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A B S T R A C T   

Background: The tumor microenvironment (TME) of colorectal cancer (CRC) mainly comprises 
immune cells, stromal cells, tumor cells, as well as the extracellular matrix (ECM), which holds a 
pivotal position. The ECM affects cancer progression, but its regulatory roles and predictive po
tential in CRC are not fully understood. 
Methods: We analyzed transcriptomes from CRC tumors and paired normal tissues to study ECM 
features. Up-regulated ECM components were examined through functional enrichment analysis, 
and single-cell sequencing identified cell types producing collagen, regulators, and secreted 
factors. Transcription factor analysis and cell-cell interaction studies were conducted to identify 
potential regulators of ECM changes. Additionally, a prognostic model was developed using 
TCGA-CRC cohort data, focusing on up-regulated core ECM components. 
Results: Bulk RNA-seq analysis revealed a unique ECM pattern in tumors, with ECM abundance 
and composition significantly related to patient survival. Up-regulated ECM components were 
linked to various cancer-related pathways. Fibroblasts and non-fibroblasts interactions were 
crucial in forming the TME. Key potential regulators identified included ZNF469, PRRX2, 
TWIST1, and AEBP1. A prognostic model based on five ECM genes (THBS3, LAMB3, ESM1, SPRX, 
COL9A3) demonstrated strong associations with immune suppression and tumor angiogenesis. 
Conclusions: The ECM components were involved in various cell-cell interactions and correlated 
with tumor development and poor survival outcomes. The ECM prognostic model components 
could be potential targets for novel therapeutic interventions in colorectal cancer.   

1. Introduction 

The CRC ranks third place among the most common types of cancer and is the second highest leading cause globally [1]. In recent 
years, despite advances in surgical techniques, chemotherapy, targeted therapy, and immunotherapy approaches, the overall 
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prognosis remains poor [2]. Thus, it’s crucial to find innovative biomarkers and therapeutic targets for CRC. As the key element of the 
evolutionary and ecological process in cancer development and cancer therapy, the tumor microenvironment (TME) has attracted 
more and more attention [3,4]. The TME consists of a variety of cell types, such as tumor cells, endothelial cells, fibroblast cells, as well 
as the transformed ECM [5,6]. In addition to providing support for tumor cells, the ECM also acts as a key regulator between cells and 
between cells and the matrix in the TME [7]. Moreover, the ECM undergoes dynamic remodeling during tumorigenesis, resulting in a 
cancer-supporting matrix that promotes tumor growth, invasion, angiogenesis, immune evasion, and drug resistance [7–10]. However, 
the molecular mechanisms underlying ECM remodeling and its impact on the TME in CRC are not fully understood. Moreover, the 
prognostic value of ECM components in CRC has yet to be established. Therefore, this research seeks to investigate the role of ECM in 
CRC tumorigenesis and prognosis by combining bulk sequencing and single-cell sequencing data. 

We first performed an extensive analysis of the landscape of ECM-associated cells in CRC using publicly available datasets. We 
identified differentially expressed ECM components between normal and CRC tissues, and characterized their correlation with clinical 
traits and survival outcomes. We also conducted single-cell RNA sequencing (scRNA-seq) analysis to find the specific cell type that was 
responsible for the ECM changes in tumor tissues, reveal the cellular communication in the TME, and explore the potential molecular 
mechanisms of ECM action at the single-cell level. Furthermore, we constructed an ECM regulatory network based on transcription 
factor binding motifs and gene co-expression patterns. Finally, we constructed a prognostic model using the core ECM genes and 
validated its predictive performance successfully. 

Collectively, this study provides a detailed overview of the ECM’s role in CRC and reveals novel insights into how the ECM affects 
tumorigenesis, tumor progression, and prognosis. Our findings may also suggest new avenues for precision medicine approaches to 
improve the outcome of CRC patients. 

2. Methods 

2.1. Data acquisition and processing 

We obtained the gene expression matrix and clinical characteristics of 618 CRC patients from The Cancer Genome Atlas (TCGA) 
database utilizing the TCGAbiolinks package (version 2.24.3) [11]. The data included 618 tumor samples and 51 paired normal 
samples. We used the raw read count and log2 (x+1) transformed transcripts per million (TPM) format data for further analysis. To 
ensure reliable survival analysis, individuals with an overall survival (OS) period of less than 30 days were excluded from our study. 
We also obtained six additional CRC datasets (GSE17536, GSE17537, GSE33113, GSE38832, and GSE161158) which used the Affy
metrix GPL570 platform from the Gene Expression Omnibus (GEO). These datasets were used to validate our findings from the TCGA 
data. 

