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Abstract: Recent catastrophic events in aviation have shown that current fault diagnosis schemes
may not be enough to ensure a reliable and prompt sensor fault diagnosis. This paper describes a
comparative analysis of consolidated data-driven sensor Fault Isolation (FI) and Fault Estimation
(FE) techniques using flight data. Linear regression models, identified from data, are derived to
build primary and transformed residuals. These residuals are then implemented to develop fault
isolation schemes for 14 sensors of a semi-autonomous aircraft. Specifically, directional Mahalanobis
distance-based and fault reconstruction-based techniques are compared in terms of their FI and FE
performance. Then, a bank of Bayesian filters is proposed to compute, in flight, the fault belief for
each sensor. Both the training and the validation of the schemes are performed using data from
multiple flights. Artificial faults are injected into the fault-free sensor measurements to reproduce the
occurrence of failures. A detailed evaluation of the techniques in terms of FI and FE performance is
presented for failures on the air-data sensors, with special emphasis on the True Air Speed (TAS),
Angle of Attack (AoA), and Angle of Sideslip (AoS) sensors.

Keywords: data-driven fault diagnosis; robust residual generation; fault isolation and estimation;
Bayesian filtering; aircraft safety; flight data

1. Introduction

Fault Diagnosis (FD) is a term that describes the general problem of detecting and
isolating faults in physical components or in the instrumentation of a system [1]. A broad
class of FD methods is based on the concept of Analytical Redundancy (AR) [2]. The essence
of AR methods lies in the comparison of the behavior of the system with the response of a
mathematical model. Inconsistency between the actual and model response is considered a
symptom of a possible failure. An FD scheme elaborates this information in real time to
detect and isolate faults.

Mathematical models play a central role in AR-based FD; these are derived from
either physical laws governing the dynamics of the system or are inferred directly from
experimental data exploiting system identification techniques [3].

In the last 30 years, FD has been widely investigated, and many techniques have
been proposed. Considering model-based approaches, the main research directions can be
coarsely categorized as fault detection filters, parity-space schemes, diagnostic observers,
and parameter estimation [1]. Classic methods dealing with model-based approaches can
be found in [4–9]. More recently, approaches based on optimal criteria [10,11] and ex-
tensions to nonlinear [12], hybrid [13], and distributed systems [14] have been proposed.
A collection of successful applications of model-based FD was presented in [15].

Data-based approaches are preferable instead in case the system dynamics is not
precisely known and/or when the system input-output physical relations are too com-
plex [16]. Currently, thanks to the advances in ICT technologies in both hardware and
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software, substantial amounts of data are available for continuous monitoring and FD of
engineering systems. This generated a great interest in FD techniques capable of handling
large amounts of data. In this context, the most established and widespread techniques are
Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial
Least Squares (PLS), Fisher Discriminant Analysis (FDA), the Subspace-Aided approach
(SAP), as well as their recent advancements [17]. Remaining in the data-based domain, FD
diagnostic systems based on neural networks [18], computational intelligence [19], and
machine learning [20,21] have attracted substantial interest in very recent years. Specifically,
in the aviation and flight control systems community, there is abundant technical literature
that clearly shows that the main reason for catastrophic accidents can be attributed, ulti-
mately, to failures and/or malfunction of sensors, control surfaces, or components of the
propulsion system, as reported in [22,23]. This explains the critical need for on-board FD
systems able to promptly detect and identify the faulty components and, next, to enable
a predetermined online failure recovery strategy [24]. Typically, hardware redundancy
(featuring multiple sensors or actuators with the same function) and simple majority vot-
ing schemes are used to cope with FD. Although these methods are widespread, there is
an increasing number of applications where the additional cost, weight, and size of the
components are major constraints, such as small and autonomous flying vehicles. For these
applications, AR-based FD methods are appealing approaches to increase flight safety.
An excellent review on the state-of-the-art of AR-based FD methods in aerospace systems
can be found in [25].

Regardless of the approach, the performance of an FD system is strictly related to
the level of modeling uncertainty and measurement noise, whose presence implies that
in fault-free conditions, the residual signals might significantly deviate statistically from
zero. This entails that residuals must be robust with respect to uncertainties where the
robustness of a residual is defined as the degree of sensitivity to faults compared to
the sensitivity to uncertainty and noise [26]. Robustness issues become evident when
dealing with experimental flight data [27–31]. Indeed, experimental data are affected by
several additional sources of uncertainty such as, but not limited to, signal synchronization
and quantization errors and imperfect positioning and calibration of the sensors [32,33].
Therefore, a fundamental step before the deployment of an FD scheme is its validation
with actual flight data. Despite the relevance of these aspects in the mentioned studies, the
problem of a detailed performance evaluation and comparison of Fault Isolation (FI) and
Fault Estimation (FE) schemes using multi-flight data has been rarely fully addressed.

Building on the last considerations, the present study is entirely devoted to the setup
and the quantitative comparison of well-known FI and FE methods using experimental
sensor flight data. Specifically, different consolidated data-driven FI and FE schemes are
applied to evaluate their performance on a set of 14 primary sensors of a semi-autonomous
Tecnam P92 aircraft [34].

In the effort, experimental linear regression models of the sensors’ response are iden-
tified from correlated measurements using multivariate linear regression techniques [3].
The identified models provide a natural set of primary residuals; however, the faults’
directional properties are often not optimized to be used for sensor FI [35,36]. For this
reason, enhanced residuals are derived by applying a linear transformation that allows
better separation between the fault directions. The approach proposed in [37] that opti-
mizes fault directions separation taking also into account experimental modeling errors is
herein implemented.

Sensor FI is then performed using two different approaches. The first approach
associates the fault with the sensor providing the smaller directional distance compared to
the sensor fault directions [35]; the second approach, instead, is based on the reconstruction-
based method proposed in [38].

