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In regenerative medicine, growing cells or tissues in the laboratory is necessary when 
damaged cells can not heal by themselves. Acquisition of the required cells from the pa-
tient’s own cells or tissues is an ideal option without additive side effects. In this context, 
cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) 
and trans-differentiation, have been widely studied in regenerative research. Both ap-
proaches have advantages and disadvantages, and the possibility of de-differentiation 
because of the epigenetic memory of iPSCs has strengthened the need for controlling 
the epigenetic background for successful cell reprogramming. Therefore, interest in epi-
genetics has increased in the field of regenerative medicine. Herein, we outline in detail 
the cell trans-differentiation method using epigenetic modification for bone regenera-
tion in comparison to the use of iPSCs. 
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INTRODUCTION

Bone regeneration requires the complex and well-organized process of bone 
formation.[1] In clinical fields, bone tissue regeneration has been a crucial part of 
regenerative medicine. For the realization of genuine bone regeneration from bench 
to bedside, tissue engineering techniques have been an important research topic.
[2] Among the three key components of tissue-engineering (cells, scaffolds, and 
growth factors), cells cannot be artificially synthesized. Plentiful cell sources are 
necessary for the regenerative process; however, obtaining sufficient number of 
cells is challenging because of the limitation of the defect site. Therefore, various 
methods to obtain target cells have been investigated with the advances in stem 
cell research. To date, because of the limitations regarding the use of embryonic 
stem cells, the field of stem cell biology has expanded via the development of re-
programming technology using somatic cells.[3] 

EPIGENETICS 

Epigenetics is the study of changes in phenotype or gene expression that are 
somatically heritable but not caused by genetic alteration.[4] Epigenetic modifi-
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cations including DNA methylation and histone acetyla-
tion could have long-term effects on gene expression.[5] 
Environmental factors such as nutrition, chemical com-
pounds, stress, and other external factors could affect epi-
genetic modifications. This effect is apparent when envi-
ronmental exposure occurs during gestation.[4] Epigenetic 
mechanisms that support transcriptional control of gene 
expression are important for the phenotypic diversity that 
emerges as a result of cellular differentiation during fetal 
development.[6] Chromatin is a complex of DNA, RNA, and 
protein in the nucleus.[7] DNA is packaged with histone 
proteins and forms the unit of the nucleosome like beads 
on a string structure. The chromatin structure is dependent 
on the transcription or replication state. Euchromatin is 
structurally loose and in an actively transcribed state or 
“turned on”, allowing for the binding of the transcription 
factor. On the other hand, heterochromatin is more con-
densed and is in an inactive state (“turned off”), blocking 
the approach of the transcription factor. Epigenetic chemi-
cal modification in chromatin also alters the structure, in 
particular DNA methylation and histone acetylation or 
methylation. 5´-cytosine methylation of 5´-CG-3´ dinucleo-
tides (‘CpG doublets’) in genomic DNA is a prominent epi-
genetic modification that occurs at clusters of CpG dou-
blets (‘CpG islands’) in transcriptional regulatory regions.[8] 
Generally, DNA hypermethylation of CpG islands in the 
promoter is related to chromatin condensation through 
repressive histone modifications that induce gene silenc-
ing.[9] DNA methyltransferases (DNMTs) and DNMT inhibi-
tors regulate the methylation status of CpG islands after 
DNA replication in the cells in a specific manner.[10] The 
histone modification is a covalent post-translational modi-
fication (PTM) including acetylation, methylation, phos-
phorylation, ubiquitination, and sumoylation. This PTM 
process alters the chromatin structure or recruits histone 
modifiers. Among them, histone acetylation and de-
acetylation are tightly involved with chromatin dynamics 
and transcription, gene silencing, and other cellular pro-
cesses.[11] In most species, histone H3 is primarily acety-
lated at lysine residues 9, 14, 18, 23, and 56. H3 acetylation 
is usually increased by inhibition of histone deacetylases 
(HDACs) and decreased by histone acetyl transferases (HATs). 
Detecting which lysine of H3 is acetylated would provide 
useful information to better understand epigenetic regula-
tion of gene activation. Likewise, both the state of DNA me-

thylation and histone modification play essential roles in 
gene expression, and DNMT, HAT, and HDAC-related drugs 
could be good candidates for the treatment of target dis-
eases.[12,13] The mechanisms of environmentally induced 
phenotypes in humans remain unclear, making epigenetics 
research challenging. 

