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Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is being

increasingly applied in patients with circulatory failure, but mortality remains high. An

inflammatory response syndrome initiated by activation of blood components in the

extracorporeal circuit may be an important contributing factor. Patients with ST-elevation

myocardial infarction (STEMI) may also experience a systemic inflammatory response

syndrome and are at risk of developing cardiogenic shock and cardiac arrest, both

indications for VA-ECMO. Extracellular vesicles (EV) are released by activated cells as

mediators of intercellular communication and may serve as prognostic biomarkers.

Cardiomyocyte EV, released upon myocardial ischemia, hold strong potential for this

purpose. The aim of this study was to assess the EV-profile in VA-ECMO and STEMI

patients and the association with outcome.

Methods: In this prospective observational study, blood was sampled on day

1 after VA-ECMO initiation or myocardial reperfusion (STEMI patients). EV were

isolated by differential centrifugation. Leukocyte, platelet, endothelial, erythrocyte and

cardiomyocyte (caveolin-3+) Annexin V+ EV were identified by flow cytometry. EV

were assessed in survivors vs. non-survivors of VA-ECMO and in STEMI patients

with normal-lightly vs. moderately-severely reduced left ventricular function. Logistic

regression was conducted to determine the predictive accuracy of EV. Pearson

correlation analysis of EV with clinical parameters was performed.

Results: Eighteen VA-ECMO and 19 STEMI patients were recruited. Total Annexin

V+, cardiomyocyte and erythrocyte EV concentrations were lower (p ≤ 0.005) while the

percentage of platelet EV was increased in VA-ECMO compared to STEMI patients (p =

0.002). Total Annexin V+ EV were increased in non-survivors of VA-ECMO (p= 0.01), and

higher levels were predictive of mortality (AUC= 0.79, p= 0.05). Cardiomyocyte EV were

increased in STEMI patients with moderately-severely reduced left ventricular function

(p = 0.03), correlated with CK-MBmax (r = 0.57, p = 0.02) and time from reperfusion
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to blood sampling (r = 0.58, p = 0.01). Leukocyte EV correlated with the number of

coronary stents placed (r = 0.60, p = 0.02).

Conclusions: Elevated total Annexin V+ EV on day 1 of VA-ECMO are predictive of

mortality. Increased cardiomyocyte EV on day 1 after STEMI correlate with infarct size

and are associated with poor outcome. These EV may aid in the early identification of

patients at risk of poor outcome, helping to guide clinical management.

Keywords: ECMO - extracorporeal membrane oxygenation, ECLS (VA), survival, myocardial infarction, STEMI,

cardiomyocyte, caveolin-3, extracellular vesicle (EV)

INTRODUCTION

Veno-arterial extracorporeal membrane oxygenation (VA-
ECMO) is applied in patients with circulatory failure and
its use has increased in recent years (1). Indications include
refractory cardiogenic shock, massive pulmonary embolism,
cardiac arrest, and failure to wean from cardiopulmonary
bypass after cardiac surgery (2–4). The overall survival rate
for patients with VA-ECMO is approximately 58% but varies
depending on the underlying condition (5). An important factor
contributing to high mortality in VA-ECMO patients are ECMO-
associated complications such as bleeding (6), thrombosis (7)
and a systemic inflammatory response syndrome (8). These
complications may in turn be caused by activation and alteration
of blood components (platelets, leukocytes, complement factors)
after contact with the extracorporeal circuit (9). Extracellular
vesicles (EV) may also be playing an important role, as we
recently reported increased levels of EV in VA-ECMO patients
compared to healthy controls (10).

EV can be released by most cell types in response to
activation and consist of a lipid bilayer membrane (11, 12). The
term “Extracellular Vesicles” recommended by the International
Society for Extracellular Vesicles (ISEV) and the European
Society of Cardiology (ESC) for particles released from a cell
that are delimited by a lipid bilayer and cannot replicate and
is favored over variably defined terms such as “microparticles”
and “microvesicles” (13, 14). Depending on their cellular origin,
EV contain bioactive molecules, surface receptors and genetic
information, e.g., DNA, RNA, and microRNA, which are
delivered to their target cells rendering them biologically active
mediators of intercellular communication. EV may be identified
by the presence of phosphatidylserine on their surface which can
be detected by Annexin V (15, 16). Moreover, EV express surface-
specific antigens from their cells of origin allowing identification
by flow cytometry (13). EV are emerging as novel prognostic and
diagnostic biomarkers in various cardiovascular diseases (17).

Patients with ST-elevation myocardial infarction (STEMI)
share several characteristics with VA-ECMO patients, as they
often experience a systemic inflammatory response syndrome
(18) and are prone to develop cardiogenic shock or cardiac
arrest requiring VA-ECMO therapy (19–21). Increased levels of
circulating EV have been reported in STEMI patients (22, 23)
and EV have also been associated with outcome in these patients
(23). An important role could be played by cardiomyocyte EV
in patients with myocardial infarction. Several in vitro studies

have shown that cardiomyocyte EV are released from ischemic
cardiomyocytes in cell culture and animal models of myocardial
infarction (24–26). However, the distribution and concentration
of these EV in patients with myocardial infarction requires
further investigation.

The aim of this study was to assess the EV-profile in VA-
ECMO and STEMI patients and to identify EV associated with
outcome as potential novel prognostic biomarkers.

MATERIALS AND METHODS

Recruitment and Management of STEMI
Patients
Patients with STEMI were recruited prospectively from the
intensive and intermediate care wards of the University Hospital
in Freiburg, Germany, from April 2020 until March 2021.
Patients were identified by daily screening of the electronic
patient data management system. This study adhered to the
definition of STEMI by the European Society of Cardiology and
patients were treated as per guideline recommendations (27). All
STEMI patients received unfractionated heparin. Patients with
STEMIwho had either full vessel occlusion or high-grade stenosis
in the coronary angiogram requiring coronary intervention were
eligible. Exclusion criteria were: (A) Age<18 or >80 years,
(B) hematological malignancies, (C) Hemoglobin (Hb)-values
under 8 g/dl, Sepsis (as defined by positive blood cultures, D),
cardiac arrest (E), mechanical circulatory support (e.g., VA-
ECMO, Impella) (F). After discarding the first tube, citrated
blood was drawn slowly after antecubital vein puncture at one
time point 2–22 h after reperfusion and carefully transferred to
the laboratory for EV isolation and analysis.