A comprehensive (offline) analysis based on multi-flight data is performed to derive
quantitative Fault Isolation (FI) and Fault Estimation (FE) performance as a function of the
fault amplitudes.
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Next, another study is performed to assess online sensor FI performance by monitoring
the temporal history of the residuals and, using this information, to increase or decrease the
belief in a fault hypothesis over time. For this purpose, a bank of recursive Bayesian filters
is designed to infer in-flight sensors’ fault probabilities. During online operation, a fault is
declared when a fault probability reaches a defined threshold. This allows the computation
of FI delays. The accumulated evidence in the probabilistic filters allows more reliable fault
isolation, decreasing the false alarm rate at the expense of a small and acceptable delay in
the diagnosis.

A detailed evaluation of offline and online FD performance is presented for failures
on the air data sensors, including the True Air Speed (TAS, TaS), the Angle of Attack (AoA,
α), and the Angle of Sideslip (AoS, β).

The present study is application oriented; therefore, the main contribution is not
the development of a novel FD technique, but, rather, the design of consolidated data-
driven sensor FD schemes and the quantitative evolution of fundamental quantities such
as the fault isolation percentage, fault reconstruction accuracy, and in-flight fault isolation
delays using multi-flight validation data. Therefore, the study provides a clear picture
of the required design effort along with the achievable performance using consolidated
FD schemes.

The paper is organized as follows. Section 2 introduces linear regression models for
sensors’ fault diagnosis; Section 3 introduces the FI and FE methods based on primary
residuals, while Section 4 introduces the FI and FE methods based on transformed residuals.
Section 5 introduces the Bayesian filters for online FI. Section 6 describes the multi-flight
data, while Section 7 deals with the identification of experimental models. FI and FE results
on validation data are discussed in Sections 8 and 9. Concluding and summary remarks
are provided in Section 10.

2. Models for Sensor Fault Diagnosis

In this study, a set of nx potentially faulty sensors is considered. The corresponding
signals are concatenated in a vector x(k) ∈ Rnx ; u(k) ∈ Rnu is another vector of nu signals
functionally correlated with x(k) such as control inputs, set-points, and other sensor
measurements (assumed not to be faulty). It is assumed that in fault-free conditions, the
sensor measurements x(k) can be expressed in linear regression form as a function of x(k)
and u(k), that is:

xi(k) =
nx

∑
j=1
j 6=i

wxi,jxj(k)+
nu

∑
j=1

wui,juj(k) + ∆i(k) i = 1...nx (1)

where wxi,j and wui,j are the coefficients of the linear combination and ∆i(k) characterizes
modeling nonlinearity, uncertainty, and measurement noise concerning the i-th sensor.
For simplicity, the linear models in (1) are rearranged as:

xi(k) = wxix(k) + wuiu(k) + ∆i(k) i = 1...nx (2)

where wxi = [wxi,1, ..., wxi,i−1, 0, wxi,i+1, ..., wxi,nx ] ∈ Rnx and wui = [wui,1, ..., wui,nu ] ∈ Rnu .
Putting the above nx equations together, we get the following vector expression:

x(k) = Wxx(k) + Wuu(k) + ∆(k) (3)

where Wx = [wx1; ...; wxnx ] ∈ Rnx×nx and Wu = [wu1; ...; wunu ] ∈ Rnx×nu are constant
matrices to be estimated from data (as discussed in Section 7). Model (3) has been widely
used in the literature for estimating a sensor signal as a function of other correlated
measurements, as shown, for instance, in [35,39–42]. The linear terms in (3) provide a linear
estimation of the signals that are defined as:

x̂(k) = Wxx(k) + Wuu(k). (4)
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The consistency of the measurements x(k) are monitored through the vector of the
primary residuals r0(k) ∈ Rnx that is defined as follows:

r0(k) = x(k)− x̂(k). (5)

Substituting (4) into (5) leads to:

r0(k) = (I−Wx)x(k)−Wuu(k)
= Wx(k)−Wuu(k)

(6)

where I ∈ Rnx×nx is the identity matrix and W = I−Wx. Using again (3) and (4) in (5), it is
immediate to verify that:

r0(k) = ∆(k) (7)

In other words, in fault-free conditions, the vector of the primary residuals is equal to
the modeling error.

Sensor Fault Modeling

In this study, an additive (single) failure fi(k) on a generic (i-th) sensor of x(k) is
considered. Without any loss of generality, the failure can affect every single sensor. In the
presence of a sensor failure, the vector x(k) is replaced by its “faulty version”, that is:

x(k)← x(k) + εi fi(k) (8)

where εi ∈ Rnx is the i-th column of the identity matrix I. fi(k) is an arbitrary scalar, a
function of time, modeling the fault shape; thus, fi(k) is zero before the fault occurrence
and different from zero, starting from the “fault time instant” k f . In this study, we consider
a step fault:

fi(k) =
{

0 t < k f
Ai t ≥ k f

i = 1...nx (9)

where Ai is the fault amplitude associated with the i-th sensor.

3. Sensor FI and FE Based on Primary Residuals

The first FI scheme is derived directly from the analysis of the primary residual vector
r0(k) in (6) in the presence of a sensor fault. Substituting the faulty vector (8) in (6) leads to
the faulty residual:

r(k) = W[x(k) + εi fi(k)]−Wuu(k)
= r0(k) + W[εi fi(k)].

(10)

Next, substituting in (10) the conditions (7) results in:

r(k) = ∆(k) + wi fi(k) (11)

where the vector wi ∈ Rnx is the i-th column of the matrix W. Vector wi is known as
the “fault signature” or the “fault direction” associated with the sensor fault fi(k). In the
theoretical case of zero modeling error in (11), this results in:

r(k) = wi fi(k). (12)

In other words, the vector r(k) is exactly parallel to vector wi. This directional infor-
mation can be used for sensor fault isolation purposes.

