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Abstract

Studying physiology and pathophysiology over a broad population for long periods of time is difficult primarily because
collecting human physiologic data can be intrusive, dangerous, and expensive. One solution is to use data that have been
collected for a different purpose. Electronic health record (EHR) data promise to support the development and testing of
mechanistic physiologic models on diverse populations and allow correlation with clinical outcomes, but limitations in the
data have thus far thwarted such use. For example, using uncontrolled population-scale EHR data to verify the outcome of
time dependent behavior of mechanistic, constructive models can be difficult because: (i) aggregation of the population
can obscure or generate a signal, (ii) there is often no control population with a well understood health state, and (iii)
diversity in how the population is measured can make the data difficult to fit into conventional analysis techniques. This
paper shows that it is possible to use EHR data to test a physiological model for a population and over long time scales.
Specifically, a methodology is developed and demonstrated for testing a mechanistic, time-dependent, physiological model
of serum glucose dynamics with uncontrolled, population-scale, physiological patient data extracted from an EHR
repository. It is shown that there is no observable daily variation the normalized mean glucose for any EHR subpopulations.
In contrast, a derived value, daily variation in nonlinear correlation quantified by the time-delayed mutual information
(TDMI), did reveal the intuitively expected diurnal variation in glucose levels amongst a random population of humans.
Moreover, in a population of continuously (tube) fed patients, there was no observable TDMI-based diurnal signal. These
TDMI-based signals, via a glucose insulin model, were then connected with human feeding patterns. In particular, a
constructive physiological model was shown to correctly predict the difference between the general uncontrolled
population and a subpopulation whose feeding was controlled.
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Introduction

Human physiology, as a science, aims to understand the

mechanical, physical, and biochemical functions of humans;

moreover, because human dynamics transpire both on multiple

spatial scales, ranging from molecular (e.g., genetics), to cell (e.g.,

metabolism), to organ (e.g., the heart [1]), to collections of organs

(e.g., the circulatory system) and on multiple time scales ranging

from fractions of a second to decades, it is likely that complete

models of human functioning will consist of highly complex

models whose scales interact in complex ways (e.g., via nonlinear

resonance) [2]. In this context, population physiology aims to

understand medium to long time scales of human physiology

and pathophysiology where a population of humans is required to

construct or discover a signal (metaphorically, population physi-

ology is to physiology as climatology is to weather). Moreover,

once a signal is constructed, the goal is to use this signal to

understand human dynamics by both understanding the sources of

the signals and then use that information to stratify the population

into meaningful classes (e.g., phenotypes) according to the different

signals. Consequently, population physiology, as we conceive it,

has two broad features: data analysis consisting of the construction

and analysis of population scale physiological signals, and the

mechanistic modeling that can explain and rationalize those

signals. The hope is that, through the use of EHR data, physiology

can eventually be used by clinicians in the same way that physics is

used by engineers. Thus, here we will employ diverse populations

in an attempt to verify that an EHR-data-derived signal can be

used to resolve first-order physiologic dynamics.

The mathematical modeling of physiological systems on the

cellular and organ scales has a long history (cf., [3] and [4] for a

wonderful introduction), while the modeling of larger scale organ

structures is just beginning [5]. Fundamental to mathematical

modeling of physiology is a concrete connection to real data; as is

the case for other basic sciences, mathematical physiological

modeling is always tested against physiological data collected in

rigorously controlled circumstances. Nevertheless, there are at

least two elements missing from modern physiological analysis,

analysis over large populations and analysis over long time periods.

The former is important because human beings have diverse

reactions to different inputs (e.g., drugs, foods, etc.), and those

differences have their roots in physiology. The latter is important

because many differences amongst human reactions to input occur

on a slow time-scale; for instance, some smokers develop cancer
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while others do not. The problem with using the classical

physiology framework with its rigorously controlled conditions to

study a large population over a long time period is that it is too

expensive, intrusive, and dangerous to collect physiologic data for

a large population over a long time period. Thus, it is likely that

the lack of availability of population scale, long term data is the

primary reason why wide-population, long term, physiologic

studies to not exist.

With the advancement of electronic health record (EHR)

repositories, the ‘‘lack of data’’ problem will be replaced with data

analysis and data mining problems. Electronic health records hold

data for large, diverse populations, and they cover periods of

decades [6] [7] [8]. Nevertheless, despite years of work, the

methods needed to exploit EHR data remain in their infancy. A

necessary realization for using EHR data is recognizing that the

EHR represents a natural system in its own right. In particular,

EHR data not only represents the physiology of the diverse

population being cared for, but also the following: healthcare

measurement dynamics (e.g., individual hospital protocols); the

local environment (e.g., exposure to pollutants); local customs (e.g.,

willingness to seek medical attention); and any other features of the

environment in which the data are collected. To see some of the

difficulties and potential associated with the analysis of EHR data,

consider four notably relevant examples: Sagreiya and Altman [9]

demonstrated the limitations of using general population EHR

data for estimating drug dosages; Hripcsak et al. [10] showed the

difficulties with using general EHR data for classification of disease

(i.e., community-acquired pneumonia); Karsh et al. [8] outlined

various factors that will constrain EHR data; and Higgins and

Mehadevan [11] demonstrated that relevant, predictive, phenom-

enological master equations of physiological functioning (concen-

trations of red blood cells) can be generated using data that could

exist in an EHR repository (note that in Higgins and Mehadevan

[11] the terminology population dynamics refers to a population of

red blood cells not humans) and that, if integrated into a EHR

infrastructure, would help with early prevention of disease (i.e.,

anemia). Advancing such methods is a step-wise process, and here

we present what we believe is an important early step: showing

that it is feasible to use EHR data in conjunction with a

constructive physiological model — specifically, that we can test a

physiologic model with an EHR data-derived signal.

To study how EHR data can be used in conjunction with a

physiological model, we consider the relatively simple problem of

glucose variation because it is easy to present and understand, it

has relevant, well understood models, and we know what the

answer should be. Specifically, we leverage the following tools or

data sets: (i) a subpopulation of patients with at least two glucose

measurements from an EHR that includes all inpatients and

outpatients seen at an academic medical center over 20 years; (ii)
two well sampled patients from the same previously mentioned

EHR; (iii) a set of particularly sick, continuously-fed (via a feeding

tube), immobile, comatose patients taken from the neural intensive

care unit (NICU) portion of the previously mentioned EHR; (iv) a

relatively simple mechanistic glucose-insulin model with various

different feeding patterns; and (v), the time-delay mutual

information (TDMI) which quantifies nonlinear correlation between

ensembles of measurements separated by a given amount of time.