We obtained the extracellular matrix (ECM) genes, also known as the Matrisome, from MatrisomeDB 2.0 (https://matrisomedb. 
org/) on March 6th, 2023. This database provides comprehensive information on the ECM components of various tissues and spe
cies [12]. We preprocessed the data and included 941 ECM genes in this study (see Supplementary Table 1 for details). The ECM 
components in MatrisomeDB 2.0 are categorized as core ECM and ECM-associated proteins. The core ECM consists of glycoproteins, 
collagens, and proteoglycans, which are highly insoluble, while the ECM-associated proteins comprise ECM-affiliated proteins, ECM 
regulators, and secreted factors that are known or anticipated to bind with ECM’s structural elements [12]. 

2.2. Differentially expressed genes analysis 

We utilized the DESeq2 package (version 1.36.0) [13] to detect differentially expressed genes (DEGs) in tumor tissues compared 
with normal samples. DESeq2 is a tool for analyzing count-based gene expression data, such as RNA sequencing. Genes exhibiting an 
absolute log2 fold change greater than 1.5 and an adjusted p-value below 0.05 were classified as DEGs. We then extracted the 
differentially expressed ECMs from the DEGs list. 

2.3. Principal component analysis 

We used principal component analysis (PCA) to discern extracellular matrix (ECM) patterns in tumor and normal samples of 
colorectal cancer (CRC) patients. We applied PCA to the log-transformed transcripts per million (TPM) data of 941 ECM genes, 
employing the FactoMineR R package (version 1.34) [14]. PCA is a technique used in RNA-Seq data to reduce the dimensionality and 
reveal hidden subtypes or heterogeneity within the data. 

2.4. The immune landscape of CRC patients 

We used four computational algorithms to evaluate the immune cell infiltration (ICI) within the tumor microenvironment of pa
tients from the TCGA-CRC cohort. The algorithms we used were EPIC [15], CIBERSORT [16], ESTIMATE [17], and quanTIseq [18]. 
These algorithms estimate the proportions of various immune cell subsets by evaluating specific gene expression levels. These analyses 
were conducted using the IOBR R package (version 0.99.9) [19]. We also assessed the association between the gene signature score and 
the ICI level for each sample. We calculated the correlation coefficients employing the ggcorrplot R package (version 0.1.3) and 
visualized them as heatmaps with the ComplexHeatmap R package (version 2.13.2) [20]. 
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2.5. Single sample gene set enrichment analysis 

In addition to conducting immune cell infiltration analysis, we also utilized the single-sample gene set enrichment analysis 
(ssGSEA) method to evaluate the abundance of ECM components in individual samples based on the ECM (Extracellular Matrix) gene 
set. The ssGSEA is a widely recognized approach for scoring individual samples according to specific molecular characteristics or gene 
sets. This algorithm was implemented using the GSVA package (version 1.44.2) [21]. 

2.6. Survival analysis 

To identify ECM genes that were associated with prognosis, we used the progression-free interval (PFI) as the main endpoint, which 
measures the time from diagnosis to disease progression or death (15). Then we applied the univariate Cox regression model, with the 
survival R package (version 3.5–3), to test the correlation between each ECM gene and PFI. We considered genes with a p-value below 
0.05 and a hazard ratio (HR) greater than 1 as unfavorable genes, while genes with an HR less than 1 as favorable genes. 

We also compared the prognosis of patients with varying stromal scores, which were calculated using the ESTIMATE algorithm. 
Individuals were categorized as high and low stromal score groups, with the cutoff points established using the survminer R package 
(version 0.4.9). Subsequently, the clinical outcomes between the two groups were compared with the log-rank test. 

2.7. Gene functional enrichment analysis 

We performed functional enrichment analysis on the dysregulated ECM genes with the clusterProfiler R package (version 4.4.4) 
[22]. This analysis revealed significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways associated with these genes. GO terms provide insights into the biological processes, molecular functions, and cellular 
components of genes, while KEGG pathways show the interactions and relationships of genes in various biological systems. We 
adjusted the p-values by the Benjamini and Hochberg method to control for multiple comparisons, and a p-value lower than 0.05 was 
regarded as statistically significant. 