3.1. Mahalanobis Distance-Based FI and FE

This technique exploits the directional property of the nx primary residuals in (12)
to formulate a sensor FI hypothesis [43]. Specifically, in the presence of a fault fi(k),
Equation (12) implies that the residual vector r(k) assumes a specific known direction
in the residual space Rnx given by the i-th column vector wi of matrix W. By taking
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advantage of this fault directional property, it is possible to identify the faulty sensor by
comparing the direction of the current residual vector r(k) with the known nx directions
wi and assigning the fault to the sensor whose direction is the closest to the r(k) direction.
In practice, this FI logic is implemented as follows. As the first step, in order to be
independent of the fault amplitude, both the residual r(k) and the sensor fault directions
are normalized to a unity norm. Specifically, at each instant k, the normalized residual
(||r̄(k)||2 = 1) is computed as r̄(k) = r(k)/[(rT(k)r(k))]0.5, while the normalized fault
directions (||w̄i(k)||2 = 1 i = 1...nx) are defined as w̄i = wi/[(wT

i wi)]
0.5. Next, since

the faults can have either a positive or a negative amplitude, it was deemed necessary to
introduce negative normalized fault directions (−w̄i i = 1...nx), implying that the overall
number of fault directions is 2nx. The distance between the normalized residual r̄(k) and
the normalized fault directions w̄i can be measured using different norms such as the
Euclidean distance, the angular distance, or the Mahalanobis distance [44,45]. In this study,
we selected the Mahalanobis distance since this approach allows accounting for modeling
error information derived from experimental data. The error matrix G(k) ∈ Rnx×2nx of the
differences between the normalized residual r̄(k) and the normalized fault directions is
defined as:

G(k) = [r̄(k)− w̄1, ..., r̄(k)− w̄nx , r̄(k) + w̄1 , ... , r̄(k) + w̄nx ] (13)

where the first nx columns are associated with positive faults and the last nx with negative
faults. Next, the Mahalanobis distance associated with the columns gj ∈ Rnx of G(k) is
defined as:

ej(k) =
√

gT
j S−1

r gj j = 1...2nx (14)

where Sr ∈ Rnx×nx is the covariance matrix of the residuals (for its computation, see
Note 1). At each sample time instant k (following a fault detection), the FI is performed
associating the fault with the sensor leading to the minimum value of the distances in (14).
That is, defining jm(k) as:

jm(k) = argmin
j=1...2nx

(
ej(k)

)
(15)

then the faulty sensor index is identified as follows:

iF(k) =
{

jm(k) i f 1 ≤ jm(k) ≤ nx
jm(k)− nx i f nx + 1 ≤ jm(k) ≤ 2nx

. (16)

The amplitude of the fault is positive for 1 ≤ jm(k) ≤ nx, and it is negative for
nx + 1 ≤ jm(k) ≤ 2nx. Once a fault has been associated with the sensor iF(k), its amplitude
can be directly estimated considering the iF-th component riF(k) of the primary residual
vector r(k). In fact, from (11), this results in:

riF(k) = ∆iF(k) + w(iF,iF) fiF(k). (17)

Next, since by construction, w(iF,iF) = 1 ∀iF(k), this results in:

riF(k) = ∆iF(k) + fiF(k). (18)

In other words, riF(k) provides a direct (noisy) estimation of the fault amplitude
Âi(k) = f̂iF(k) defined in (9), that is:

riF(k) = f̂iF(k) = Âi(k). (19)

3.2. Reconstruction-Based FI and FE

Another approach for FI and FE is the well-known reconstruction-based
method [38,46,47]. In this approach, for each fault direction wi, the fault amplitude, at time
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instant k, is estimated by computing the fault amplitude fi(k) that minimizes the norm-two
of the reconstruction errors defined as:

ei(k) = [(r(k)− wi fi(k))T(r(k)− wi fi(k))]0.5 i = 1...nx. (20)

The optimal values for fi(k) are derived by computing the minimum of the quadratic
form (20) with respect to the scalar fi(k). This leads to the closed-form solution:

f̂i(k) =
wT

i r(k)
wT

i wi
i = 1...nx. (21)

It is observed that the fault amplitude estimation f̂i(k) provided by (21) can be either
positive or negative, implying that the reconstruction-based approach handles both positive
and negative faults. The faulty sensor is then isolated associating the fault with the sensor
leading to the minimum of the “reconstructed” errors achieved substituting the fault
estimates (21) in (20). Therefore, the sensor fault index is:

iF(k) = argmin
j=1...nx

(
ej(k)

)
. (22)

Similar to (19), the estimated fault amplitude is:

Âi(k) = riF(k). (23)

Note 1: The residual noise covariance matrix Sr in (14) depends on the modeling
uncertainty ∆(k) in (7), which is very difficult to characterize “a priori”. For this reason,
Sr was estimated from the experimental data. From (7), it is inferred that in fault-free
conditions, the relationship r0(k) = ∆(k) holds. This allows estimating Sr as the sample
covariance matrix of the residual vector inferred from experimental flight data in fault-free
conditions. The experimental Sr matrix is therefore:

Ŝr = cov{r0(k)} = cov{∆(k)} = Ŝ∆ k ∈ train_data. (24)

Note 2: In this effort, we assumed that faults originate from sensors in an additive
fashion. Under this hypothesis, it is possible to isolate the faulty sensor by analyzing the
fault direction of the residual signals as shown in Equation (9). It is worth emphasizing
that primary residuals can also be affected by the occurrence of generic internal system
faults that in turn produce a specific fault signature on the residuals. In the case of internal
faults, it is necessary to reconstruct the roots of the fault symptoms in the subsystems that
constitute a complex system in order to be able to isolate the faulty component. In the event
an internal fault produces a signature identical to those of a sensor fault, they would not be
distinguishable by our scheme. The isolation of internal faults requires the knowledge of
the internal dynamics of the subsystems and its cause-effect relationships. This problem,
although interesting, is beyond the scope of this study, which is limited to addressing the
sensor fault isolation problem. An interesting review on the cause and fault propagation
can be found in [48].

4. Sensor FI and FE Based on Transformed Residuals

Primary residuals are not optimized from an FI point of view. For this reason, they are
usually processed by applying transformations to achieve suitable new fault directions that
facilitate the FI. An extensive literature on transformed directional residuals techniques
is available. One of the first applications is the the Beard–Jones filter [13], essentially a
Luenberger observer whose gains are selected so that the directions of the residuals can be
advantageously used to identify faulty sensors. In [49], taking advantage of the properties
of un-observability subspaces, a set of residual transformations that are unaffected by all
faults except one was proposed. In this context, the methodology outlined in [36] is also
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relevant, where the interaction between directional residuals and fault isolation properties
was analyzed.