Along with demonstrating that EHR data can be used to test

physiologic models for populations over long time periods, we also

discover that while human glucose levels are highly aperiodic,

there is nevertheless a stable, long term diurnal structure in the

nonlinear correlation between glucose values separated in time in

healthy, random humans. Moreover, while it is likely that many

features contribute to the observed diurnal cycle in correlated

glucose, only two interacting time scales are required to reproduce

the observed diurnal signal — a ‘‘statistically periodic’’ feeding

pattern that exists on the scale of weeks and the organ level

dynamics that exists on the order of minutes. Less broadly, we find

that: (i) to first order statistical moment (e.g., the mean), daily

variation in the TDMI is a function of feeding alone—no diversity

in other parameters that determine glucose/insulin regulation are

required; (ii) that glucose regulation acts like a control system on a

fast time scale (order of minutes) in contrast to kidney function

which behaves like a filtering system [12]; (iii) a diurnal signal in a

derived value, nonlinear correlation (TDMI), that can be used to

distinguish different populations; and (iv) it is possible to

circumvent inter-patient variability though aggregating popula-

tions, but one must be very careful interpreting the results [13].

Outline
We begin with a materials and methods section that has three

distinct components. In subsection 0.3 we discuss endocrine

physiology and introduce the mechanic model we use in this

paper. We then introduce electronic health record data in general

and the data we use in particular in subsection 0.4. The materials

and methods section concludes with a discussion of the nonlinear

time series analysis techniques we use (subsection 0.5). We then

work through the results (section 0.5) and discussion (section 0.9)

sections.

Materials and Methods

0.1 Ethics statement
This work was approved by the Columbia University Institu-

tional Review Board. Informed consent was waived by the

Institutional Review Board for this retrospective research.

0.2 Data assess statement
Unfortunately, the data for this study cannot be made publically

available because the detail and complexity of the data put it at

risk for re-identification. Similar data are publically available from

the PHYSIONET and MIMIC data repositories.

0.3 Glucose-Insulin physiology
0.3.1 Background: endocrine dynamics. Begin by noting

that a complete physiological understanding of the endocrine

system, or even the glucose/insulin cycle, has not yet been

achieved. For instance, how insulin reacts at the plasma

membrane of insulin sensitive cells is still poorly understood (for

other examples, cf., [14] [15]). With respect to diurnal cycles in

glucose/insulin dynamics, the following effects have been

observed: in fasting humans, there are wake-sleep cycle based effects

on pancreatic enzyme secretions [16]; physical activity has an

effect on insulin secretion [17]; and in rats there appears to be an

endogenous circadian oscillator (internal clock) located within the

pancreatic islets [18]. Most importantly, it is well understood that

nutrition intake is the primary first order driver of the glucose-

insulin cycle [17] (hence the need to use fasting humans as a

control to isolate the more sensitive glucose-insulin effects). All of

these studies were carried out under the classical physiology

framework. Moreover, to resolve many of the previously listed

signals required rigorous control of the measured individuals—

most EHR data will never meet these standards. But, the noted

contrast between classical physiology data and EHR data helps

clarify one of the goals of this paper: we are not trying to discover

an ultra-sensitive, controlled, physiological effect that is resolvable

over a short time period; rather, we are trying to discover what can

be resolved with EHR data. Specifically, we are trying to discover
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gross, long term, population-wide effects that have the potential to

help stratify populations into observably different types — types

that can eventually be linked to different health states. Moreover,

because the individuals within the EHR have observably differing

health states that do not require ultra-fine resolution to observe,

the hope is that we will be able to eventually use EHR data to

discover and categorize different, long term, physiologic macro-

states. This is the justification for not choosing the most

complicated glucose/insulin model. While the model we utilize

parameterizes away many of these higher-order effects, it remains

driven by nutrition, the source of the first order, elementary

glucose/insulin dynamics we are trying to verify.

0.3.2 First principles model of glucose-insulin

physiology. The first principles, constructive, mechanistic

glucose-insulin we use is presented in Sturis et al. [19] which

consists of six ordinary differential equations (ODEs), specifically:

dIp

dt
~f1(G){E(

Ip

Vp

{
Ii

Vi

){
Ip

tp

ð1Þ

dIi

dt
~E(

Ip

Vp

{
Ii

Vi

){
Ii

ti

ð2Þ

dG

dt
~f4(h3)zIG(t){f2(G){f3(Ii)G ð3Þ

and a three stage linear filter:

dh1

dt
~

Ip{h1

td

ð4Þ

dh2

dt
~

h1{h2

td

ð5Þ

dh3

dt
~

h2{h3

td

ð6Þ

where the state variables correspond to: Ip, plasma insulin; Ii,

remote insulin; G, glucose; and h1, h2 and h3 which correspond to

three parameterized delay processes. The major parameters

include: (i) E, a rate constant for exchange of insulin between

the plasma and remote compartments; (ii) IG , the exogenous

(externally driven) glucose delivery rate; tp, the time constant for

plasma insulin degradation; (iii) ti, the time constant for the remote

insulin degradation; (iv) td , the delay time between plasma insulin

and glucose production; (v) Vp, the volume of insulin distribution

in the plasma; (vi) Vi, the volume of the remote insulin

compartment; (vii) Vg, the volume of the glucose space; (viii)

f1(G)~
Rm

1{exp( {G
Vgc1

za1)
, insulin secretion; (ix) f2(G)~Ub(1{

exp(
{G

C2Vg

)), insulin-independent glucose utilization; (x) f3(Ii)~

1

C3Vg

(U0z
Um{U0

1z(kIi)
{b

), insulin-dependent glucose utilization
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C4
(

1
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{
1

Eti

)); and (xi) f4(h3)~
Rg

1zexp(a(
h3

C5Vp
{1))

, insu-

lin-dependent glucose utilization. Note that a full list of the

parameters in this model, as well the model parameter settings

used in this paper, can be found in table 1; moreover, Keener and

Sneyd [4] provides a nice discussion of this particular model. With

the exception of the exogenous glucose delivery rates, which we

will discuss shortly, we utilize all the standard parameter settings

used in Sturis et al. [19]. Finally, there do exist more complex,

higher order glucose/insulin metabolism models [20], but because

the point was to choose the simplest system of ODEs that can be

used to represent the data-driven signal, we chose this rather

standard model.

