 ± 17.5 35.6 ± 2.0 16.9 ± 1.1 116.2 ± 7.8 1.4 ± 0.1 1.0 ± 0.1 1.3 ± 0.0 0.96 ± 0.0
Severe 503 ± 3.5 36.5 ± 2.6 18.4 ± 1.3 131.6 ± 20.4 1.4 ± 0.1 0.96 ± 0.0 1.8 ± 0.2 1.2 ± 0.2
Sham 449 ± 10 37.8 ± 1.7 17 ± 0.8 142.4 ± 22.2 1.5 ± 0.0 1.1 ± 0.1 1.4 ± 0.1 1.1 ± 0.2

Moderate 480 ± 6.7 37.9 ± 3.3 18.1 ± 1.4 119.3 ± 6.9 1.5 ± 0.1 1.0 ± 0.0 1.4 ± 0.1 1.0 ± 0.120 weeks
Severe 477 ± 17.5 42.6 ± 5.8 20 ± 2.4 119.6 ± 5.9 1.5 ± 0.1 1.0 ± 0.0 1.5 ± 0.1 1.0 ± 0.1
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of collagen contents (blue) in the LV tissue. SCI significantly increased fibrotic tissue in the severe
injured group and there is a trend to increase in the moderate group compared to the sham con-
trol. (C). LVPW and LVAW thickness. Scale bar = 100 µm. Values presented as mean ± S.E.M
of 3–4 sections/mouse; n = 6 (sham), 8 (moderate), and 5–9 (severe). Data analyzed by ANOVA.
* p < 0.05 and # p < 0.1.
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Figure 7. No changes in glucose metabolism after SCI regardless of the injury severity. IPGTT
was performed pre-injury (A), at 12 weeks (B), and at 20 weeks PI (C). (D) Fasting blood glucose
concentrations at different time points. No differences are observed for any of these measures. Plasma
insulin, cholesterol, and triglyceride levels (E) were tested at 18 weeks PI. Liver triglyceride content
(F) was assessed after euthanasia at 20 weeks PI. Values presented as mean ± S.E.M. N = 6 (sham),
8 (moderate), and 5–9 (severe). Data analyzed by two-way ANOVA or one-way ANOVA (D–F).
* p < 0.05.
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Complementary to the lack of a significant difference in glucose metabolism, no signif-
icant changes in plasma insulin levels between the sham, moderate, or severe SCI models
were found at 18 weeks PI (Figure 7E). The 18 weeks PI results show that there was also no
significant difference in plasma cholesterol concentrations (Figure 7E). Although there was
no statistically significant change in triglyceride levels both in the plasma (Figure 7E) and
the liver (Figure 7F), there was a trend of decrease in the severely injured model (p = 0.13
between moderate and severe SCI for plasma TG levels). A decrease in triglyceride lev-
els coincided with our EchoMRI findings showing a much lower compositional fat % in
severely injured mice. Of note, no difference in temperature was observed at 20 weeks in
between the groups (not shown).

3.7. Severe SCI Induced Changes in SC Injury

The lesion and cavity size at the spinal cord injury sites were analyzed to compare
the size of the injury following different severities (Figure 8A,B). There is an upward trend
in the lesion size p = 0.06 (Figure 8C) and cavity size p = 0.2 (Figure 8D) and a significant
increase in total injury size p = 0.02 with increasing severity. The severe group is 40% more
likely to have a cavity at the injury site relative to the moderate group. There is a significant
negative correlation between total injury size and BMS score p = 0.04 (Figure 8E) and a non-
significant negative correlation between total injury size and Rotarod performance p = 0.06
(Figure 8F). Interestingly, we observed a trend for a positive correlation between total injury
size and LVAW;s, not reaching statistical difference p = 0.09 (Figure 8G), but suggesting that
mice with the most severe injuries might develop more cardiac dysfunctions.
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(white arrow) and (B) a cavity (white asterisk) site. (C) The average lesion, cavity, and total injury
size at 5 months post SCI. (D) The percent of mice with cavities at the site of injury. Linear trends of
the (E) BMS score at 20 weeks PI, (F) rotarod performance (time on the rod in seconds) at 20 weeks
PI, and (G) percent change in LVAW;s in relation to the total injury size of moderate and severe
groups. Student’s T-test comparing the means of 2 groups. Linear regression analysis to determine
correlation between variables. Data presented as means ± SEM, n = 8 (moderate), and 5 (severe).
Linear regression trend line ± 95% confidence interval. Scale bar = 500 µm. * p < 0.05.