The FI methodology proposed in [37] was considered in this effort because it provides
optimized robust performance considering the directional properties of the residual noise
covariance matrix Sr. This feature is particularly important when dealing with experimen-
tal noisy data. In the approach in [37], a linear transformation of the primary residual
vector r(k) is introduced to provide optimized performance with respect to noise immunity.
A transformed residual ρ(k) ∈ Rnx with the same number of elements of r(k) is defined as:

ρ(k) = Wtr(k) = Wt[Wx(k)−Wuu(k)] (25)

where Wt ∈ Rnx×nx is the transformation matrix to be computed. Considering (25), the
new fault directions associated with ρ(k) are the columns wρ i of the matrix:

Wρ = WtW ∈ Rnx×nx . (26)

The covariance of ρ(k) is by definition:

Sρ = cov{Wt r(k)} = Wt Sr Wt
T (27)

where the matrix Wt is computed applying the method proposed in [37]. Considering
this approach, let A ∈ Rnx×nx and B ∈ Rnx×nx be two symmetric matrices. Assuming A
positive definite, it can be shown that there exists a matrix V ∈ Rnx×nx such that:

VTA V = I, (28)

VT B V = Λ = Diag(λ1, . . . , λn) (29)

where V and Λ are the solutions of the generalized eigenvalue problem. Specifically,
the columns of V are the eigenvectors of the matrix A−1B, while the columns of Λ are the
corresponding eigenvalues. In the present study, setting A =Sr, B = W WT, and VT = Wt,
Equations (28) and (29) become, respectively:

Wt Sr Wt
T= I, (30)

WtWWTWt
T = WρWρ

T = Λ. (31)

Relationship (30) implies that the noise covariance matrix of the transformed residuals
in (27) is spherical, that is Sρ = I. This property is critical since in the presence of a
spherical symmetry noise, the optimal decision line between two fault directions is simply
the bisector [50]. Thus, this property will be exploited for the design of the FI algorithm in
Section 4.1.

As explained in Note 1, the Sr matrix is estimated using the experimental Ŝr
in (24), and the generalized eigenvalues Λ are derived using commercially available
scientific software.

4.1. Transformed Residuals Based on FI and FE

Fault isolation based on the transformed residual ρ(k) is performed using the same
approaches used for the primary residuals in Sections 3.1 and 3.2. Specifically, defining
the new transformed residual directions wρ i i = 1...nx as the columns of the matrix Wρ,
the transformed error matrix Gρ(k) ∈ Rnx×2nx is defined as:

Gρ(k) = [ρ̄(k)− w̄ρ1 , ..., ρ̄(k)− w̄ρnx , ρ̄(k) + w̄ρ1 , ..., ρ̄(k) + w̄ρnx ] (32)
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where ρ̄(k) is the normalized transformed residual derived from ρ(k) and w̄ρi i = 1...nx are
the new normalized transformed fault directions derived from wρi . The distance errors
associated with the columns gρi of the matrix Gρ(k) are defined as:

eρ j(k) =
√

gρj
T gρj j = 1...2nx. (33)

The fault isolation index is determined by applying the same technique introduced in
Section 3.1, that is:

jm(k) = argmin
j=1...2nx

(
eρj(k)

)
. (34)

It is observed that the decision method (34) based on the Euclidean distances (33) is
equivalent to treating as the decision line the bisectors between the directions gρi in (32),
which, in the case of spherical noise (Sr = I), are also optimal for testing fault isolation [50].

The faulty sensor iF(k) is isolated applying (16) to jm(k) derived from (34). Finally, the
fault amplitude is estimated using again (19), that is:

riF(k) = Âi(k) = f̂ iF(k). (35)

Note 3: In [37], it was shown that the best performances are achieved in the case that
the transformation matrix Wt leads to the diagonalization, not only of the noise covariance
matrix Sρ, but also of the transformed fault direction matrix Wρ. This may be possible only
if the number of residuals is larger than the number of sensors. Alternatively, approximated
robust FI methods based on optimality concepts as those in [35,51] can be applied.

4.2. Transformed Residuals with Reconstruction-Based FI and FE

Consistent with the approach of Section 3.2, the reconstruction error for transformed
residuals is defined as:

eρi (k) = [(ρ(k)− wρi fi(k))T(ρ(k)− wρi fi(k))]0.5 i = 1...nx (36)

while the reconstructed fault amplitude is:

f̂i(k) =
wT

ρi
ρ(k)

wT
ρi

wρi

i = 1...nx. (37)

Fault isolation is again performed by computing the minimum of the errors in (36); in
other words, the fault isolation index is:

iF(k) = argmin
j=1...nx

(
eρj(k)

)
. (38)

Finally, similar to (23), the estimated fault is:

Âi(k) = f̂ iF(k). (39)

5. Bayesian Filtering for Online Fault Isolation

The FI approaches described in Sections 3 and 4 are based on a decision method that
isolates the faulty sensor as the one providing the minimum of a specific error measure
inferred from the residual. This FI logic is based only on information at the current sample
time k and does not take into account the history of the residuals in the previous instants.
On the other side, this information is useful for increasing or decreasing the belief of the FI
decision over time.

In this paper, we propose a Bayesian Filter (BF) approach for managing the stream
of information coming from sensors’ measurements. Specifically, we implemented the so-
called “discrete Bayes filter” proposed in [52]. This filter is essentially a recursive algorithm
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used to estimate the distribution of a discrete probability function. This type of filter was
selected because it builds on a very solid and comprehensible theoretical background; an
introduction to the Bayesian decision theory can be found in [53]. In the present study,
the estimated distribution models the probability (belief) that a generic sensor is faulty.
The BF infers sensor fault probabilities by processing recursively the error information
ei(k) i = 1...nx defined in (14), (20), (33) and (36) for the different methods.