The only part of the model we vary is the external driving, or

the exogenous glucose delivery rate, IG(t); specifically, we consider five

different feeding patterns. The first feeding pattern we consider is a

population that is fed continuously and where each member of the

population is fed at a different rate. This feeding pattern forms a

baseline for other continuous and periodically fed populations and

is denoted by the feeding function IG,cp. The data sets generated

with this feeding structure include 9 days of data collected by the

minute. The second feeding pattern is identical to the first with the

exception that 20% of the 9 days of data have randomly selected four

hour gaps where no food is administered. This feeding pattern is

meant to simulate an intensive care unit population and is denoted

by the feeding function IG,rcp. Both of these feeding patterns are, in

a sense, pathophysiologic. The other three feeding patterns are

based on simulated meals. To construct mealtime feeding

structure, begin by defining the set of meal times, specified by

the set M~fm1, � � � ,mng, where the mi’s represent times over a

24-hour interval, and n is the number of meal times within a 24-

hour period. Next define the exogenous glucose delivery rate at the

current time, tc, as:

IG(tvtc)~
XN

i

Ije
k

t{mi ð7Þ

where Ij is the peak rate of delivery of glucose for a given

individual j at time mi, N~#fmivtcg represents the total

number of meals that have passed by time t, and k is the decay

constant (k~0:5). The decay constant is set such that the meal

persists over about two hours, a time that is considered realistic

[19]. Next, relative to the m1~8, m2~12, and m3~18, define the

following three feeding patterns: periodic individual,

Mpi~½m1,m2,m3�; noisy individual, Mni~½m1zn1(k),m2zn2(k),

m3zn3(k)� where ni(k) is a uniform random variable on the

interval ½{1,1� and k represents an integer day (implying that ni

changes every day); and random individual, Mri~½n1(k),n2(k),n3(k)�
where ni(k) is a random (non-repeated) integer on the interval

½0,23� and k is again an integer day (implying that ni changes every

day). Based on these meal structures we define five feeding

patterns, continuously fed population (IG,cp), continuously fed population

with random gaps (IGrcp ), a periodically fed individual (IG,pi), a noisy-

periodic individual (IG,npi ), and a random individual (IG,ri ), defined

formally as:

IG,cp~Ij constant [½100,225� mg=min ð8Þ

IG,rcp~Ij constant [½100,225� mg=min with random 4 hour gaps ð9Þ

IG,pi(t)~
XN

i

Ie
k

t{mi ,I~216 mg=min, mi[Mpi ð10Þ
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IG,ni(t)~
XN

i

Ie
k

t{mi ,I~216 mg=min, mi[Mni ð11Þ

IG,ri(t)~
XN

i

Ie
k

t{mi ,I~216 mg=min, mi[Mri ð12Þ

These five different driving mechanisms reflect what we believe to

be a relatively minimalistic amount of variation within the

glucose/insulin model parameter and function space.

0.3.3 Endocrine dynamics as a control system. To

interpret the results, it will help to abstract the physical

mechanisms to a control system. In particular, the regulation of

glucose can be thought of as an intra-body feedback control system

where the body has a goal of maintaining a constant concentration of glucose

and attempts to achieve this goal via various physiological

mechanisms [21]. Broadly, when glucose levels are high, insulin

is released by the pancreas leading to glucose being stored in the

liver faster than it is released and the rate at which glucose is

metabolized by the body is increased. Similarly, when glucose

levels are low, glucagon is released by the pancreas, allowing for an

increase in the rate glucose is released from the liver as well as a

decrease in the rate glucose is metabolized by the body. This

contrasts with, for example, the kidneys and their relation with

creatinine, which can be grossly thought of as a filtering system

instead of a control system aiming at maintaining a particular level

of glucose. (Note, there are parts of the kidney that do behave as a

control system [22]). It is worth mentioning that the above

description of the endocrine system is greatly simplified, (for a

more detailed view, cf. [23] [24]).

0.4 Data composition
We consider the time series of glucose measurements of two real

populations of humans extracted from the Columbia University

Medical Center (CUMC) EHR: (i) the time series of glucose

measurements extracted from an EHR for all inpatients and

outpatients over 20 years (800,000 patients with roughly

12,000,000 glucose measurements); (ii) the time series of glucose

measurements for a small subset of patients (43 in total) seen in the

NICU who are continuously fed, immobile, and comatose—note

that this cohort of patients is represented by between 4 and 193
measurements taken on the order of minutes to hours (many

patients have approximately a weeks’ worth of hourly measure-

ments). Finally, it is important to note that glucose is measured in

many contexts, many of which include situations where glucose is

not the primary target (e.g., the CHEM-7 metabolic panel, which

includes glucose, is taken in many situations where glucose is not

primary chemical of interest).

The data sets we chose are of varying size over populations,

numbers of points, and time periods. Nevertheless, the population

size is not explicitly important. Rather, it is the number of data

points used to compute the given quantities that are of explicit

importance. Specifically, the number of points are important

because the errors or estimation biases of computable quantities

(e.g., averages, TDMI, etc.) depend on the number of points, (cf.

Albers and Hripscak [25] for a description for TDMI). Because

EHR data are special in that it is not collected in a controlled

Table 1. Full list of parameters for the glucose/insulin model [19] used in this paper.

Glucose model parameters

Parameter nominal value meaning

Vp 3 l plasma volume

Vi 11 l insulin volume

Vg 10 l glucose space

E 0:2 l min21 exchange rate for insulin between remote and plasma compartments

tp 6 min time constant for plasma insulin degradation (via kidney and liver filtering)

ti 100 min time constant for remote insulin degradation

td 12 min delay between plasma insulin and glucose production

Rm 209 mU min21 linear constant affecting insulin secretion

a1 6:67 exponential constant affecting insulin secretion

C1 300 mg l21 exponential constant affecting insulin secretion

C2 144 mg l21 exponential constant affecting IIGU

C3 100 mg l21 linear constant affecting IDGU

C4 80 mU l21 factor affecting IDGU

C5 26 mU l21 exponential constant affecting IDGU

Ub 72 mg min21 linear constant effacing IIGU

U0 4 mg min21 linear constant affecting IDGU

Um 94 mg min21 linear constant affecting IDGU

Rg 180 mg min21 linear constant affecting IDGU

a 7:5 exponential constant affecting IDGU

b 1:77 exponent affecting IDGU

Note that these are the model parameters we us in this paper. Note the following abbreviations: insulin independent glucose utilization (IIGU) and insulin dependent
glucose utilization (IDGU).
doi:10.1371/journal.pone.0048058.t001
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environment, the EHR represents a population whose individuals

are both diverse and measured diversely. Often only a small

percentage of the population has the required characteristics for

computation. Similarly, sometimes many sparsely measured

individuals can be aggregated such that the aggregated population

can accurately represent a single well-measured individual.