THE CELL REPROGRAMMING METHODS 
WITH SOMATIC CELLS

1. Induced pluripotent stem cells (iPSCs)
iPSCs are pluripotent stem cells that are generated from 

somatic cells. Initially, the preparation of pluripotent cells 
was performed through the ectopic expression of master 
genes (Yamanaka factors), octamer-binding protein 4 (Oct4), 
sex-determining region Y-box 2 (Sox2), Kruppel-like factor 
4 (KLF4), and avian myelocytomatosis viral oncogene ho-
molog (c-Myc), in both embryonic and adult murine fibro-
blasts.[14] This remarkable achievement represented a big 
breakthrough in stem cell research. In the many studies 
using the Yamanaka factors, the potential for clinical appli-
cation of iPSCs was established utilizing various mouse and 
human cell types.[15,16] iPSCs have successfully been dif-
ferentiated into a diverse range of cell and tissue types. 
Among them, the differentiation of iPSCs into mesenchy-
mal cells or osteoprogenitor cells has actively been stud-
ied.[17] However, the possibility of iPSC de-differentiation 
into their original cell type was questioned because of the 
concept of epigenetic memory. The epigenetic memory of 
cells results from modifications to the cell’s DNA that does 
not alter the DNA sequence, and it is inherited from the 
cell from which it descends. Such modifications can alter 
gene expression, inducing changes in the properties and 
behavior of the cells.

2. Trans-differentiation
Trans-differentiation, a process in which one somatic cell 

transforms into another somatic cell through bypass of the 
pluripotent state or progenitor cell condition, is well known 
as lineage switching or lineage conversion. Selman and 
Kafatos [18] first introduced the term ‘trans-differentiation’, 
based on the transformation of cuticle-producing cells to 
salt-secreting cells. Then, Eguchi and Okada [19] used the 
term to describe the phenomenon of conversion of chick 
retinal pigmented epithelial cells into lens fibers during the 
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lens regeneration process. Recently, the concept of trans-
differentiation has been re-evaluated taking into consider-
ation the epigenetic stability of differentiated cells.[20] Pre-
viously, we reported the possibility of trans-differentiation 
from non-osteoblastic cells into osteoblastic cells through 
epigenetic modification.[6] Epigenetic modification with 
DNMTs inhibitor, 5-aza-2´-deoxycitidine (5-aza-dC) or HDAC 
inhibitor, trichostatin A (TSA), and osteogenic cue with bone 
morphogenetic protein 2 (Bmp2) or Wnt3a was applied to 
trans-differentiation. The 3T3-L1 pre-adipocytes [21] and 
human gingival fibroblast (HGF-1) gingival fibroblasts [22] 
were trans-differentiated into osteoblasts in vitro and in-
duced new bone formation in vivo. These results indicated 
that epigenetic modification permits the direct program-
ming of non-osteoblasts into functional osteoblasts, sug-
gesting that this approach could be a novel therapeutic 
avenue in bone regeneration. 

Waddington [23] suggested the concept of the ‘epigene-
tic landscape’, which is a metaphor for how gene regula-
tion modulates cell development (Fig. 1A). In the epigene-
tic landscape metaphor, just as a marble rolls down a hill, 
stem cells lose their stemness and differentiate into so-
matic cells based on the surrounding environment. When 
we try to reprogram a cell from ‘A (ex. non-osteoblast)’ to ‘B 

(ex. osteoblast)’, in the case of iPSCs, the ‘A’ state should be 
de-differentiated into a stem cell and then re-differentiat-
ed into the ‘B’ state (Fig. 1B). However, trans-differentiation 
induces the jump from A to B, lowering the total time and 
effort through bypassing the induction of pluripotency. 
Likewise, direct trans-differentiation offers a more efficient 
route than the iPSCs reprogramming strategy. The latter 
requires initial regression of cells into a more immature 
state (de-differentiation) and subsequent induction of an 
alternative cell lineage. Hence, trans-differentiation has 
various advantages that could allow for its use in generat-
ing a next-generation cell source for tissue engineering. 