Recruitment and Management of
VA-ECMO Patients
Patients receiving VA-ECMO were recruited prospectively from
the intensive care units of themedical and heart surgical intensive
care wards of the University Hospital in Freiburg, Germany
from December 2019 until December 2020. Daily screening
of the patient data management system identified patients on
VA-ECMO. Patients were eligible if they were receiving VA-
ECMO. Exclusion criteria were: (A) Age<18 or >80 years, (B)
hematological malignancies and (C) a hemoglobin value <8
g/dl. After discarding the first tube, citrated blood was carefully
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TABLE 1 | Clinical characteristics of STEMI and VA-ECMO patients.

VA-ECMO STEMI p-value

Patients, n (%) 18 19

Female, n (%) 4 (22) 7 (37) 0.48

Survivors, n (%) 12 (67) 18 (95) 0.04

Age, y (Q1-Q3) 63.0 (52.8–71.5) 60.0 (53.0–69.0) 0.75

Coronary Artery Disease,

n (%)

11 (61) 19 (100) 0.003

Atrial fibrillation, n (%) 2 (11) 1 (5) 0.60

Diabetes mellitus, n (%) 2 (11) 3 (16) >0.99

Hypertension, n (%) 1 (6) 12 (63) <0.001

Active smoker, n (%) 2 (11) 12 (63) 0.002

Hypercholesterolemia, n (%) 4 (22) 9 (47) 0.17

Cancer, n (%) 0 (0) 1 (5) >0.99

Acute renal failure, n (%) 4 (22) 1 (5) 0.18

Acute liver failure, n (%) 1 (6) 0 (0) 0.49

Catecholamines, n (%) 16 (89) 1 (5) <0.001

Dual anti-platelet therapy,

n (%)

7 (39) 19 (100) <0.001

Major bleeding, n (%) 8 (44) 0 (0) 0.001

Thrombotic events, n (%) 2 (11) 0 (0) 0.23

Mechanical ventilation, n (%) 18 (100) 0 (0) <0.001

PEEP (mbar, Q1-Q3) 8.0 (6.5–12.8)

FiO (%, Q1-Q3) 50.0 (40.0–50.0)

Respiratory rate (/min,

Q1-Q3)

14.5 (11.8–16.0)

paO2 (mmHg, Q1-Q3) 116.5

(86.8–180.3)

paCO2 (mmHg, Q1-Q3) 41.1 (37.3–43.4)

Type of VA-ECMO, n (%)

Stöckert Sorin

Maquet

Deltastream

CARL

7 (39)

8 (44)

2 (11)

1 (6)

Indications for VA-ECMO, n (%)

Cardiogenic shock

- Postoperative

- Myocardial Infarction

- Cardiomyopathy

- Endocarditis

- Pulmonary embolism

eCPR

15 (83)

7 (39)

2 (11)

4 (22)

1 (6)

1 (6)

3 (17)

Days on ECMO (d, Q1-Q3) 5.0 (3.0–7.0)

ECMO Blood Flow (l/min,

Q1-Q3)

4.5 (3.3–4.9)

WBC (x103 /µl, Q1-Q3) 9.0 (5.9–11.6) 11.3 (9.3–13.0) 0.51

Hb (g/dl, Q1-Q3) 8.6 (8.0–10.0) 14.2 (13.4–15.2) <0.001

Platelets (x103 /µl, Q1-Q3) 105 (60.0–132.3) 217.0

(192.0–246.0)

<0.001

Creatinine (mg/dl, Q1-Q3) 1.5 (1.0–2.4) 1.0 (0.9–1.1) 0.001

Urea (mg/dl, Q1-Q3) 54 (34.0–85.0) 29.0 (26.0–33.0) <0.001

Bilirubin (mg/dl, Q1-Q3) 1.9 (1.2–3.3) 0.6 (0.4–0.9) 0.07

AST (U/l, Q1-Q3) 182.0

(109.5–477.0)

181.5

(93.0–468.0)

0.48

ALT (U/l, Q1-Q3) 56.5 (35.3–99.3) 45.5 (28.3–81.5) 0.26

(Continued)

TABLE 1 | Continued

VA-ECMO STEMI p-value

CRP (mg/l, Q1-Q3) 35.7 (20.4–94.2) 3.1 (1.0–12.0) 0.02

IL-6 (pg/ml, Q1-Q3) 43.3 (15.6–405.3) 42.2 (19.0–162.8) 0.33

Lactate (mmol/l, Q1-Q3) 2.9 (1.3–4.7) 1.8 (1.1-2.2) 0.02

Prothrombin time ratio (%,

Q1-Q3)

61.0 (46.8–73.0) 90.5 (81.5–106.5) <0.001

PTT (s, Q1-Q3) 47.5 (41.5–66.8) 38.0 (27.5–85.0) 0.89

CKmax (U/L, Q1-Q3) 2,585

(1,296–4,114)

CK-MBmax (U/L, Q1-Q3) 363.0

(182.5–446.3)

Total Cholesterol (mg/dl,

Q1-Q3)

189.0

(144.0–222.0)

LDL cholesterol (mg/dl,

Q1-Q3)

128.0

(94.0–149.0)

HDL cholesterol (mg/dl,

Q1-Q3)

49.0 (40.0–54.0)

HbA1c (%, Q1-Q3) 5.6 (5.4–6.1)

Data are presented as median (interquartile range, Q1-Q3) or number of patients (%).