Because of this, 100,000 sparsely measured patients can essentially

represent 100 well measured patients. In all cases, the numbers of

patients we have selected are arbitrary numbers that are large

enough to compute trustable quantities.

0.4.1 EHR population. The first data set, the EHR patients,

is not filtered or carefully selected in anyway; we chose to use the

entire EHR population for five reasons. First, we want to

demonstrate the generality of the first order effects on glucose

variation; specifically, our results are not sensitive to many

confounders that one might imagine. Second, we wanted to how

the robustness (i.e., stability of the computation) of our time series

analysis methodology on real EHR data, despite all the

measurement complexities present. Third, we wanted a population

that, upon considering higher order effects, would have the

potential to be stratified into different types or categories. Fourth,

because EHR data are extremely complicated, we did not want to

build in any more a priori notions of signals than were absolutely

necessary. And fifth, because EHR data are not carefully collected

physiologic data, to interpret EHR-data-driven results we must

understand what EHR-based biases exist, and we cannot observe

unknown EHR-specific biases when we choose a carefully

manicured data set. Or, written differently, one of the purposes

of this paper is to demonstrate how to derive a signal that is not

sensitive to the alignment of patients, noisiness of feeding

schedules, and other EHR-specific randomness, yet conveys useful

information for population.

Because we use a very broad population, it is important to

comment on the complex nature of the composition of the EHR

data as a data source. To do demonstrate this, as an example,

consider the hypothesis that diabetics would have the most

frequently recorded glucose values. A careful verification of this

hypothesis is both a substantial research question, and is out of the

scope of this work. Nevertheless, we can make a bit of an inference

into the validity of such a statement. Among the 100 most

measured patients in the CUMC EHR, 75% have at least one

billing code for diabetes [13]. In contrast, if one considers a

random set of patients, the proportion that have several glucose

measurements within 6 hours of one another who have at least

one billing code for diabetes falls to 50% [13]. Meaning, within the

general population of patients who are sampled at least as

frequently as once every 6 hours, at least half are not diabetic. One

can imagine many plausible reasons for this; one example might

be that a substantial portion of the glucose measurements come as

part of a panel with other measurements in which case many of

the glucose measurements would be measured as part of a routine

for caring for particularly sick patients, such as patients admitted

for congestive heart failure. Related issues regarding over or

underrepresentation are difficult to address because of the

relativity of the expected rates of measurement. In the United

States, 8:3% of the population (as of January 2011) had diabetes,

thus assuming a uniform measurement of glucose of US residents,

diabetics are overrepresented in our data. It is unknown whether

they are over or under measured relative to desired clinical

protocols. Nevertheless, the data set we use contains a large

number of both diabetic and non-diabetic patients who have

frequent glucose measurements so features of intra- and inter-

group dynamics are resolvable.

In addition to the random EHR population, we have included

two relatively well measured patients from the CUMC EHR. We

have included these patients to demonstrate that, despite potential

population-aggregation effects on glucose variability (recall that

Albers and Hripcsak [12] detailed how aggregation of different

sources can affect a TDMI signal), the results we observe are

present in well measured individuals too. This decreases the

likelihood that our results are confounded by population

aggregation alone. These patients were selected from among the

100 patients with the most glucose values in the CUMC EHR and

they represent the two typical types of patients; the TDMI analysis

of this subpopulation and others can be found in Albers et al [13]

[25]. Both patients were sick, with different illnesses, and were

hospitalized during some, but not most, of their measurements.

Neither patients’ glucose measurements come primarily from the

ICU setting. Among this set of patients, there is not very much

variation in the TDMI signal; we chose one patient (whose record

is roughly 3 years long) with the weakest signal and one patient

(whose record is longer than 15 years) with a signal of average

strength among this set of 100 patients. Note that even the set of

100 patients with the most glucose values is remarkably diverse

when considering the notes for the patients. Some of the afflictions

among this set of patients includes: pancreatic cancer, chronic

kidney disease (CKD) (some CKD patients have type 1 or 2

diabetes and some do not), organ transplants of various types, type

1 or type 2 diabetes with various degrees of compliance with

treatment, congestive heart failure, etc. Moreover, about 75% of

these patients are presumed to be diabetic (either type 1 or 2). Due

to the complexity of the models and patients, resolving the source

of the higher order features of the TDMI distribution (e.g., the

higher order moments) of the 24-hour TDMI peaks among

patients is beyond the scope of paper.

0.4.2 Neural intensive care unit subpopulation. The

NICU population is a much more narrow population, and

because this population is acting as a control in some sense, it is

important to detail their nutrition in a more detailed fashion. The

entire set of 43 patients was administered enternal nutrition (i.e.,

via a feeding tube) starting within 24 hours of aneurysmal repair

[26]. While the enternal nutrition was continuous when given

(denoted continuous feeding), there were random episodic gaps

where nutrition was withheld (random Nil per os (NPO)).

Specifically, the feeding is suspended before invasive procedures

(e.g., surgery, extubation), when there are high gastric residuals

(i.e., when there is a lot of residual food left in the stomach), when

there exists intestinal obstruction (ileus), and when the patient has

diarrhea or is aspirating the food. The existence of these random

gaps in nutrition are the reason why one of the model populations

is continuously fed with random feeding gaps. The enternal

nutrition was the primary source of nutrition (less than 10% of the

caloric intake came from other sources such as drugs). The

primary target for each patient was 25cal=kg (or 70cal=hr) and

the primary caloric source was Osmolite. The NICU population

does receive insulin; how and why is complex and is discussed in

detail in Schmidt et al. [27]. We do not attempt to control for

insulin because it is difficult to foresee whether it matters; our

results will show that the insulin regimen in the NICU population

does not affect our results to first order in statistical moment (i.e.,

the mean). Finally, note that within the NICU population, less

than 10% of the patients are diabetic; removing them does not

alter the results.

0.4.3 Contrasting the two patient populations. Con-

ceptually, there are four important differences in these popula-

tions: (i) the EHR broad population is uncontrolled and

monitored poorly (it is the general patient population after all)
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whereas the NICU population is highly controlled and monitored;

(ii) the EHR broad population has an unknown and uncontrolled

feeding pattern whereas the NICU population is being fed

continuously and in a very controlled and documented fashion;

(iii) the EHR broad population represents a diverse set of humans

with diverse and unknown health states whereas the NICU

population represents a very sick population whose degree of

acuity is considerably higher and more narrowly defined than that

of population one; and (iv) while the detailed understanding of

metabolic function is unknown in both populations, it is very likely

that the metabolic functioning of patients in the NICU population

is substantially more compromised. Thus, the NICU population

functions roughly as a control to isolate the effects of continuous feeding on

glucose daily variability because this population has relatively few

normal external physiological forcing mechanisms (e.g., sleep

cycle, daily exercise, real mealtimes, etc.). In contrast, the broad

EHR population is meant to represent the population at large

whose feeding pattern is uncontrolled, highly discontinuous, and

has unknown regularity.