3.8. SCI and Plasma Cytokines

To assess the effects of chronic SCI on cytokine expression, the relative plasma concen-
trations of IFN-γ, IL-10, IL-6, TNF-α, and IL-1β were measured. We observed an increase in
IL-1β concentration in the severe SCI group p = 0.05 (Figure 9C). No significant differences
were observed between any cohort for the other cytokines, although there was a trend
for a decrease in IL-10 (Figure 9B) and an increase in IL-6 (Figure 9A) in the severely
injured mice.
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3.9. SCI, Heart, and Liver Innervation

To assess how SCI could potentially change innervation of both the heart and the liver,
the percent of tyrosine hydrolase (TH) stain was measured in each tissue (Figure 10A,C).
Between the sham and severe injury models for the heart, no significant difference in posi-
tive TH percentage was found (Figure 10B). Likewise, there was no significant difference in
positive TH percentage in the liver (Figure 10D).
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sections from both sham and severe SCI were analyzed for % area of positive TH stain (B). No
significant differences in % positive was seen. Liver sections from both sham and severe SCI were
also analyzed for % area of positive TH stain (D). Again, no significant differences in % positive was
seen. Values presented as mean ± S.E.M. n = 6 (sham) and 5 (severe). Data analyzed by Student’s
T-test comparing the means of 2 groups. * p < 0.05. Scale bars = 100 µm.

4. Discussion

The main findings of this study are that chronic SCI at T8 level: (1) increases the liver
echogenicity, which is associated with increased liver fibrosis; (2) reduces the LVID and
increases the FS that are found to be associated with increased cardiac fibrosis and LV
thickness indicating severe hypertrophy; (3) induces the sustained loss of motor functions;
and (4) leads to the reduction in body weight, lean and fat percentage. Importantly,
these perturbations in cardiometabolic functions vary significantly depending upon the
severity of the injury and play a key role in determining the long-term health outcome
following SCI.

4.1. SCI Severity and Hepatic Dysfunctions

The liver plays an essential role in metabolic function and SCI is associated with liver
abnormalities in humans and rodents [37,39]. We observed a non-significant increase in
liver echogenicity at 12 and 20 weeks after severe injury. Several factors may lead to changes
in liver echogenicity including liver steatosis [68]. Changes in the hepatic echogenicity may
be induced by the infiltration of pro-inflammatory cytokines and chemokines in the liver
due to the trauma [40]. Interestingly, these changes in echogenicity were associated with an
increase in fibrotic tissues in relation to the injury severity. In humans, ultrasound imaging
is not routinely performed to assess liver dysfunction in people with chronic SCI [37]. Our
data suggest that changes in echogenicity obtained from ultrasound imaging after chronic
SCI, even if not significant, are correlated with significant increase in histological fibrotic
changes of the liver. Therefore, because of the risks associated with a liver biopsy to assess
for hepatic diseases, noninvasive examination of liver echogenicity following SCI may be
of high interest to monitor the development of hepatic dysfunction in humans. This could
be performed in addition to testing for serum markers such as alanine aminotransferase
and aspartate transaminase (AST) [67].