Denominator of the percentage is the total number of subjects in the group. p-values were

calculated by an unpaired t-test or a Fisher’s exact test. Significant p-values are indicated

in bold. “Cardiomyopathy” includes ischemic cardiomyopathies and cardiomyopathies of

unknown origin. Several parameters were only available for either VA-ECMO or STEMI

patients. Laboratory values were taken from the data management system closest to the

time point of blood sampling. Criteria published by the International Society on Thrombosis

and Haemostasis were used to define major bleeding (31). ALT, alanine aminotransferase;

AST, aspartate aminotransferase; CKmax , maximum value of creatine kinase; CK-MBmax ,

maximum value of creatine kinase MB. CRP, C-reactive protein; eCPR, extracorporeal

cardiopulmonary resuscitation; FiO, fraction of inspired oxygen; Hb, hemoglobin; IL-6,

Interleukin 6; HDL, High density lipoprotein; LDL, Low density lipoprotein; PEEP, positive

end-expiratory pressure; PTT, partial thromboplastin time; WBC, white blood cells.

drawn from an arterial line from patients 2–24 h after VA-
ECMO initiation (=day 1). Blood was carefully transported to
the laboratory where EV isolation and analysis were performed.
Clinical and laboratory parameters were obtained from the
electronic patient data management system.

The decision on the placement of VA-ECMO was made
by an experienced ECMO physician while implantation and
management were carried out as described previously (28,
29). For most patients, the diameter of venous cannulas was
21–23 F and 15–17 F for arterial cannulas. Patients received
unfractionated heparin with a partial thromboplastin time (PTT)
target of 40–50 s. If patients had signs of bleeding or thrombosis,
individual PTT-targets were set by an experienced ECMO
physician. VA-ECMO was carried out using the Stöckert R©

centrifugal pump (LivaNova PLC, London, United Kingdom),
the Maquet Cardiohelp System with an HLS Set Advanced
(Maquet Cardiopulmonary GmbH, Rastatt, Germany), the CARL
system (Resuscitec, Freiburg, Germany) or the Deltastream
system (Xenios AG, Heilbronn, Germany).

Isolation and Storage of Extracellular
Vesicles
20 ml of citrated blood were transferred to the laboratory
at room temperature taking care to avoid agitation and
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EV isolation was started within 1.5 h after blood sampling.
EV were isolated and stored as described previously (30).
Samples with macroscopic signs of hemolysis were discarded.
Samples that were used for flow cytometric analysis had
only been frozen and defrosted once. After defrosting, 2–3
tubes with EV (each containing 100 µl EV diluted in RPMI
buffer) were pooled and vortexed before being prepared for
flow cytometry.

Flow Cytometry
The following antibodies were used: PE Annexin V (Biolegend,
USA), APC anti-CD61 (clone VI-PL2, Biolegend, USA),
Brilliant Violet (BV) 421 anti-CD62E (clone 68-5H11, BD
Biosciences, USA), APC anti-CD45 (clone HI-30, Biolegend,
USA), PE/Cy7 anti-CD235a (clone HI264, Biolegend, USA),
Alexa Fluor (AF) 647 anti-caveolin-3 (clone A3, Santa
Cruz Biotechnology Inc., USA). Matching isotype control
antibodies were ordered from the same company as the
binding antibodies.

FACS tubes were prepared with PE Annexin V and a single
specific antibody or a corresponding isotype control. This single
stain strategy was adopted as it reduced the overall brightness
of the sample, reducing the need for compensation and the
risk of “false-positive” events and allowing a more specific EV
analysis. 2.5 µl of PE Annexin V were added to every tube.
The following volumes of antibodies (or their isotype controls)
were added to the respective single stain tubes: APC anti-CD61:
1 µl; BV421 anti-CD62E: 5 µl; APC anti-CD45: 1 µl; PE/Cy7
anti CD235a: 5 µl; AF 647 anti-caveolin-3: 5 µl. 20 µl of EV
were added to each tube and staining was allowed (20min, RT,
dark). Afterwards, 400 µl of Annexin V binding buffer was
added to each tube followed by vortexing and samples were
incubated for 10min in the dark. Samples were recorded at
low flow rate using a FACS Canto II Flow Cytometer (BD,
USA). The lower detection limit was placed as a threshold
above the electronic background noise of the flow cytometer
and an appropriate SSC threshold was set. 10,000 TrucountTM

(BD, USA) beads were recorded per sample. Absolute EV
counts are presented per ml of diluent in the FACS tube and
were determined using BD TrucountTM Tubes following the
manufacturer’s instructions. Total Annexin V+ EV/ml were
quantified in the first sample for every patient stained only with
PE Annexin V+.

A gate including EV between 100 nm and 1µm (=
“microvesicles”) was set and verified for each patient using
size reference beads (Flow Cytometry Sub-micron Particle Size
Reference Kit, Thermo Fisher Scientific, USA). Gating was
then performed for Annexin V+ events. Platelet (Annexin
V+ CD61+), leukocyte (Annexin V+ CD45+), cardiomyocyte
(Annexin V+ caveolin-3+), endothelial (Annexin V+ CD62E+)
and erythrocyte EV (Annexin V+ CD235a+) were identified.
Flow cytometric data was analyzed using FlowJo V10.6.0 (FlowJo,
LLC). Percentages of Annexin V+ EV subpopulations were
calculated by dividing the absolute concentration of the EV
subpopulation by the concentration of the total Annexin V+ EV
population and multiplying by 100.

Laboratory Parameters
Laboratory parameters were taken from the electronic
patient data management system closest to the time
of blood sampling. The IL-6 concentration was
analyzed in the supernatant remaining after the second
centrifugation step in the EV isolation protocol. An
Elecsys IL-6 test run on a Roche cobas 8000 – e801
module (Roche, Switzerland) was used to determine the
IL-6 concentration.