0.5 Computational methods
We use two diagnostics for the EHR and model glucose time

series, (i) intra-patient normalized glucose by hour, and (ii) the

TDMI of the glucose time series (Albers and Hripcsak [13]

explains how the TDMI can be applied to a population). It is

important to note that the reason we chose the TDMI is that,

when applied to a population, it affords the eventual possibility of

stratifying patients by predictability (cf. conjecture one in Albers

and Hripcsak [13]).

With respect to (i), we normalize each patient to mean zero and

unit variance, and then calculate the mean and variance of glucose

by hour over the population. We do this because there is a high

degree of individual variability within each population, and

individuals were measured differently from each other. Therefore,

to resolve a property such as the by-hour daily variation of glucose

values, we must remove inter-individual variation. Without this

correction, inter-individual variation and therefore population

aggregation effects became the first order effects. Nevertheless, we

will show the normalized glucose variation for an individual

patient to demonstrate that individuals mimic the population.

With respect to (ii), we calculate the TDMI [13] [28], [29],

given by:

I(xt,xt{dt)~{

ð
p(xt,xt{dt)log

p(xt,xt{dt)

p(xt)p(xt{dt)
dxtdxt{dt ð13Þ

where xt and xt{dt represent an ensemble of all the intra-patient pairs

of points in the population of time series separated by a time dt and p(:)
denotes the probability density function (PDF) of those ensembles;

note that the TDMI captures linear and nonlinear correlations in

time, which differs from, say, auto or linear correlation calcula-

tions (to see this applied to kidney function, see Albers and

Hripcsak [12], and for general application, see Albers and

Hripcsak [13]). Finally, to calculate the TDMI, one must estimate

the joint and marginal PDFs, here we used a kernel density

estimation (KDE) routine [30] implemented on MATLAB.

In general, the TDMI is a unit-less quantity; a TDMI of 0
(within bias) implies that there is no correlation between sequential

values in a time series for a given dt. TDMI values begin to

become important when they exceed the expected bias associated

with calculating the mutual information, which is approximately 1
M

where M is the number of pairs of points used to estimate the

TDMI (*0:001 in this experiment). With a perfect correlation

between sequential values, the TDMI will be equal to the entropy

(or auto-information) of the series, which is numerically equal to

the TDMI at dt~0 (and is calculated automatically as part of the

experiment). In this experiment the entropy was about 0:85 and

represented the maximum TDMI. (In most of our experiments,

the entropy is in the 0:5 to 2 range.) Note that perfect correlation

of a constant function (implying PDFs that are d functions) yields a

TDMI of zero for all dt.

With respect to the models, the ODEs were integrated over

time-periods ranging from seven days to three weeks. A standard

fourth-order Runga-Kutta integration routine, with a step-size of

10{4, was utilized.

Results

0.6 Basic physiological synopsis
Figure 1 details the feeding-glucose response for the models.

The point of this figure is to depict the basic building blocks that

will be aggregated into a population. Figure 1(a) demonstrates

that, relative to the model, a continuous infusion of glucose induces a

periodic oscillation in intravascular glucose whose period is on the

order of minutes; note that verification of this signal in humans can

be found in Fig. 1 of Sturis et al. [19] or more generally in Lang et

al. [31]. Furthermore, note that in this case the glucose oscillation is

exactly symmetric about its mean, implying that long term averages of

the glucose-insulin response should be a constant — this fits with

the intuitive control theory vision of the glucose-insulin cycle.

Figure 1(b) illustrates the glucose oscillation structure that is

induced when the feeding pattern consists of three realistic meals

given at 8, 12, and 18 hundred hours respectively. Note that the

peaks and length of time over which the glucose response exists

depends on the magnitude of the calories in the meal — one way

of conceptualizing this system is as a forced oscillator with

damping that depends on caloric input and metabolism. Also note

that the when caloric intake is a pulse, the glucose-insulin response

is not exactly symmetric about the mean or baseline. In particular,

isolating the glucose response and integrating the response relative

to the baseline yields a very small but negative number, meaning

that the overall glucose level is depressed when integrated over the

course of the meal and response relative to this model.

0.7 Diurnal variability of glucose in a population
With the basic building blocks of glucose-insulin response in

place, next consider Fig. 2 which details the hourly glucose

variability within the data sets and models. In particular, in

Fig. 2(a) the hourly glucose variability for the EHR population

displays no observable diurnal variability or signal. While we expected

the short-term oscillations to average out we also expected to

observe a small but statistically significant signal on a 24-hour

cycle that matched meal times. More specifically, we expected a

small diurnal signal because: (i) humans eat periodically, which,

intuitively, implies that glucose would be broadly higher over meal

times; and (ii), there exists a weak but present diurnal variability in

kidney function that was observed on the same data set [12] —

which was surprising in and of itself because kidney function is not

normally believed to have a strong diurnal signal.

Before we give a more technical explanation as to why we,

equipped with the constructive model, would not expect to see any

diurnal variation in raw glucose values when averaged over a

population, it is important to compare the data-based signals in

Figs. 2(a) and 2(b) with the modeling results shown in Fig. 2(d) to

draw a few observations/conclusions. First, constant feeding in the

model for a population leads to constant (averaged by hour)

glucose which agrees with the data-based result (NICU patients) of
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Fig. 2(b), and thus verifies that relative to hourly glucose

variability, the model correctly predicts the observations. Of

course, because many feeding patterns produce the same signal in

hourly glucose variability, this does little to verify that the model

represents the endocrine system faithfully — to achieve this we

need a different, less ambiguous data-driven signal. Second, the

periodically driven individual has the expected daily meal response

structure; but the signal is too clean to realistically represent an

individual or a population because the meals are given at exactly

the same time every day. Third, the random feeding produces no

diurnal signal and thus agrees with the data-based result (random

population) from Fig. 2(a), meaning that it is possible either that

the model does not depend on strongly on feeding structure or that

the by-hour glucose is not good enough to detect feeding structure

and differentiate the respective populations. In the section that

follows, we demonstrate that the second statement is the correct

conclusion. Fourth, the noisy periodic case has wide, weak diurnal

peaks at meal times, which differs from what is observed in the

data; however, the primary reason the diurnal structure in daily

glucose variability is retained in the models with noisy periodic-like

feeding is that the meals are uniformly distributed within two hour

disjoint intervals. We know from further experiments that

increasing the diversity of the location of the mealtime windows between

individuals, while retaining the noisy mealtime structure within individuals,

allows the model results to reproduce the population signal shown

in Fig. 2(a) more faithfully. And fifth, considering the model output

shown in Fig. 1(b) where the glucose-insulin response to a meal is

roughly symmetric about the baseline glucose level.