Two possible operational statuses are assumed for the sensors. State Fi indicates the
events for which the i-th sensor is faulty, while state Ni the event for which it is not faulty.
Let p(ei(k)|Fi(k)) be the likelihood function representing the probability of observing an
error ei(k) given that the i-th sensor is faulty; a similar definition holds for p(ei(k)|Ni(k)).
According to Bayes’ theorem, the posterior fault probabilities p(Fi(k)|ei(k)) are given by:

p(Fi(k)|ei(k)) =
p(ei(k)|Fi(k))p(Fi(k))

p(ei(k)|Fi(k))p(Fi(k)) + p(ei(k)|Ni(k))p(Ni(k))
p(Ni(k)|ei(k)) = 1− p(Fi(k)|ei(k))

i = 1...nx (40)

where p(Fi(k)) and p(Ni(k)) are the a priori fault and non-fault probabilities, respectively,
for sensor i. A key step in the above inference mechanism is the definition of the likelihood
functions p(ei(k)|Fi(k)). These have to be designed to model the probability of experiencing
a distance error ei(k) given that the i-th sensor is faulty; therefore, their distribution needs to
be maximum for ei(k) = 0 and should decrease as ei(k) increases. Similar reasoning applies
to p(ei(k)|Ni(k)). This behavior is captured by the following likelihood functions [54–57]:

p(ei(k)|Fi(k)) = e−αiei(k),
p(ei(k)|Ni(k)) = e−αi [ei(k)]−1 (41)

where the parameters αi are used to regulate the shape of the probability functions. At each
time step, following the computation of the posterior probabilities (40), the a priori proba-
bilities are updated recursively using:

p(Fi(k + 1)) = p(Fi(k)|ei(k)),
p(Ni(k + 1)) = p(Ni(k)|ei(k))

(42)

to propagate the current probability information to the next time step. In this study,
the probabilistic filters are activated immediately after a fault is detected at k = k f . At in-
stant k f , it is assumed that all the nx sensors have the identical probability to be faulty; in
other words, the filters are initialized with:

p
(

Fi(k f )
)
= 1/nx

p
(

Ni(k f )
)
= 1− p

(
Fi(k f )

) i = 1 . . . nx. (43)

5.1. Probabilistic (Online) Fault Isolation Method

The nx recursive BF probabilities are employed for online FI, which is associated with
in-flight conditions. Following a fault detection at k = k f , the fault is assigned to the sensor
whose fault probability p(Fi(k)|ei(k)) first reaches a defined threshold. If p(Fi(k)|ei(k))
exceeds the threshold, the FI scheme has “good confidence” that a fault has occurred on
the i-th sensor. Therefore, a failure on that sensor is declared. In this study, the threshold
was empirically set at 0.7 (70%); see Note 4.

5.2. Probability Function Tuning

The performance of the BFs depends strictly on the shape of the probability func-
tions in (42), which, in turn, depend on the values of the parameters αi. These values
have to be carefully selected to make the filters sensitive to faults while limiting false
alarms. Interestingly, a significant difference in the tuning of the filters was found for
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the distance-based and reconstruction-based techniques. This difference is essential be-
cause, while the first method operates with normalized residuals, the second operates with
non-normalized residuals.

5.2.1. Distance-Based Methods’ Tuning

For the distance-based techniques, it was relatively simple to calibrate αi to limit false
alarms. These techniques being based on normalized residuals (|r̄(k)| = 1, |ρ̄(k)| = 1),
the αi values were inferred from the mean value (in fault-free conditions) of the distance
between the normalized residual and normalized fault directions. Then, for distances
ei(k) smaller than the mean value of the distance, the αi values of p(Fi(k)|ei(k)) in (41)
are tuned to be larger than 0.5, so that the BF increases the fault belief with respect to the
previous step. Conversely, for larger distances, p(Fi(k)|ei(k)) is lower than 0.5, resulting in
a decrease in the belief. This tuning method was found to be effective since the distance
ei(k) (independent of the fault size) is always contained in the hyper-ellipsoid (14).

5.2.2. Reconstruction-Based Methods’ Tuning

For reconstruction-based techniques, the application of the above calibration technique
is not possible. This is due to the fact that the errors ei(k) in (20) derive from non-normalized
residuals (r(k) and ρ(k)), and therefore, their values are proportional to the fault ampli-
tude. Thus, the selection of αi values that are suitable for any fault amplitude is not
trivial. To overcome the problem, we opted for a “forced” normalization of the errors ei(k)
in (20) to be used as the input of the BFs. The following normalization method was applied.
At each sample instant k, the 14 errors ei(k) are ranked so that erank1(k) ≤ erank2(k) ≤
erank3(k)... ≤ erank14(k); next, normalized errors ēi(k) are defined as ēi(k) = ei(k)/erank2(k).
Through this scheme, the new ēi(k) are such that one normalized error is always less
than one; another is exactly equal to one, while all the remaining normalized errors are
larger than one. Using the normalized ēi(k), it is possible to define a simple tuning strategy
for αi. Specifically, αi are tuned such that the fault belief increases for the (nearest) sensor
having ēi(k) ≤ 1, remains unchanged for the sensor having ēi(k) = 1, and decreases for
all the remaining sensors. It is immediate to verify that αi = ln 2 guarantees this behavior.
The normalized errors ēi(k) are then used in the BFs (40)–(43) (in place of ei(k)) for the
reconstruction based methods.

Note 4: An important aspect in the design of a fault diagnosis scheme is the defi-
nition of the threshold values to be used for fault detection and isolation. Clearly, the
values of these thresholds have a direct impact on the missed alarm rate and false alarm
rate. Although several methods have been introduced and tested to compute optimized
thresholds [58,59], most of the detection methods require a priori knowledge of the signal
distribution, changed parameters, and the change amplitude (CUSUM, likelihood ratio
test, etc.). Furthermore, these methods assume that modeling errors are Independent and
Identically Distributed (IID) random variables. Unfortunately, in our study, we found that
the above-mentioned assumptions are not satisfied by experimental residuals and that
the application of theoretical thresholds produces very conservative results lacking any
practical utility. For this reason, these values were set empirically by trial and error.