Several studies have reported that SCI patients developed metabolic dysfunctions
such as insulin resistance and impaired glucose tolerance [20,21,69,70]. Using IPGTT to
assess glucose tolerance, our results revealed no differences between the groups at any time
points up to 20 weeks after SCI. These results are consistent with a prior study reporting
that glucose intolerance was not observed in SCI male mice at 56 or 84 days after T10 SCI
transection [71]. However, the same study described an elevated fasting blood glucose in
these mice. Another group reported that moderate T8 contusion in female rats led to no
significant change in glucose levels at 23-days post SCI [67]. Importantly, female rats with a
complete T3 transection showed a significant enhancement in glucose handling at 16 weeks
post SCI, with lower serum insulin concentrations [72]. Our data do not show a change in
insulin level at 18 weeks post SCI. However, these measurements of insulin levels were not
performed on fasted animals. Future work is needed to better characterize the complex
insulin/glucose relationship in mice models of SCI. Altogether, this suggests that the injury
severity (contusion vs. transection), the level of the injury (high or low thoracic), and the
timing post-SCI are important factors impacting metabolic functions [69]. Indeed, both the
hepatic infiltration of fatty acids and/or inflammation following SCI and the disruption of
the hepatic nervous system may impact hepatic functions. Our data suggest that severe T8
contusion does not alter hepatic TH innervation. However, it is of high interest to better
understand how the level and severity of the injury may play a key role in directly or
indirectly modulating the hepatic nervous system and the hepatic functions.



Biology 2022, 11, 495 18 of 24

4.2. SCI Severity and Cardiac Functions

The development of cardiovascular dysfunction following SCI is one of the leading
causes of death among SCI patients [73]. Cardiovascular dysfunction after SCI is dependent
on the level and the degree of the injury [74]. Disruption of the cardiovascular nervous
control by SCI leads to autonomic dysreflexia especially if the injury level is at T6 or
above [46]. However, a T8 contusion model does not disrupt the cardiovascular sympathetic
control, suggesting that the cardiac changes we have observed are due to other factors.
Our data suggest no significant changes in TH innervation in the LV after chronic SCI.
One could speculate that the reduction in survival observed in severe SCI (only 55% at
5-month post SCI) is the result of these cardiovascular complications. We could not confirm
this hypothesis as we were not able collect the tissue from the animals found dead. Our
results indicated that, during systole, both the LVID;s and volume were reduced in severe
SCI at 16 weeks, and significantly at 20 weeks PI. This was correlated histologically with
the increase in the left ventricle thickness. It is known that SCI individuals have smaller
LV volumes and mass [75]. In rat models of SCI, West et al. reported a reduction in
LV dimensions at 6 weeks post T3 SCI [76] and cardiac atrophy, reduced myocardium
contractility, and increased fibrosis [77].

Our data showed an increase in the ejection fraction (EF) at 20 weeks PI in the severely
injured group compared to the sham and moderate group. In humans, an EF >75% is a sign
of hypertrophy cardiomyopathy. However, previous studies reported no differences in EF
between SCI and able-bodied individuals despite LV volumes reduction [75]. In our data,
EF is 58.1% in sham, 62.3% in moderate, and 70.4% in severe SCI. These severely injured
mice also developed LV thickness and hypertrophy shown by histological analysis. While
echocardiography scanning showed no significant differences in other cardiac parameters
such as LV mass, SV, CO, HR, and LVPW, and LVAW thickness (Table 2), histological
analysis revealed a significant change in LVPW, and LVAW thickness induced by severe
SCI. Squair et al. observed a reduction in LVID;s, LVID;d, Volume;s and Volume;d [51].
They also reported a non-significant increase in EF in T3 severe contusion model in rat.
However, we must acknowledge the limitation of this type of echo measurements and
that short axis view analyses can infer volumetric measurements, and impact the EF
calculated [78]. EF is calculated using the LV chamber volume during end systole (Volume;s)
and end diastole (Volume;d) with this equation [EF = (Volume;d–Volume;s)/ Volume;d
× 100]. Our hypothesis is that because of the LV hypertrophy in the severe SCI group,
as measured by histology, the left ventricle contains a smaller amount of blood (reduced
Volume;d). In this situation, with a Volume;s not decreasing proportionally, an increase in
EF would be measured (as in our data). Because of this and the increase in perivascular
fibrosis in the heart, we believe the severe SCI group present cardiac dysfunctions. Future
experiments using blood pressure measurement, telemetric devices, or echocardiography
using doppler analysis and B-mode/long-axis measurement will allow for the confirmation
of these observations.