Statistics
Variables are presented as mean±SEM or median
(interquartile range). Unpaired t-tests were conducted to
analyze differences of means. Simple logistic regression
analysis was carried out to determine association of EV
with mortality in VA-ECMO patients. Areas under the
receiver operating characteristics (ROC) curve (AUC)
were calculated to determine predictive accuracy of
these parameters. The Pearson correlation coefficient
was calculated to determine the correlation between two
parameters. A p-value ≤ 0.05 was considered statistically
significant. Statistical analysis was performed using
GraphPad Prism V9.1 (GraphPad Software, San Diego,
California, USA).

RESULTS

Clinical Characteristics
Eighteen patients receiving VA-ECMO and 19 patients with
STEMI were recruited for this study (Table 1). The median
age of VA-ECMO patients was 63 years, the median age of
STEMI patients was 60 years. There were 4 females in the
VA-ECMO group and 7 females in the STEMI group. Patients
received VA-ECMO for cardiogenic shock (15 patients) or
during extracorporeal cardiopulmonary resuscitation (eCPR,
3 patients). The median time on VA-ECMO was 5 days.
Twelve VA-ECMO patients survived until discharge from the
intensive care wards and were considered “survivors”. Of the
6 non-survivors, 5 patients died of the devastating underlying
disease and one patient died of a severe ECMO-induced
coagulopathy and bleeding complications. Eighteen STEMI
patients survived until discharge from the intensive care wards.
Compared to STEMI patients, which did not suffer from
bleeding or thrombotic complications, 8 VA-ECMO patients
had severe bleeding and 2 had thrombotic complications.
Eleven VA-ECMO patients suffered from coronary artery disease
(CAD). STEMI patients had more cardiovascular risk factors
than VA-ECMO patients, and all STEMI patients received
dual anti-platelet therapy (DAPT) compared to 7 VA-ECMO
patients. Moreover, all VA-ECMO patients were on mechanical
ventilation as opposed to no patients in the STEMI group.
As expected, VA-ECMO patients had higher levels of CRP,
lactate, creatinine, and urea, but a lower prothrombin time
ratio, platelet count and Hb-concentration. The number of
diseased vessels, the number of coronary stents placed, the
anti-platelet agents applied and the time from reperfusion
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FIGURE 1 | Extracellular vesicle (EV) concentration in patients receiving veno-arterial extracorporeal membrane oxygenation (VA-ECMO) compared to patients with

ST-elevation myocardial infarction (STEMI). (A) Total Annexin V+ EV/ml, (B) CD61+ (platelet) EV/ml, (C) caveolin-3+ (cardiomyocyte) EV/ml, (D) CD45+ (leukocyte)

EV/ml, (E) CD235a+ (erythrocyte) EV/ml, (F) CD62E+ (endothelial) EV/ml. EV isolation, analysis and quantification were performed as described in the Materials and

Methods section. Data are presented as mean±SEM. p-values were calculated by an unpaired Student’s t-test, p ≤ 0.05 was considered significant, ns – not

significant.

to blood sampling for STEMI patients can be found in
Supplementary Table S1.

The EV-Profile Differs Significantly
Between STEMI and VA-ECMO Patients
When assessing the absolute EV concentrations in VA-ECMO
and STEMI patients, several differences were observed. Total
Annexin V+ EV/ml were significantly higher in STEMI patients
compared to VA-ECMO patients (VA-ECMO vs. STEMI: 22,449
± 3,519 vs. 62,482 ± 9,781, p < 0.001, Figure 1). Caveolin-3+

EV/ml were also significantly higher in STEMI patients, as were
CD235a+ EV/ml (VA-ECMO vs. STEMI, caveolin-3+ EV/ml:
347.0 ± 113.4 vs. 4,191 ± 1,231, p = 0.005; CD235a+ EV/ml:
3,807 ± 933.1 vs. 32,033 ± 5,323, p < 0.001). The concentration
of CD61+ EV/ml, CD45+ EV/ml and CD62E+ EV/ml were not

significantly different between STEMI and VA-ECMO patients
(VA-ECMO vs. STEMI, CD61+ EV/ml: 9,356 ± 2,182 vs. 6,907
± 1,143, p = 0.32; CD45+ EV/ml: 1,357 ± 751.2 vs. 286.4 ±

184.1, p = 0.19; CD62E+ EV/ml: 632.2 ± 542.3 vs. 336.4 ± 98.0,
p= 0.57).

The percentages of the Annexin V+ EV subpopulations
also differed significantly. The percentage of CD61+ EV was
significantly higher in VA-ECMO patients compared to STEMI
patients (VA-ECMO vs. STEMI, percentage of CD61+ EV: 40.0
± 6.2 vs. 16.5 ± 3.8, p = 0.002, Figure 2). The percentages of
caveolin-3+ EV and CD235a+ EV were significantly lower in
VA-ECMO patients compared to STEMI patients (VA-ECMO vs.
STEMI, percentage of caveolin-3+ EV: 1.5 ± 0.3 vs. 6.1 ± 1.2,
p = 0.002; percentage of CD235a+ EV: 16.6 ± 3.1 vs. 53.6 ±

4.8, p < 0.001). The percentages of CD45+ EV and CD62E+
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FIGURE 2 | Extracellular vesicles (EV) as percentage of Annexin V+ EV from patients receiving veno-arterial extracorporeal membrane oxygenation (VA-ECMO)

compared to patients with ST-elevation myocardial infarction (STEMI). (A) CD61+ (platelet) EV, (B) caveolin-3+ (cardiomyocyte) EV, (C) CD45+ (leukocyte) EV, (D)

CD235a+ (erythrocyte) EV, (E) CD62E+ (endothelial) EV. EV isolation, analysis and quantification were performed as described in the Materials and Methods section.

Data are presented as mean±SEM. p-values were calculated by an unpaired Student’s t-test, p ≤ 0.05 was considered significant, ns, not significant.