Armed with the above information, we can now make a more

technical argument as to why there is no signal in the hourly

variation of glucose. The simplest explanation for the lack of

observed diurnal signal in hourly glucose values relies on four

observations, (i) we are aggregating/averaging many sparsely

measured sine-wave-like signals whose periods are much shorter

than an hour (that they come from many or a single patient is

largely irrelevant), (ii) these averaged waves have random starting

times, (iii) the averaged waves have different periods (e.g., because

patients are diverse), and (iv) the averaged waves have are

symmetric about their means (which are normalized to zero). Such

signals, when averaged, will yield a constant function. To see why

this is the case, consider a collection of sine waves that have

different periods whose average converges to something finite; the sum

of those sine waves will converge to 1
n
, where n is the number of

sine waves being averaged. This does not mean that there isn’t a

diurnal dependence within glucose (in fact, we find there is using a

derived value), or the glucose/insulin response following a specific

meal isn’t observable within EHR data, because it is. But, when one

averages over time, even for an individual patient who is not being

tube-fed (cf. Fig. 2(b)), variation in the daily average glucose is not

observable because of the noisy meal schedules (which affect

phases, periods and amplitudes), the act of averaging, the structure

of the glucose/insulin response to food (the response is order

minutes not hours), and the course resolution of measurement.

One can imagine more complicated reasons for why there is no

signal in Figs. 2(a) and 2(b), but the simple answer without

complicating factors (e.g., diabetes, NPO, acuity) — that

aggregation/averaging plus the dynamic type obliterates any

signal — is enough to remove the signal in the EHR population,

individuals, and all the models. Thus, these other complications,

while acting as possible contributors to the lack of signal, are

neither necessary to remove the signal, nor observable given only

the raw glucose values.

0.8 Diurnal variability in nonlinear correlation of glucose
Finally we arrive at the nonlinear-correlation variability in

glucose as quantified by the TDMI. Figure 3(a) frames the TDMI

over an entire seven day time-delay window and can, in a sense, be

split into two dynamical regimes, the TDMI for dtv12 hrs and

for dtw12 hrs. To highlight this difference, and to aid readability,

Figs. 3(b) and 3(c) are Fig. 3(a) split at dt~12 hrs. As previously

stated in 0.5, it is possible to use the distribution of the TDMI to

stratify the population at a given dt; here we will refrain from

analyzing these higher order (relative to the distribution moment)

effects and instead concentrate on the first order effects as defined

by the mean TDMI values that are shown in Figs. 3(a)–3(c). To be

clear, note that Fig. 3 contains the TDMI signals from both EHR

data (the random EHR population, the two individual patients,

and the NICU population) and model output (there is a TDMI

signal corresponding to each of the feeding patterns introduced in

section 0.3). Thus, we are explicitly comparing the TDMI signals

of the EHR data sets against themselves as well as the TDMI

signals of the model output. With this in mind, the following

features of Figs. 2-2 are of note: (i) all models and data sets show a

sharp decay in TDMI between one and twelve hours; (ii) one of

the individual patients has weak diurnal peaks in the TDMI at 24
and 48 hours while the other patient has diurnal peaks for several

days; (iii) the NICU population shows no long term structure in

the TDMI, although there does remain a constant amount of

TDMI present; (iv) the uncontrolled EHR population shows

diurnal peaks in the TDMI, and the magnitude of these peaks

decays with time; (v) the continuously fed population model, after

the decay within twelve hours, shows a weak hump at eighteen

hours that is a function of the exact symmetry of the periodic

oscillations in glucose, followed by a decay to small, constant,

TDMI — thus, this model case accurately represents the NICU patients; (vi)
the periodic individual model patient without noise has a good deal

of TDMI as well as sharp diurnal peaks and — note that from this

it is self-evident that an individual patient with a continuous

feeding regimen would also have a high level of TDMI, albeit

without the sharp 24-hour peaks; (vii) noisy periodic model has,

after the sharp decay at twelve hours, diurnal peaks in the TDMI

with non-decaying magnitude — thus, this model mostly closely represents

the real EHR population, and in fact the two overlay up to about 36 hours;

(viii) the TDMI for the randomly fed model case has no long

term structure — thus, the TDMI helps distinguish the constant feeding, the

random feeding, and the noisy periodic feeding models. To consider more

detailed analysis, it is instructive to split Fig. 2 into two regimes,

dtv12 hrs, and dtw12 hours.

The most important feature of Fig. 2, which shows the TDMI

for dtƒ12 hrs, is that the collection of TDMI curves are bounded

from above by the random feeding and below by the population with continuous

feeding models respectively. The random meal case has the most

TDMI within the first 12 hours because the random feeding case

maximizes the amount of observed TDMI per mealtime period.

This maximization occurs for two reasons: (i) isolated meals have

a large amount of TDMI that persists over approximately four

hours; and (ii), meals are uniformly distributed over the 24 hour

period and are unlikely to overlap. Said simply, the TDMI for the

random meals population with dtv12 largely represents the pure

intra-meal TDMI, which is the maximum TDMI amongst the

models (and apparently real populations) we examine. This

argument is further backed-up by the fact that the randomly fed

population has the sharpest decay in TDMI. The reason why the

TDMI for the population of continuously fed patient model is a

lower-bound is due to a combination of aggregation effects and

superpositions of periodic orbits. To understand this, recall Fig. 1(a)

and note that each member of the population of continuously fed
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patients will have orbits with different amplitudes and frequencies and

that aggregating them together at a given dt will produce a

distribution that will closely resemble a uniform distribution — the

distribution that minimizes TDMI over all distributions. All the

other cases fit in between these two extreme situations.