Another critical aspect of cardiac remodeling is the increase in collagen, often syn-
onymous with fibrosis, in the LV tissue of both SCI groups, with more accumulation in
the severity SCI. Outside of a SCI, myocardial fibrosis can be triggered by several factors
including mechanical forces, inflammation [79], neurohormonal such as aldosterone [80,81],
and others reviewed extensively here [82,83]. LV fibrosis can impair cardiac contractil-
ity function, reduce LV chamber size, lead to hypertrophic cardiomyopathy [84,85], LV
dysfunction and heart failure [86]. One can speculate that even in moderate SCI, mice
may develop hypertrophic cardiomyopathy at later chronic timepoints. The molecular
mechanisms underlining these cardiac changes are not well understood. However, chronic
inflammation is associated with metabolic syndrome phenotypes, which are causes of
cardiovascular diseases. Therefore, sustained inflammatory cytokine activity after SCI may
be a trigger for cardiac tissue damage and dysfunction. The direct impact of inflammation
on cardiac alterations remains to be determined. Reduction of the systemic inflammation
could be a potential target to reduce cardiac complications associated with chronic SCI.
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LV thickening may be caused by several mechanisms, including increase in hyper-
tension, diabetes, and aortic valve stenosis. We could not measure the potential changes
in blood pressure over time and we did not observe changes in glucose levels. However,
we observed significant increase in fibrosis in liver and LV. Therefore, it is possible that
fibrosis occurs in other parts of heart, including on the aortic valve, leading to stenosis at
chronic time points, and LV hypertrophy. Another possibility is the direct role of systemic
inflammation on cardiac functions. Indeed, chronic low-grade inflammation leads to car-
diomyopathies, including cardiomyocytes hypertrophy and dysfunctions [87–89]. Future
work is necessary to understand the mechanism of LV thickening in this chronic T8 severe
contusion model in mice, including the changes in cardiomyocytes size and numbers [51].

While we do not observe differences in TH staining in the heart and liver, we have
to acknowledge that the T8 contusion model used here can impact innervation in other
organs [45,46]. Therefore, any change in blood regulation in these organs induced by the
dysregulation of the nervous system may overtime directly impact heart functions and
induce hypertrophy and fibrosis through change in blood pressure. Additionally, more
work is needed to understand how mid-thoracic SCI could precisely alter heart functions,
despite the non-significant change in TH. Indeed, neural remodeling in the autonomic
nervous system, and the balance between the sympathetic and parasympathetic systems,
may be altered and induce further changes in cardiac functions and regulation. Interestingly,
the autonomic nervous system is involved in detecting and modulating inflammation [90].
Therefore, change in the sympathetic tone can not only modulate heart function but also
directly alter inflammation. Whether inflammation alters the sympathetic first after SCI of
the reversed needs to be determined.