EV did not differ significantly between VA-ECMO and STEMI
patients (VA-ECMO vs. STEMI, percentage of CD45+ EV: 4.0
± 1.8 vs. 0.9 ± 0.7, p = 0.13; percentage of CD62E+ EV:
2.8 ± 2.4 vs. 0.6 ± 0.2, p = 0.36). Representative populations
of total Annexin V+, CD61+, caveolin-3+, CD235a+, CD45+

and CD62E+ EV identified by flow cytometry are presented in
Supplementary Figure S1.

The EV Profile Is Similar in VA-ECMO
Patients With and Without CAD
To account for different underlying diseases in VA-ECMO
patients, subgroup analysis was carried out. EV levels were
compared between VA-ECMO patients with CAD (n = 11) and
those without CAD (n= 7). No significant differences in absolute

EV levels or percentages were found between the two groups
(Supplementary Figures S2, S3).

Moreover, EV levels in the subgroup of VA-ECMO patients
with CAD were compared with EV levels in STEMI patients.
Significant differences regarding absolute EV levels and
percentages remained as previously observed for the whole
VA-ECMO group (Supplementary Figures S4, S5).

Increased Levels of Total Annexin V+ EV/ml
on Day 1 of VA-ECMO Therapy Are
Predictive of Mortality
Levels of total Annexin V+ EV/ml, CD61+ EV/ml and CD45+

EV/ml blood were significantly increased in non-survivors on
day 1 of VA-ECMO therapy (Table 2). Logistic regression analysis
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TABLE 2 | Extracellular vesicle (EV) concentration and percentage [%] of Annexin

V+ EV in survivors and non-survivors of VA-ECMO therapy.

Parameter Survivor Non-survivor p-value

Total Annexin V+ EV/ml 16,451 ± 2,506 34,447 ± 7,449 0.01

CD61+ EV/ml 6,079 ± 1,081 15,912 ± 5,524 0.03

Caveolin-3+ EV/ml 230.9 ± 67.43 559.7 ± 293.1 0.87

CD45+ EV/ml 345.4 ± 217.8 3,380 ± 2,044 0.05

CD62E+ EV/ml 871.8 ± 789.3 105.0 ± 39.2 0.53

CD235a+ EV/ml 2,750 ± 822.9 5,922 ± 2,135 0.11

CD61+ EV [%] 38.4 ± 5.0 43.1 ± 16.7 0.73

Caveolin-3+ EV [%] 1.7 ± 0.4 1.4 ± 0.5 0.70

CD45+ EV [%] 2.1 ± 0.8 7.9 ± 4.9 0.12

CD62E+ EV [%] 4.1 ± 3.6 0.2 ± 0.1 0.45

CD235a+ EV [%] 18.0 ± 4.2 13.9 ± 3.9 0.54

CD61+ (platelet) EV, caveolin-3+ (cardiomyocyte) EV, CD45+ (leukocyte) EV, CD62E+

(endothelial) EV, CD235a+ (erythrocyte) EV. Data are presented as mean±SEM. p-values

were calculated by an unpaired Student’s t-test. Significant p-values are indicated in bold.

revealed that increased levels of total Annexin V+ EV/ml on
day 1 of VA-ECMO were predictive of mortality (AUC: 0.79, p
= 0.05). However, CD61+ EV/ml and CD45+ EV/ml did not
achieve significance (AUC: CD61+ EV/ml: 0.72, p= 0.13, CD45+

EV/ml: 0.55, p = 0.76). Levels of caveolin-3+ EV/ml, CD62E+

EV/ml and CD235+ EV/ml did not differ significantly between
survivors and non-survivors of VA-ECMO therapy. This was also
the case for the percentages of Annexin V+ EV subpopulations
(Table 2).

Caveolin 3+ EV Are Elevated in STEMI
Patients Compared to Patients With Stable
CAD
To further characterize the distribution of cardiomyocyte EV
in other patient groups, caveolin-3+ EV were analyzed in 10
patients with stable coronary artery disease and compared
to STEMI patients (Supplementary Figure S6). Clinical
characteristics of patients with stable CAD are described in
the caption to Supplementary Figure S6. The level of caveolin
3+ EV per ml and the percentage of caveolin 3+ EV were
significantly elevated in STEMI patients compared to patients
with stable CAD, whereas the level of Annexin V+ EV did not
differ significantly.

Elevated Levels of Caveolin-3+ EV/ml Are
Associated With Moderately to Severely
Reduced Left Ventricular Ejection Fraction
After STEMI
To determine whether EV were associated with outcome in
STEMI patients, levels of EV/ml and percentages of Annexin
V+ EV were compared between patients with a left ventricular
ejection fraction (LVEF) ≥40% (normal-lightly reduced) and
those with an LVEF <40% (moderately-severely reduced) in
the first echocardiography after STEMI (Table 3). Caveolin-3+

EV/ml were significantly increased in patients with moderately

TABLE 3 | Extracellular vesicle (EV) concentration and percentage [%] of Annexin

V+ EV in patients with ST-elevation myocardial infarction (STEMI) with either

normal-lightly (≥40 %) or moderately-severely (<40 %) reduced left ventricular

ejection fraction (LVEF).