The longer the time (separation) scale is shown in Fig. 3(c) and

includes the TDMI for all cases over time-separations of 12 to

72 hours. Begin by noting that there is no structure in TDMI

signal for the NICU population as well as the random feeding and

continuously fed population models. Thus, using only the TDMI

and the normalized hourly glucose, it is difficult to distinguish the

continuously fed population from the randomly fed population. In

contrast, the EHR population, by displaying the diurnal peaks, is

easily distinguishable from the NICU population; thus the TDMI

helps distinguish the EHR and NICU populations in a way that

analysis of the raw glucose values could not. Moreover, because

Figure 1. Depicted above are (a) the glucose for the standard glucose-insulin model with continuous feeding; and (b) the glucose
for the standard glucose-insulin model with realistic meal structure. (a) Glucose-insulin model with continuous feeding and glucose
response. (b) Glucose-insulin model with three meals and glucose response.
doi:10.1371/journal.pone.0048058.g001

Figure 2. Depicted above are (a) the mean and standard deviation in glucose, by hour, for 800,000 patients whom have been
normalized to mean zero and variance one, with at least two glucose measurements from the CUMC EHR; (b) the two individual
patients mean and standard deviation in glucose measurements by hour, note the variability in patient 2 for which there are far
fewer measurements than for patient 1; (c) the mean and standard deviation in glucose and enteral (i.e., tube) feeding rates, by
hour, for 43 normalized patients in the neural ICU; (d) glucose, by hour, for various different model feeding patterns. (a) Normalized
population glucose by hour. (b) Single patient normalized glucose by hour. (c) Normalized NICU population glucose and feeding by hour. (d)
Normalized model glucose by hour.
doi:10.1371/journal.pone.0048058.g002
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the noisy feeding and EHR populations strongly resemble one

another (they are nearly identical for dt~½6,36� hours), and

because the exactly periodic feeding yields far to much TDMI, the

difference between the EHR population and the NICU population is likely due

to noisy, but specifically structured (i.e., not totally random) meal times. This

conclusion both confirms that EHR data reproduces what is

believed to be the first order glucose dynamical effect, nutrition,

and verifies that the ultradian model can represent humans for

much longer time scales than hours to minutes. Finally, even the

individual patient with the weakest signal shows a peak at 24 hours

and a weak peak at 48 hours, which is consistent with the EHR-

based TDMI signal.

0.9 Resultant synopsis
Based on Fig. 3(c), the most basic and elemental result is thus: the model

output can be used (in conjunction with the TDMI) to correctly predict the

distinction between general EHR patients and NICU patients on time scales

longer than a day. Moreover, the observed TDMI signal for the EHR

population represents noisy, but structured meal times over the population;

meaning, we can detect human behavior patterns in EHR data and test them

against physiological models. That is, adjusting the feeding in the

model alone was enough to account for the difference in the

observed TDMI signals and thus to distinguish the populations to

first order in statistical moment (i.e., mean TDMI), all without

injecting difference (e.g., differences in mean age) into the

parameters. This implies that EHR data can at least resolve some

first order physiological effects. At a finer resolution, while the first

order moment of the TDMI (i.e., predictability) can be used to

separate the two populations of patients because of how nutrition

is ingested, understanding the second order moment (i.e., the

variance of the TDMI peaks for a fixed dt) is more complicated

and is beyond the scope of this paper. More explicitly, it is likely

that the higher order moments of the TDMI peaks will depend, to

some unknown level of detail, on the health state of the patient.

Moreover, because even narrow EHR populations are relatively

diverse and as yet unquantified in the context at hand, and

because even the simple model we used has about 20 parameters

that we hold fixed for all populations examined here that are

nevertheless are available for variation, resolution of the higher

order moments of the TDMI peak is beyond the scope of the

current paper. Nevertheless, preliminary analysis seems to point to

the TDMI being monotonically dependent on nutrition and the

functioning (or artificial regulation) of the pancreas. We were able

to use EHR data to test a physiological model for a population,

but, as is the case with many other data-driven fields, derived

values (i.e., the TDMI) were more helpful than the raw values.

Finally, the relatively simple constructive glucose/insulin model

can accurately represent a population over much longer time periods than it was

designed to represent. Or, more specifically, while the model we use

here is an ultradian model designed to be applicable on a time-

scale of much less than a day, the model nevertheless appears to be

applicable over time periods considerably longer than a day.

Discussion

0.10 Summary discussion
The end goal of population physiology is twofold: (a) we want

to derive population-scale, data-based signals over medium to long

time-scales in a way that can be connected to constructive,

mechanistic models to further the understanding of human

physiology; and (b) we want to be able to use these verified,

constructive, mechanistic models to affect the health of human

beings via clinical care. In this paper, we have demonstrated (a)

but not (b), primarily because glucose/insulin modeling is not yet

at a stage were it can be applied to affect clinical care in a direct

manner. Nevertheless, we have begun one of the necessary steps

for implementing (b): we have demonstrated that a mechanistic

model of endocrine dynamics can accurately represent humans

over the longer time scales that are relevant to clinical outcomes.

Scientifically, the results in this work demonstrate and imply

that: (i) the output from a simple glucose/insulin model can be

used to predict the difference between EHR and NICU patients

over time periods longer than a day; (ii) glucose measurements for

a population yield diurnal variation in correlation, but glucose

dynamics behave in a way (i.e., oscillations about a mean whose

period is order minutes) such that diurnal variation in raw glucose values

is difficult to observe; (iii) ‘‘self-fed’’ humans do have a diurnal

TDMI signal in glucose; (iv) ‘‘normal’’ human glucose values do

display an initial decay in correlations (between subsequent

measurements) to a relative baseline within 12 hours; (v) the

models with the noisy but structured meal times match the diurnal

TDMI EHR signal, thus the diurnal cycle in predictability of

glucose is primarily driven by nutrition (not an internal clock); (vi)
EHR data can resolve a signal that spans multiple time scales and

can be used to test physiological models; (vii) that the standard

glucose/insulin model [19] is applicable beyond the time-spans it

was designed for; (viii) the NICU population and continuous

feeding model TDMI signals match one another — in particular,

humans being fed continuously do not have a diurnal TDMI signal

or any structured signal at all; and (ix) EHR data resolves human

social behavior — a meal time structure influencing glucose

physiology.

0.11 Potential impacts of integrating EHR data with
mechanistic models

There are two broad avenues through which the the integration

of mechanistic, constructive models with EHR-data can help

advance clinical care, data assimilation (and control theory) and in

silico experimentation.

First, given a mechanistic model, incorporating data into the

model to forecast the future is done using data assimilation [32]

[33]. To control the system all that is needed is an addition (the

controller) that codifies a desired outcome and a means of

achieving it relative to the parameters that are available for

adjustment. Data assimilation has not been used in this context,

control theory has a limited history in biomedicine but is emerging

as an important technique in a clinical context.