TRANS-DIFFERENTIATION FROM NON-
OSTEOBLAST CELLS TO OSTEOBLAST 
CELLS

Previously, we reported that Wnt3a stimulates Bmp2 ex-
pression, forming a positive autocrine loop in MC3T3-E1 
pre-osteoblasts.[24] These cross-talk mechanisms are lim-
ited to osteogenic cells, which are stimulated to differenti-
ate into mature osteoblasts in response to Bmp2 or Wnt3a 
(e.g., MC3T3-E1 pre-osteoblasts, C3H10T1/2 mesenchymal 
progenitor cells, ST2 bone marrow stromal cells, and C2C12 

Fig. 1. (A) Waddington’s epigenetic landscape: a metaphor for how gene regulation modulates cell development. (B) Comparison between induced 
pluripotent stem cell (iPSC) and trans-differentiation.
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pre-myoblasts). Non-osteogenic cells that are finally differ-
entiated into alternative mesenchymal cell lineages (e.g., 
3T3-L1 pre-adipocytes and NIH3T3 fibroblasts) do not show 
Bmp2 expression in response to Wnt3a.[6] These differenc-
es between non-osteoblasts and osteoblasts indicate that 
an epigenetic mechanism may be related to this process.

It is well-known that (pre-) committed somatic cells do 
not typically change their phenotype, but there are some 
exceptions in which a (pre-) committed somatic cell is ca-
pable of transforming into another somatic cell type via 
trans-differentiation.[25] In a typical example, Bmp2 en-
ables trans-differentiation from C2C12 pre-myoblasts into 
osteoblastic cells. In addition, natural trans-differentiation 
during newt lens regeneration provides insight into strate-
gies for artificial trans-differentiation by direct reprogram-
ming.[26] A number of mammalian programming strate-
gies have recently emerged. For example, CCAAT/enhanc-
er-binding protein (C/EBP) α and β efficiently convert dif-
ferentiated B cells into macrophages,[27] Pancreatic duo-
denal homeobox-1 (PDX-1) drives trans-differentiation of 
adult hepatocytes into pancreatic cells,[28] and fibroblasts 
convert into cardiomyocytes using cardiac-related transcrip-
tion factors and epigenetic remodeling proteins.[29-31]

METHODS AND RESULTS OF TRANS-
DIFFERENTIATION 

The 3T3-L1 pre-adipocytes,[21] NIH3T3 fibroblasts,[6] and 
HGF-1 gingival fibroblasts [22] were treated with 5’-aza-dC 
or TSA for 24 hr and then with Bmp2 or Wnt3a. Analysis of 
CpG islands of promoter lesions was performed using the 
University of California Santa Cruz (UCSC) genome browser 
software program. CpG islands exist in the target genes, 
which are related to osteogenesis and adipogenesis: Bmp2, 
alkaline phosphatase (ALP), runt-related transcription fac-
tor 2 (Runx2), and peroxisome proliferator activated recep-
tor γ (PPAR-γ). Methylation-specific polymerase chain reac-
tion (MSP) and chromatin immunoprecipitation (ChIP) as-
says were performed to analyze the methylation patterns. 
The DNA methylation states of CpG islands around the pro-
moter were significantly different based on the cell charac-
teristics. CpG islands of Bmp2, ALP, and Runx2 were highly 
methylated in the non-osteogenic cells; however, they were 
hypomethylated in the osteogenic cells. Based on the hy-
pothesis that epigenetic differences between cells affect 

gene expression and determine the cell phenotype, we tried 
to modify the epigenetic background and then induce gene 
expression that is suppressed under typical conditions. 5´- 
aza-dC or TSA treatment in the non-osteoblast cells induced 
DNA hypomethylation or histone acetylation in the Bmp2, 
ALP, and Runx2 genes. This indicates that epigenetic modi-
fications enable the transcription of genes inducing either 
the loose or active state of the chromatin structure. In ac-
cordance with epigenetic conditions, Bmp2, ALP, and Runx2 
gene expression was increased by Bmp2 or Wnt3a treat-
ment, despite the use of non-osteoblast cells. In vivo mouse 
studies also supported the possibility of trans-differentiation 
via epigenetic modification resulting in bone formation.

CONCLUSIONS 

Our findings indicate that trans-differentiation of non-
osteogenic cells into osteoblasts can be provoked by inter-
fering with epigenetic inhibitory mechanisms. Based on 
these findings, we investigated bone regeneration through 
direct trans-differentiation from non-osteogenic cells to 
osteogenic cells by epigenetic modification. Epigenetic 
modification could permit the direct programming of non-
osteoblasts into osteoblasts, and this approach might be a 
novel therapeutic avenue in bone regeneration.
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