Parameter LVEF ≥ 40 % (n = 15) LVEF < 40 % (n = 4) p-value

Total Annexin V+ EV/ml 57,145 ± 10,360 82,498 ± 26,057 0.30

CD61+ EV/ml 7,499 ± 1,408 4,687 ± 645.6 0.33

Caveolin-3+ EV/ml 2,819 ± 776.6 8,992 ± 4,425 0.03

CD45+ EV/ml 300.0 ± 230.9 236.7 ± 219.6 0.89

CD62E+ EV/ml 304.2 ± 121.7 449.1 ± 123.0 0.56

CD235a+ EV/ml 29,281 ± 5,687 42,353 ± 14,021 0.33

CD61+ EV [%] 19.0 ± 4.7 7.0 ± 1.8 0.21

Caveolin-3+ EV [%] 5.0 ± 0.9 9.8 ± 4.7 0.11

CD45+ EV [%] 1.1 ± 1.0 0.3 ± 0.2 0.68

CD62E+ EV [%] 0.6 ± 0.2 0.7 ± 0.2 0.84

CD235a+ EV [%] 53.8 ± 5.3 52.8 ± 12.2 0.93

CD61+ (platelet) EV, caveolin-3+ (cardiomyocyte) EV, CD45+ (leukocyte) EV, CD62E+

(endothelial) EV, CD235a+ (erythrocyte) EV. LVEF was obtained from the first

echocardiography performed by a specialist after STEMI, usually 2-4 days after the event.

Data are presented as mean±SEM. p-values were calculated by an unpaired Student’s

t-test. Significant p-values are indicated in bold.

to severely reduced LVEF (p = 0.03). All other EV parameters
investigated did not show a significant difference between groups.

Caveolin-3+ EV Correlate With CK-MBmax

and Time From Reperfusion to Blood
Sampling
To further explore the potential of caveolin-3+ EV as a biomarker
for the severity of myocardial infarction, the correlation of EV
with CK-MBmax, an established marker related to infarct size
and outcome after myocardial infarction (32), was determined
(Table 4). There was a significant correlation of caveolin-3+

EV/ml (r = 0.57, p = 0.02) and the percentage of caveolin-3+

EV (r= 0.50, p= 0.04) with CK-MBmax.
Like other markers of myocardial damage, caveolin-3+ EV/ml

and the percentage of caveolin-3+ EV showed a time dependent
increase after reperfusion (Table 5) as they correlated with time
from reperfusion to blood sampling (caveolin-3+ EV/ml: r =

0.58, p = 0.01; percentage of caveolin-3+ EV: r = 0.51, p =

0.03). CD235a+ MV/ml also showed a correlation with time from
reperfusion to blood sampling (r= 0.47, p= 0.04).

CD45+ EV Correlate With Number of
Coronary Stents Placed
The correlation between the number of coronary stents placed
during the acute coronary angiography and EV/ml and the
percentages of Annexin V+ EV subpopulations was analyzed in
STEMI patients (Table 6). CD45+ EV/ml and the percentage of
CD45+ EV showed a significant correlation with the number
of coronary stents placed (CD45+ EV/ml: r = 0.60, p = 0.02;
percentage of CD45+ EV: r= 0.65, p= 0.01).
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TABLE 4 | Correlation of extracellular vesicle (EV) concentration and percentage

[%] of Annexin V+ EV with CK-MBmax in STEMI patients.

Parameter r p-value

Total Annexin V+ EV/ml 0.38 0.12

CD61+ EV/ml −0.09 0.72

Caveolin-3+ EV/ml 0.57 0.02

CD45+ EV/ml –0.17 0.57

CD62E+ EV/ml 0.04 0.87

CD235a+ EV/ml 0.20 0.43

CD61+ EV [%] –0.26 0.30

Caveolin-3+ EV [%] 0.50 0.04

CD45+ EV [%] –0.25 0.39

CD62E+ EV [%] –0.08 0.77

CD235a+ EV [%] –0.16 0.54

CD61+ (platelet) EV, caveolin-3+ (cardiomyocyte) EV, CD45+ (leukocyte) EV, CD62E+

(endothelial) EV, CD235a+ (erythrocyte) EV. The Pearson correlation coefficient is

presented. Significant p-values are indicated in bold.

TABLE 5 | Correlation of extracellular vesicle (EV) concentration and percentage

[%] of Annexin V+ EV with time from reperfusion to blood sampling.

Parameter r p-value

Total Annexin V+ EV/ml 0.14 0.58

CD61+ EV/ml –0.01 0.96

Caveolin-3+ EV/ml 0.58 0.01

CD45+ EV/ml –0.03 0.91

CD62E+ EV/ml –0.16 0.53

CD235a+ EV/ml 0.47 0.04

CD61+ EV [%] –0.08 0.75

Caveolin-3+ EV [%] 0.51 0.03

CD45+ EV [%] –0.09 0.76

CD62E+ EV [%] –0.25 0.33

CD235a+ EV [%] 0.21 0.38

Blood was sampled from STEMI patients 4–22 h after interventional reperfusion. CD61+

(platelet) EV, caveolin-3+ (cardiomyocyte) EV, CD45+ (leukocyte) EV, CD62E+ (endothelial)

EV, CD235a+ (erythrocyte) EV. The Pearson correlation coefficient is presented. Significant

p-values are indicated in bold.

DISCUSSION

In this study, we investigated the EV profile of VA-ECMO
and STEMI patients and suggest novel EV biomarker
candidates associated with outcome. To the best of our
knowledge, this is the first study to compare the EV profiles
of VA-ECMO and STEMI patients. Several studies have
investigated EV in STEMI patients (22, 23, 33, 34), but
data on EV levels and distribution in VA-ECMO patients
is limited. Often, results were generated ex-vivo using
artificial blood pumps in an experimental setting (35–
37). Moreover, previous studies analyzing EV in ECMO
patients featured healthy volunteers (10, 38) which share
only very few characteristics with VA-ECMO patients. STEMI

TABLE 6 | Correlation of extracellular vesicle (EV) concentration and percentage

[%] of Annexin V+ EV with the number of coronary stents implanted during the

acute coronary angiography in STEMI patients.