Note 5: Since FI algorithms operates in real time, important factors are their computa-
tional and memory space requirements. Given that the transformation of fault signatures
is performed offline, techniques based on transformed and primary residuals require ex-
actly the same memory space for the storage of the models. As for the computational
cost, in reconstruction-based techniques, the computational complexity is O(n2), and the
memory space required is 3nx (nx to store residuals, nx to store estimated fault amplitudes,
and nx to store errors). In distance-based techniques, the computational complexity, instead,
depends on the operations requested to compute the errors in (20) or (36). For the technique
with primary residuals, the complexity is O(n3) because the matrix product involving Sr−1

in (14), while in the case of transformed residuals, it is equal to O(n2). The memory
space required is quantifiable in 6nx (nx to store the residuals, nx to store the normalized
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residuals, 2nx to store G(k) (or Gρ(k)), and 2nx to store the errors). The overall results are
summarized in Table 1. The Bayesian filtering introduces a computational complexity O(n)
to calculate the posterior fault probabilities and requires a memory space 4nx (2nx to store
the likelihood probabilities and 2nx to store the posterior fault probabilities).

Table 1. Computational complexity and memory space required by the techniques.

Maha. Pr. Maha. Tr. RBEPr. RBE Tr.

Computational complexity O(n3) O(n2) O(n2) O(n2)

Memory space 6nx 6nx 3nx 3nx

6. Aircraft and Flight Data

The considered FI and FE techniques were designed and validated using sensor flight
data from a Tecnam P92 aircraft, shown in Figure 1. The aircraft mass is approximately
600 kg, and the propulsion is provided by a 74 kW Rotax 912 ULS with a two-blade fixed-
pitch propeller, for a maximum cruise speed of 219 km/h and an operational ceiling of
4200 m. Data were acquired in semi-autonomous mode; in other words, the aircraft was
manually flown by a pilot during the take-off and landing phase, while flown autonomously
in cruise flight conditions. A set of nine flight datasets was considered in this study, of
which five flights (with a total length of 2 h and 20 min) were used for the design of the
FI and FE schemes, while the remaining four (with a total length of 2 h and 5 min) were
used for validation purposes. These proprietary flight data previously acquired as part
of an internal industrial research study for aircraft certification purposes were provided
courtesy of Tecnam corporation. The data sampling time was set at 0.1 s. The study did
not consider data associated with take-off, initial climb, final descent, and landing phases
for the specific reason that in those flight conditions, the aerodynamic behavior of the
aircraft is quite different with respect to cruise conditions due to the deployment of flaps.
The use of multi-flight data for the training and the validation tasks is extremely important
because, as for all data-driven techniques, the reliability of the results strongly depends
on the completeness of the data, their spectral richness, and the coverage of all operating
conditions. A total of 20 sensors was considered in this study, and they are listed in Table 2.
The FI schemes were designed for the set x0 of the 14 sensors indicated in Table 2 (the x(k)
signals in (3), while the six actuation signals u0 were the control deflections and engine
commands (the u(k) signals in (3).

Table 2. Aircraft sensors.

x0 u0

α Angle of attack P Roll speed Ap Aileron position
β Drifting angle Q Pitch speed Rp Rudder position

TaS True air speed R Yaw speed Tp Thrust lever position
φ Roll angle NNx Longitudinal load factor Pp Pitch trim position
θ Pitch angle NNy Lateral load factor Sp Stabilator position
ψ Yaw angle NNz Vertical load factor Eng Engine revolution

ZLaser Altitude laser Zpos GPS altitude

Data Normalization

The experimental data listed in Table 2 have quite different ranges and orders of
magnitude; this issue suggested using a data normalization to zero mean and unit stan-
dard deviation.

The presence of regressor signals with very different operative ranges could cause the
exclusion of the informative regressors with lower power from the model. This problem is
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avoided through normalization, which makes all signals with zero mean and unit variance.
For each a signal, the normalization was performed using:

zi(k) =
z0i (k)− µz0i

σz0i

i = 1 . . . (nx + nu) (44)

where z0i (k) is the i-th non-normalized signal (x0i (k) or u0i (k)); µz0i (k) is its mean, and σz0i
is its standard deviation. Since the zi(k) signals are normalized, this implies that faults in (8)
are associated with normalized signals; therefore, the fault amplitude estimations provided
by (19), (23), (37) and (39) must be de-normalized to recover the actual fault amplitude.
This can be achieved inverting (44), so that, assuming f̂i(k) to be the normalized fault
reconstructed through (19), (23), (37) and (39), the actual amplitude of the fault is:

f̂iden(k) = σx0i
f̂i(k). (45)

Figure 1. The semi-autonomous Tecnam P92 aircraft.

7. Experimental Models for Sensor FI

The fault isolation techniques introduced in Sections 3 and 4 require the definition
of linear multivariate models. Specifically, the definition of the matrices Wx and Wu
associated with the nx = 14 linear models in (4) is required. For each one of the nx sensors,
the model was identified separately using standard system identification techniques [3].
From (3), the resulting models are:

x̂i(k) = wxi x(k) + wui u(k) i = 1 . . . 14 (46)

where wxi ∈ R14 and wui ∈ R6 are the i-th row of the matrices Wx and Wu, respectively.
Each of these 14 models depends on 20 potential regressors. It is common practice in
model identification to select a subset of regressors that are critical for the estimation of the
predicted output x̂i(k). The regressors’ selection step was partially automated using the
algorithm known as the “stepwise regressor selection method”. This is a well-known itera-
tive data-driven algorithm for implementing a linear model by successively adding and/or
removing regressors based on their statistical significance in a regression model [60]. In this
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effort, the stepwise selection was based on the training data using the ad-hoc procedure
available in [61]. For each model, the selection of the best set of regressors was formu-
lated through the analysis of the Root Mean Squared Error (RMSE) of the prediction error
defined as:

RMSEi =

√
mean

[
(xi(k)− x̂i(k))

2
]

i = 1...14. (47)

Figure 2 shows the evolution of the RMSE for the models of the sensors α, β, and
TaS evaluated both on the training and the validation flight data as a function of the
number of regressors included in the model. As expected, while the training data result
in a monotone decrease of the RMSE with the increase of the number of regressors in the
model, for the validation data, the RMSE reaches a minimum; also, a larger number of
regressors induces a decrease of the prediction accuracy. This is a typical example of the
well-known modeling overfitting problem. Consequently, for each sensor, the best model
was identified as the one that produced the minimum RMSE on the validation data set.
The sets of regressors selected by this approach for the α, β, and TaS models are reported
in Table 3. Without any loss of generality, this procedure was also applied to the other
remaining 11 sensors. The number of regressors selected for the 14 models is reported in
Table 4.