4.3. SCI Severity and Body Composition

Due to the severe trauma induced by SCI which increases the metabolic demand,
significant changes in the body weight and body fat may occur [70]. In humans, reports
have indicated that people with SCI exhibit a significant increase in body mass index
(BMI) [91]. These changes may increase the body fat and reduce lean mass [7,24,92]. Our
results showed a reduction in body weight and body fat and lean percentage in both SCI
severity models, compared to the sham control group. Severely injured mice lost more
body fat and lean mass than moderately injured mice. This prolonged reduction in body
weight including fat mass was also reported in rats after 16 weeks of T3 SCI [72]. In this
study, the authors related this reduction to possible permanent changes in gastrointestinal
transit and absorption and not due to hypophagia. Interestingly, thoracic SCI at level T10
in rats maintained on a low-fat diet did not gain weight compared to SCI rats maintained
on high fat diet after 12 weeks post injury, indicating that diet also plays an important
role in changes in body composition [93]. Our results showed a reduction in fat and lean
percentages compared to sham. This reduction in fat is correlated with the overall reduction
in the level of triglycerides in the liver and plasma levels in severe SCI, although it is not
significant. Previous work reported some pathological changes to lipid species early on
following injury [39,94]. However, our data suggest that when examined 5 months after
SCI, the lipid levels appear to be normal with a moderate SCI, and slightly reduced after
a severe SCI. Potential increases or decreases within the lipid profile of SCI patients have
been shown to be dependent upon numerous factors such as the level and severity of injury,
age/sex, and time after injury [38,95,96]. Damage to the liver, notably fibrosis, does remain
at this chronic timepoint, suggesting that the liver may be more prone to inflammation
or differential response after high fat diet feeding. The lack of fat gain in rodent and the
reduction in lipid (hepatic and circulating) is intriguing. Different types of diet, lower food
intake, and changes in metabolism may explain the slower fat accumulation following SCI
in mice. In this study, we did not monitor dietary intake, which would be recommended
for future work. It will also be interesting to challenge this new metabolic state by shocking
the system via a large uptake in fat. It would be interesting to see if the mice gain weight
(and fat) at all at more chronic time points as aged mice do.
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4.4. SCI Severity, Motor Function, and Injury Size

Regarding behavioral assessments, BMS testing indicated that, for both SCI severity
models, mice did not fully recover their locomotor function at 20 weeks after SCI. Moderate
SCI mice recovered better than severely injured mice. Functional recovery in mice is
severity-dependent and is not complete in a moderate or severe contusion model of SCI,
with animals reaching the maximum of the recovery several weeks after injury. Four
months old mice injured at T8-10 (75 kdyn) contusion did not recover fully after 6 weeks
post injury [97,98]. Our results assessed recovery at chronic time point (up to 5 months
post-SCI) and demonstrate that functional recovery is severity dependent and that injured
mice do not further recover over a long period of time.

Our results showed a significant increase in the spinal cord lesion size with the
model of injury severity. It has been previously shown that there is a positive relationship
between lesion severity and functional outcomes where increase in lesion size may lead
to decreased outcomes [99]. Interestingly, liver dysfunction and inflammation at the time
of SCI increases the spinal cord lesion size and worsens motor recovery [67]. The changes
induced by SCI are affecting several organs and are severity dependent. This is apparent in
individuals living with SCI because they are more prone to infections and cardiometabolic
disorder [100]. Chronic exposure to increased levels of circulating inflammatory cytokines
lead to liver dysfunction and metabolic disease [94]. We observed a significant increase
in IL-1β and a trend for upregulation of IL-6 plasma concentrations in the severe group
compared to the sham groups. Previous finding showed that IL-1β gene expression was
upregulated in the hepatic tissue for at least 21 days post-injury [39]. Furthermore, IL-6 has
been implicated in regulations of metabolic function induction of the hepatic acute phase
proteins [101]. Hepatic IL-6 expression is increased in animal models of nonalcoholic fatty
liver disease (NAFLD), which results in insulin resistance in mice [102]. Considering the
role of the liver as a key organ in regulating metabolism, modulating the inflammatory
response may reduce liver dysfunction, which in turn may reduce the onset of the severity
of cardiometabolic dysfunctions.

5. Conclusions

In conclusion, our data suggest that mice with thoracic T8 injury develop numerous
hepatic and cardiometabolic alterations over time. Further work will determine if changes
in innervation in several organs after SCI, including inflammatory organs such as the
spleen and the gastro-intestinal tract, can directly or indirectly influence these health issues.
Importantly, it will be of high interest to determine if targeting inflammation will reduce
these metabolic outcomes, as well as reduce the morbidity and mortality of people living
with SCI.
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