Parameter r p-value

Total Annexin V+ EV/ml –0.29 0.23

CD61+ EV/ml 0.05 0.83

Caveolin-3+ EV/ml –0.29 0.24

CD45+ EV/ml 0.60 0.02

CD62E+ EV/ml –0.33 0.18

CD235a+ EV/ml –0.23 0.34

CD61+ EV [%] 0.29 0.24

Caveolin-3+ EV [%] –0.34 0.17

CD45+ EV [%] 0.65 0.01

CD62E+ EV [%] –0.25 0.31

CD235a+ EV [%] –0.23 0.34

Amaximum of 4 stents were placed. CD61+ (platelet) EV, caveolin-3+ (cardiomyocyte) EV,

CD45+ (leukocyte) EV, CD62E+ (endothelial) EV, CD235a+ (erythrocyte) EV. The Pearson

correlation coefficient is presented. Significant p-values are indicated in bold.

patients, however, are at risk of developing cardiogenic
shock, which may be an indication for VA-ECMO therapy.
Moreover, they share several of the underlying risk factors and
clinical characteristics with ECMO patients. STEMI patients
may therefore be considered ‘more realistic’ controls than
healthy volunteers.

Interestingly, STEMI patients had elevated absolute levels of
total Annexin V+ EV compared to VA-ECMO patients. This
is in line with previous reports of elevated EV concentrations
in STEMI patients compared to other patients with vascular
inflammation, e.g., NSTEMI patients, patients recovering from
STEMI and patients with stable angina (22, 39–42). Elevated
EV levels most likely reflect the release of MV during the
thrombotic process, from activated cells and from the ischemic
myocardium after reperfusion (17, 43). As opposed to STEMI
patients, levels of EV in VA-ECMO patients are influenced
by several factors including flow rate, the composition of the
extracellular circuit and the underlying disease (10, 36, 44). For
example, levels of Annexin V+ EV rise with increasing flow rates
and the composition of EV is affected by which cells adhere
to the different types of extracorporeal circuits and thus, may
secrete EV.

Conventional markers associated with outcome in VA-ECMO
patients include laboratory parameters such as pH, lactate and
bicarbonate and clinical parameters, such as age, the underlying
condition and multiorgan failure. Several of these markers have
been combined to create prediction models for VA-ECMO
patients (45, 46). However, decision making for an individual
patient is still unreliable based on these scores alone. Extracellular
vesicles hold promise as novel prognostic biomarkers. For
example, Annexin V+ EV have been suggested as prognostic
biomarkers in cardiovascular disease (47, 48), but also cancer
(49, 50). In line with this data, we found increased levels of total
Annexin V+ EV in patients receiving VA-ECMO to be predictive
of mortality. To the best of our knowledge, this is the first study to
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provide a link between increased Annexin V+ EV and mortality
in these patients. As VA-ECMO is a resource-heavy therapy,
early measurement of total Annexin V+ EV on day 1 after VA-
ECMO initiation, as conducted in our study, may aid clinicians
in prognostication and decision making for this patient collective
in the future.

We found significantly increased levels of CD235a+

erythrocyte EV in STEMI patients, as previously reported (51).
The authors suggested that the increased CD235a+ EV in STEMI
patients were due to intravascular thrombus formation during
acute myocardial infarction. CD235a+ EV are not only released
by growing thrombi, thereby acting as potential biomarkers but
also contribute actively, as bioactive mediators, to thrombus
formation by activating the intrinsic and extrinsic pathways (52).
CD235a+ EV/ml also correlated with the time from reperfusion
to blood sampling in STEMI patients. This could indicate an
ongoing thrombotic mass even after reperfusion associated with
poor outcome (34). Lower levels of CD235a+ EV observed in in
VA-ECMO patients may therefore explain, at least partly, why
thrombotic complications in these patients are less common
than bleeding complications (7).

We report similar absolute CD61+ platelet EV counts in VA-
ECMO and STEMI patients, whereas the percentage of platelet
EV was significantly higher in VA-ECMO patients. Increased
levels of platelet EV in VA-ECMO patients are likely due to
high shear stress occurring in the ECMO circuit which has
been previously reported for other forms of extracorporeal
circulation (44). Contributing to comparably lower levels of
platelet EV in STEMI patients may have been the high rate of
dual anti-platelet therapy, known to decrease platelet activation
and thereby EV release (16). Additionally, erythrocyte EV, as
opposed to platelet EV, seem to be emerging as the predominant
EV fraction in STEMI patients (34, 51, 52). Platelet EV are not
only a consequence of platelet activation, but are also involved
in several biological processes, for example platelet EV can
bind to monocytes and induce the release of pro-inflammatory
mediators, e.g. IL-1β, TNFα and MCP-1 (53, 54). Platelet EV are
therefore likely to be exerting pro-inflammatory effects on other
immune cells contributing to the overshooting inflammatory
response observed in VA-ECMO patients. Potentially related
to their important biological functions, platelet EV have been
used as prognostic biomarkers. For example, a recent study
found increased levels of platelet EV in patients with STEMI
that had progressed to cardiogenic shock compared to those
without cardiogenic shock (55). Moreover, platelet EV were also
associated with outcome in our study, as we report increased
levels of platelet EV in non-survivors of VA-ECMO therapy.

Another important finding of this study was that the level
of caveolin-3+ cardiomyocyte EV was significantly higher in
STEMI patients compared to VA-ECMO patients and patients
with stable CAD. Caveolin-3 has previously been used as a
marker for cardiomyocyte EV (25, 26). Previous studies have
found that cardiomyocyte EV increase in the blood stream
after experimental myocardial infarction and after exposure
of cardiomyocytes to hypoxic conditions (56). In-vitro studies
revealed that they can exert numerous biological effects,
e.g., modulation of endothelial function, regulation of local

inflammatory responses and cardiac remodeling and promotion
of hepatic C-reactive protein expression (24, 26, 43, 57, 58).