Figure 2. RMSE as function of the number of regressors in the model for the α(k), β(k), and TaS(k)
sensors. Training (Tr) and Validation (Va) data.

Table 3. Selected regressors by the stepwise method for the α, β, and TaS models. TAS, True Air Speed.

Sensor Selected Regressors (by the Stepwise Method)

α β TaS NNx NNy NNz P Q R ZLaser Z Ap Rp Tp Pp Sp Eng
β α TaS NNx NNy NNz P R φ ZLaser Ap Tp

TaS α β NNx NNy NNz P Q R φ ψ Zpos ZLaser Ap Tp Pp Sp Eng

Table 4. Number of selected regressors by the stepwise method for the 14 prediction models.

α β TAS NNx NNy NNz P Q R φ θ ψ Zpos ZLaser

16 11 17 16 12 18 14 16 8 9 8 11 15 10

Figure 3 compares the RMSE for the 14 models produced by the (normalized) training
and validation flight data. It is observed, for all models, that the training and the validation



Sensors 2021, 21, 1645 14 of 24

performance are comparable; this implies that the adopted regressor selection procedure is
substantially correct and successfully avoids overfitting problems.

Figure 3. Comparison of the RMSE achieved in training and validation for the 14 linear regres-
sion models.

8. FI and FE Performance on the Validation Data (Offline Analysis)

For brevity purposes, only the results of the analysis relative to the air data sensors
α(k), β(k), and TaS(k) are reported. However, it should be emphasized that the imple-
mented schemes consider the entire set of nx = 14 sensors (residuals); in other words,
the FI schemes isolate one among the 14 sensors.

Further, since the main purpose of this research is to compare the performance of the
FI and FE techniques, the following analysis was performed assuming an “ideal” failure
detection, i.e., the occurrence of a fault is detected as soon as it is injected into a generic
time instant k = k f . Clearly, in practice, fault detection is not instantaneous, and a fault
detection delay is to be expected before the FI and FE algorithms are activated.

The overall evaluation of the FI and FE of the schemes was performed evaluating the
average performance provided by the set of four validation flights (approximately 2.05 h)
by injecting the faults in the first sample of each validation flight (k f = 1). The analysis
was then performed considering, for each sensor, 50 equally-spaced fault amplitudes Ai
in (9) in the range [−AMi ; +AMi ]. The maximum amplitudes AMi (see Table 5) were
selected empirically so that, for Ai = AMi , the FI algorithms correctly isolate the fault with
a percentage greater than 80% (see Section 8.1).

The performance was analyzed using two specific metrics, that is the Fault Isolation
Percentage (FIP) and the Relative Fault Reconstruction Error (RFRE). Both metrics are
described below.

Table 5. Maximum fault amplitudes.

α(k) (deg) β(k) (deg) TaS(k) (m/s)

AM 2 5 3

8.1. Fault Isolation Percentage

Considering a fault on the i-th sensor of amplitude Ai in the j-th validation flight,
the Fault Isolation Percentage (FIP) denoted by I%i is defined as the percent ratio over
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all the validation flights between the number of samples for which the fault is correctly
attributed to the i-th sensor and the total number of samples:

I%i (Ai) = 100 ·
Nval

∑
j=1

NOKj,i (Ai)/
Nval

∑
j=1

NIj (48)

where:

• Nval : number of validation flights.
• NOKj,i (Ai): number of samples for which the fault isolation index iF(k) correctly

isolates the fault on the i-th sensor, in validation flight j, for fault amplitude Ai.
• NIj : total number of samples in validation flight j.

Figures 4–6 show the FIP for the three sensors as a function of the fault amplitude
computed using the Nval = 4 validation flights for each of the considered techniques.

Figure 4. Fault isolation percentage for the α(k) sensor evaluated on the validation flights as a
function of the fault amplitude.

Figure 5. Fault isolation percentage for the β(k) sensor evaluated on the validation flights as a
function of fault amplitude.
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Figure 6. Fault isolation percentage for the TaS(k) sensor evaluated on the validation flights as a
function of fault amplitude.

The analysis of the plots reveals that all the techniques can guarantee 100% correct
fault isolation for large enough fault amplitudes for all the sensors. On the other side,
small amplitude faults are often misinterpreted and misclassified. This is not surprising
since small-amplitude faults have amplitudes similar to those of modeling errors, making
the FI unreliable. The techniques Maha-Trand RBE-Tr based on transformed residuals
provide better performance compared to the techniques based on primary residuals. This
highlights the fact that the residual transformation based on the diagonalization of the
noise covariance matrix is effective at improving FI performance.

8.2. Relative Fault Reconstruction Error

Considering a fault on the i-th sensor of amplitude Ai in the j-th validation flight,
the Relative Fault Reconstruction Error (RFRE) is defined as the percent mean relative
amplitude reconstruction error, that is:

E%i (Ai) = 100 ·
Nval

∑
j=1

∑
k∈SEj

∣∣∣∣∣ Âij(k)− Ai

Ai

∣∣∣∣∣/ Nval

∑
j=1

NEj (49)

where:

• Ai: amplitude of the fault on sensor i;
• Âij(k): amplitude of the reconstructed fault at sample time k for the validation flight j.
• SEj : set of samples in validation flight j where the fault is correctly attributed to the

i-th sensor.
• NEj : number of samples in the set SEj .

Figures 7–9 compare the RFRE as a function of the fault amplitude. From the analysis
of the figures, it can be observed that all the techniques accurately estimate the amplitude
of either positive or negative faults for a large enough fault amplitude; instead, the estimate
is not accurate for small amplitude faults. This is not surprising since when the amplitude
of the fault has a magnitude of the same order as the estimator modeling error, the relative
fault reconstruction is unreliable and inaccurate. For the E%i (Ai) index, it is not possible to
identify a clear winning approach. Indeed, the RBE-Pr method provided the best results for
the α(k) sensor, the worst for the β(k) sensor, while for the TaS(k) sensor, the performance
was comparable.
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Figure 7. Relative fault reconstruction error for the α(k) sensor evaluated on the validation flights as
a function of fault amplitude.