Data assimilation (DA) (e.g., a Kalman filter), combines observed

data from the current (and often the past) state(s) of the system with

underlying dynamical principles governing the system (i.e., a

constructive model) to make an accurate estimate or forecast of the

true state of the system at any given time, including variables that were

not measured. The DA prediction is referred to as an analysis. This

analysis output is fed back into the model to make a prediction or

forecast about future state of the system. Therefore, from a more

practical standpoint, DA schemes perform two functions: (i) they

reconstruct the state variables of a model, including both observed

and unobserved variables; and (ii), they forecast the future in a

way that can be directly tested with future measurements (and

used to implement control theory). Thus DA schemes are the

explicit way that data are injected into constructive models such

that predictions and forecasts can be made. This allows for

‘‘patient forecasts, ’’ where different outcomes can be based on

current and future observations and/or hypothetical data, thus

allowing for exploration of ‘‘what if’’ scenarios with patients. This

in turn allows us to take a more personalized view of treatments for

patients in clinical applications. Finally, some DA schemes (e.g.,

unscented Kalman filters) allow for ‘‘empirical observability,’’ or
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the ability to rank which variables are the most useful for

reconstructing the other variables, thus allowing us to determine

the most useful clinical variables, in some sense. Sedigh-Sarvestan

et al [38] applies a DA applied to the model in this paper that

includes empirical observability ranking of parameters and

variables.

Control theory [33] [34] [21] [35] applied to solve biomedical and

clinical problems has a very successful but limited history. Recall

that traditionally control theory has been used in engineering in

diverse contexts ranging from cruise control in a car to stabilizing

and flying jet aircraft to optimizing manufacturing processes.

Examples in biomedical contexts include implantable cardiover-

ter-defibrillator or pacemakers to cope with irregular heartbeats,

work toward creating an artificial pancreas [36], and to design

treatments for prostate cancer [37]. To apply (optimal) control

theory to any problem, one usually requires three components, an

explicit model of the process to be controlled (e.g., the glucose/

insulin model shown here), a statement regarding the constraints

of the system (e.g., fixed or disallowed parameter settings, initial

conditions, boundary conditions, etc.), and specification of the

performance (e.g., how tightly one wants to control glucose) [34].

EHR data will likely be the only data available on a population

scale that can be used to test a models, specify the constraints, and

specify the desired performance (based on retrospective EHR-data

Figure 3. Depicted above are (a) the TDMI curves for all EHR-data based populations and model output for all feeding patterns
resolved to one hour intervals for time delays of up to one week, note the sharp decay in TDMI in all cases, and the diurnal peaks in
all periodically fed populations or models — note this plot is split into dynamical regimes in Figs. 2 and 2; (b) the TDMI curves for all
populations and models over time-delays of 1 to 12 hours; and (c) the TDMI curves for all populations and models from 12 to
72 hours, notice the diurnal peaks in all periodically fed populations or models. Recall that the model feeding patterns are given
by: IG,cp — continuously fed population; IG,rcp — continuously fed population with random 4 hour gaps; IG,pi — periodically fed
individual; IG,ni — noisy-periodically fed individual; and IG,ri — a randomly fed individual. (a) All data sets and models — a global view of
the TDMI. (b) All data sets and models — feeding scale TDMI for dt of 1 to 12 hours. (c) All data sets and models — diurnal scale TDMI for dt of 12 to
72 hours.
doi:10.1371/journal.pone.0048058.g003
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based study) based on desired outcomes. With a control theory

infrastructure in place for a given physiologic system applications

are very broad. For instance, one could design a controller to

regulate glucose in an ICU setting (cf. Sedigh-Sarvestan et al [38]

where the an unscented Kalman filter is applied to the model in

this paper), one could use the controller to design optimal

treatment strategies over long periods of time for outpatient

diabetics, or one could design artificial organs such as the artificial

pancreas project [39] [40] [41]. But these possibilities are only

possible in practice when we have a constructive model available.

Second, if a constructive model is good enough, and can be

verified well enough, it can be used to test new drugs and

treatments even without data (e.g., outside of a personalized

medicine approach where data assimilation is used). Such a

situation is referred to as in silico experimentation, and it has

already begun in some contexts. For example, recently an

endocrine model of the type 1 diabetes, being used in the context

of developing an artificial pancreas [36], has been approved by the

FDA as a substitute for animal trials for preclinical trials [41] [39]

[40]. In this case, artificial data are created (based on real data, but

not a DA analysis), and then different treatment strategies are

tested. This approach has the potential to greatly accelerate the

rate of advancement of therapy in many different contexts.

0.12 Looking forward
Looking forward, population physiology suffers from the lack of

existent, time-dependent signals; discovering such signals that can

be related to physiological models is where many current opens

problems lie. Said differently, before one can go about refining

models and understanding dynamics mechanistically and over

longer time periods, one needs actual data-based signals, or

stylized facts [42], that can suggest and motivate refinements in the

models via testing of those models before DA or control theory can

be applied. Moreover, we need to approach defining populations

by their dynamics from two directions, stratifying populations by

known characteristics (e.g., presence of type 1 or type 2 diabetes)

and observing signals and constructing signals, and using those

signals to stratify populations.

To drive mechanistic physiologic modeling forward, and to

make it more useful, a practical, EHR data-integrated approach

that allows for either interaction with clinical care or better

reflection of known physiological problems is necessary — for it is

through qualitative understanding of models as dynamical and

control systems [43] that actionable clinical interventions will

come. Relative to glucose/insulin regulation, in some circum-

stances, monitoring and correcting for hyperglyceimia can help

reduce mortality significantly [44] (note, the issue of how tightly to

control glucose in the ICU is complicated and controversial).

Nevertheless, correlation is not causation; the mechanistic reasons

why glucose control in ICU populations helps with outcomes is not

well understood, and thus optimal clinical interventions remain

unavailable (cf., the introduction in Moghissi et al. [45]). The

inevitable conclusion is that glucose/insulin dynamics and time

implications of those dynamics are poorly understood on longer

time scales. Moreover, the current state of glucose/insulin

physiological modeling does not have a mechanism for under-

standing the fundamental physiological problems (i.e., longer term

effects of glucose dynamics) that can suggest productive clinical

interventions (e.g., ICU glucose control and regulation). But,

again, such models cannot be developed without impetus, and that

impetus must come in the form of concrete, data-based signals.

While the data scarcity has made such signals difficult to come by,

EHR data will put the data scarcity problems behind us and

replace these problems with new signal processing problems that

must be overcome. This paper represents a step forward in this

direction by using EHR data to discover a physiologic-based signal

that is connected to physiologic-based models even in the

circumstance where direct observation of the physiological

variable does not yield a signal that can stratify the population.
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