Their intriguing characteristics predispose cardiomyocyte EV
as potential prognostic biomarkers after myocardial infarction.
Myocardial infarction severity in a clinical setting is often
quantified by echocardiography and an LVEF<40% is commonly
associated with larger infarct areas and poor prognosis (59–
61). We demonstrate, for the first time, that caveolin-3+ EV
were increased in STEMI patients with predicted poor outcome
(LVEF<40%), compared to patients with better outcome (LVEF
≥40%). Additionally, caveolin-3+ EV correlated with CK-
MBmax, a known marker of myocardial infarction severity (32).
Caveolin-3+ EV also correlated with time from reperfusion to
blood sampling, indicating a time dependent release, previously
reported for conventional biomarkers of myocardial infarction
(62). This time-dependent release after myocardial infarction
further supports our hypothesis, that caveolin-3+ EV were
released in response to ischemic myocardial injury and that
caveolin-3+ EV are increased at least during the first day after
myocardial infarction.

Cardiomyocyte EV were recently explored as biomarkers in
patients with ischemic cardiomyopathies and aortic stenosis.
Anselmo et al. used CD172a as marker for cardiomyocyte EV
(63). Interestingly, higher levels of CD172a+ cardiomyocyte EV
were associated with a favorable prognosis after transcatheter
aortic valve replacement. In light of our findings, this could
indicate that there are distinct cardiomyocyte EV populations,
which are associated with either a favorable (CD172a+) or poor
(caveolin-3+) prognosis. These empirical findings might also
be related to the biological effects of cardiomyocyte EV. For
example, in Anselmo et al.’s study, CD172a+ cardiomyocyte
EV acted in a beneficial sense by promoting contraction of
isolated cardiomyocytes, whereas caveolin-3+ EV have been
known to exert harmful effects, e.g., increased secretion of pro-
inflammatory cytokines, such as IL-6 and CCL-2 (26).

Levels of leukocyte (CD45+) EV did not differ significantly
in VA-ECMO and STEMI patients. This is most likely due
to the fact that increased levels of leukocyte EV have been
reported in both ECMO (10, 38) and STEMI patients (42).
Interestingly, the level of leukocyte EV was increased in non-
survivors of VA-ECMO therapy indicating an association with
outcome. ECMO may result in initial leukocyte activation
and EV release, followed by leukocyte dysfunction, previously
associated with poor outcome (9, 29, 64–66), which may explain
increased levels of leukocyte EV in non-survivors of VA-ECMO
therapy. Moreover, leukocyte EV may also be exerting harmful
biological effects explaining their association with outcome. For
example, monocyte-derived EV are able to induce upregulation
of adhesion receptors potentially increasing thrombogenicity (67,
68), which could predispose VA-ECMO patients to thrombotic
complications (although they occur less frequently than bleeding
complications). Additionally, neutrophil EV have been shown to
upregulate of IL-6 in endothelial cells (69), which could further
contribute to an initial overshooting inflammatory response in
VA-ECMO patients associated with poor outcome (8, 67, 68).

We also found that leukocyte EV correlated with the number
coronary stents placed during the acute coronary angiography
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in STEMI patients. CD45+ EV are released from activated
leukocytes (70) and laboratory investigations indicate that
coronary stents can activate leukocytes (71). Moreover, clinical
studies have reported leukocyte activation in patients receiving
coronary stents (72). Hence, leukocyte activation triggered by
placement of coronary stents may be the mechanism behind
the observed correlation between the number of coronary stents
placed and increasing levels of leukocyte EV.

STRENGTHS AND LIMITATIONS

Since only few studies have investigated EV in ECMO patients,
this study expands the existing knowledge in this field. By
comparing EV levels from ECMO to STEMI patients, we provide
more realistic controls than, for example, healthy volunteers.
Furthermore, our study indicates that EV may be used as
biomarkers to predict outcome in these patients. In STEMI
patients, we identify an intriguing EV population, caveolin-3+

EV, which were associated with outcome.
However, due to its observational nature we can only report

associations between EV populations and disease states. On a
methodological level, we analyzed EV with a size from 100 nm
to 1µm. Therefore, we cannot comment on the role of smaller or
larger EV. As we only sampled blood from VA-ECMO patients
at one timepoint, we cannot determine how the initiation and
continuation of VA-ECMO therapy influenced the EV profile.
Moreover, VA-ECMO patients had different underlying diseases,
which might have influenced results. However, a subgroup
analysis of EV from VA-ECMO patients with and without
CAD showed similar results in both groups indicating that
the influence of VA-ECMO therapy potentially outweighs the
influence of the underlying disease.

Since we used STEMI patients as controls, it may have
been advantageous if the group of VA-ECMO patients
featured more STEMI patients. As this was difficult to
achieve in practice, we analyzed EV levels in a more
homogeneous VA-ECMO subgroup: those with known
CAD. EV levels in this subgroup were compared to the
group of STEMI patients. Interestingly, we found that the
significant differences regarding EV levels remained the same
as previously observed compared to the whole group. These
results emphasize the influence of VA-ECMO therapy on EV
levels, whereas the influence of the underlying disease may
be limited.

This study primarily aimed to investigate the association of
caveolin-3+ EV with outcome but future studies are required to
characterize their biological role in detail.

CONCLUSION

The EV profile in VA-ECMO patients differs from STEMI
patients in several regards. Levels of total Annexin V+ EV are
lower in VA-ECMO patients than in STEMI patients, but the
percentage of CD61+ platelet EV is higher. Increased levels
of total Annexin V+ EV in VA-ECMO patients on day 1 are
predictive of mortality. Total Annexin V+ EV may therefore
serve as novel prognostic biomarkers guiding early clinical

decision making for VA-ECMO patients in the future. Caveolin-
3+ cardiomyocyte EV, both absolute counts and the percentage
of Annexin V+ EV, were significantly higher in STEMI patients.
Caveolin-3+ EV were related to infarct size and associated with
poor outcome in STEMI patients as levels were increased in
patients with moderately-severely reduced LVEF and correlated
with CK-MBmax. In the future, caveolin-3+ EVmay aid clinicians
in the early identification of STEMI patients at risk of poor
outcome. Further studies with larger patient numbers are needed
to elucidate their true capacity as prognostic biomarkers.
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