Figure 8. Relative fault reconstruction error for the β(k) sensor evaluated on the validation flights as
a function of fault amplitude.
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Figure 9. Relative fault reconstruction error for the TaS(k) sensor evaluated on the validation flights
as a function of fault amplitude.

9. FI Performance on Validation Data (Online Analysis)

During the flight, following fault detection, it is critical to quickly isolate the faulty sen-
sors and, next, to take the appropriate reconfiguration actions. In this section, the dynamic
response of FI methods based on the recursive BFs introduced in Section 5 is analyzed.
To understand the online operation in Figures 10–12, the evolution of the fault beliefs
(p(Fi(k)|ei(k)) in (40) for the RBE-Pr technique for a fault injected at t f equal to 50% of the
duration of a validation flight is shown. In the figures, the results for fault amplitudes equal
to ±AM, ±AM/2, and ± sample-variance of the residuals in fault fault-free conditions
are provided.

Figure 10. Evolution of the percent fault belief p[α(k)|ei(k)] following a failure on the α(k) sensor,
for different fault amplitudes (RBE-Pr. method).
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Figure 11. Evolution of the percent fault belief p[β(k)|ei(k)] following a failure on the β(k) sensor,
for different fault amplitudes (RBE-Pr. method).

Figure 12. Evolution of the percent fault belief p[TaS(k)|ei(k)] following a failure on the TaS(k)
sensor, for different fault amplitudes (RBE-Pr. method).

It is observed that the fault beliefs grow monotonically for large and intermediate
fault amplitudes, reaching in a short time the “fault declaration threshold” (set to 70%)
when a fault on the i-th sensor is declared. On the other side, for a fault amplitude equal to
± the sample variance of the modeling error, the fault beliefs in most cases are not strong
enough to reach the threshold; thus, the fault cannot be isolated.

Fault Isolation Delay

Fault isolation delay quantifies the (mean) time delay between the generic FD and the
instant the FI algorithm reaches, for the first time, a fault belief equal to the predefined
“fault declaration threshold”. As highlighted in Figures 10–12, this delay depends mainly
on the fault amplitude, but may depend also on the in-flight fault instant. To evaluate the
online FI performance of the schemes, faults (9) were injected into 10 equally-spaced time
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instants k f for each validation flight. For a fault amplitude Ai on the i-th sensor, the (mean)
fault isolation delay is defined as:

Tisolationi (Ai) =
Nval

∑
j=1

∑
k f∈STj

Tisolationk f
(Ai)/

Nval

∑
j=1

NTj (50)

where:

• Tisolationk f
(Ai): for a validation flight j and for a fault amplitude Ai, denotes the time

from the injection of the fault at k = k f and the time for which the belief associated
with the i-th sensor reaches for the first time the threshold.

• STj : set of equally-spaced instants (k = k f ) in the validation flight j when the fault (9)
is injected in the i-th sensor.

• NTj : number of samples in the set STj .

Figures 13–15 show the index (50) as a function of the fault amplitude. For small-
amplitude faults, in case the fault is not isolated within an observation window of 10 s,
the corresponding fault isolation time is conventionally set to a very large value. Analyzing
the figures, it can be observed that Bayesian filtering for all the methods guarantees
a reliable declaration of medium-large faults within 3–4 s. For all three sensors, the
best performance (smaller Tisolationi

) was provided by the RBE-Tr. method. Performance
degraded quickly for all the methods in the case of small amplitude faults since, in some
cases, the fault belief does not reach the fault declaration thresholds within the allowed
observation window. Furthermore, in this case, the experimental results confirm that
techniques based on transformed directional residuals are more effective (lower mean fault
isolation delay) than techniques based on primary directional residuals.

Figure 13. Fault isolation delay for faults on the α(k) evaluated on the validation flights as a function
of fault amplitude.
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Figure 14. Fault isolation delay for faults on the β(k) evaluated on the validation flights as a function
of fault amplitude.

Figure 15. Fault isolation delay for faults on the TaS(k) evaluated on the validation flights as a
function of fault amplitude.

10. Conclusions

The purpose of this effort was to compare well-known analytical redundancy-based
data-driven techniques for the Fault Isolation (FI) and Fault Estimation (FE) of a set of
14 sensors of a semi-autonomous aircraft. While all these techniques have been shown
in the literature to provide close to perfect results using simulated data, only the use of
actual experimental data provides the necessary insights and understanding leading to
the selection of the best approaches. Specifically, multiple sets of flight data were used to
identify linear multivariate models providing a set of primary residuals. Then, residual
transformation techniques were applied to generate directional residuals that are robust
with respect to the modeling errors. Next, Mahalanobis distance and reconstruction-based
methods were used for the FI and the FE. Detailed tests (performed on a set of four
validation flights) on the air data sensors showed that the reconstruction-based techniques
featuring transformed residuals provide better performance compared to the primary
residual-based techniques in terms of the overall fault isolation percentage and fault
reconstruction accuracy indices.
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In-flight FI was also investigated by applying a bank of recursive Bayesian filters to
manage the directional error information online from the 14 sensors. A detailed analysis
was conducted by injecting variable amplitude faults at different points throughout the
flights. This allowed the estimation of the mean in-flight fault isolation delay. Even for
this case, the reconstruction-based methods relying on transformed residuals provided the
best performance.

All the considered FI and FE methods are data-driven and were designed based on
actual flight data. Therefore, the schemes do not require a priori knowledge of detailed
aircraft modeling for their implementation and can be easily returned regularly with
updated flight data. Although this is undoubtedly a useful aspect, it is also worth noting,
as for any data-based technique, that the reliability of the results depends heavily on the
completeness of the available data, which must be representative of all operating conditions.
In order to address this issue, all our models were derived by taking multi-flight data
rich in maneuvers (as opposed to cruise steady-state conditions), both in the design and
validation phases. The quantitative results provide a clear picture of the requested design
effort as far as the achievable performance using well-known FI and FE schemes.
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