2.8. Single-cell RNAseq data processing 

We downloaded the raw count data of scRNA-seq from the GEO database, under accession numbers GSE132465 and GSE144735. 
We merged the count matrices from the two datasets using the Seurat R package (version 4.2.0) [23]. We removed the low-quality cells 
that had more than 20 % of mitochondrial genes or less than 200 detected genes. To normalize the count matrix, we applied the 
SCTransform to regress out the percentage of the mitochondrial genes, resulting in corrected counts for all features and Pearson re
siduals of 3000 highly variable features. We reduced the dimensionality of the dataset by conducting a PCA procedure using the 
RunPCA function in Seurat. To eliminate the batch effect, We corrected the PCA embeddings utilizing the RunHarmony (harmony, 
version 0.1.0). We further reduced the dimensionality of the corrected PCA embeddings by applying uniform manifold approximation 
and projection (UMAP). We constructed a shared nearest neighbor (SNN) graph utilizing FindNeighbors in Seurat, which measures the 
similarity between cells by analyzing their gene expression patterns. We found cell clusters with FindClusters in Seurat with a reso
lution of 0.6, which assigns labels to cells based on their SNN graph membership. We annotated the cell clusters with known markers, 
which are genes that are either highly expressed or unique to certain cell types. 

2.9. Single-cell gene signature scoring for ECM genes 

To assess the overall ECM gene expression patterns across various cell types, we calculated the gene signature score of ECM genes in 
our single-cell datasets with the UCell R package (version 2.0.1) [24]. The gene signature score is a measure of the expression level of a 
group of genes that are associated with a certain biological process or cell type. We used UCell because it is a fast and accurate tool for 
scoring gene signatures in single-cell data, which can reveal cellular heterogeneity and diversity in a tissue or organ. 

2.10. Cell-cell communication analysis 

We explored the interactions among cells and the mechanisms of the communicating molecules in our scRNA-seq datasets with the 
CellChat R package (version 1.5.0) [25]. CellChat is a tool designed to identify and predict the possible cell-cell interactions and 
signaling pathways in scRNA-seq data [25]. The communication patterns in CellChat were categorized into three main types: signaling 
through secreted factors, interactions between ECM and receptors, and direct cell-cell contact signaling driven by heterodimers. The 
ligand-receptor pair data for these signaling pathways was sourced from the KEGG database. 

We applied CellChat to 10 cell groups in our data, such as CD4 T cells, CD8 T cells, regulatory T cells (Tregs), plasma cells, B cells, 
macrophages, monocytes, endothelial cells, epithelial cells, and fibroblasts. We used the aggregateNet function in CellChat to calculate 
the aggregated cell-cell communication network, which shows the overall signaling activity between different cell groups. We also 
visualized the signaling from each cell group using CellChat. 
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2.11. Transcription factor enrichment analysis 

We performed an analysis of transcription factors to explore the potential upstream mediators of the ECM changes in CRC patients. 
These proteins attach to specific DNA sequences and modulate gene expression. We used the chEA web interface (https://maayanlab. 
cloud/chea3/) [26] to perform the transcription factor analysis on the differentially expressed core ECM genes. chEA is a tool that 

Fig. 1. Distinct ECM patterns in tumor tissues compared with normal tissues. (A) Volcano plot illustrating DEGs in CRC. up-regulated genes were 
marked by red dots, while down-regulated genes were colored blue. ECM genes were represented with triangles, while the non-ECM genes were 
marked with circles. (B) Distribution of DEGs between tumor and non-tumor. A total of 6352 DEGs were identified and 5.3 % of them were ECM 
genes, also referred to as “Matrisome”. (C) Overlay of ECM categories (inner ring), expression changes (middle ring), and prognosis relevance (outer 
ring). (D) Gene expression heatmap of core ECM genes with log2 (TPM+1)>1.5 and abs (logFC) > 1.5. The top 20 DEGs were labeled along the right 
of the heatmap. (E) Principal component analysis of ECM genes expression in tumor compared with normal tissue. 
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predicts transcription factors based on their enrichment in gene sets derived from various databases. The algorithm calculated the 
integrated mean rank for each transcription factor, which reflects its relative importance and significance in regulating the core ECM 
genes. 

Fig. 2. Prognostic Impact of ECM Components and Associated Pathways in Colorectal Cancer. Kaplan-Meier plots showing (A) progression-free 
interval and (B) overall survival of patients stratified by high (red line) and low (green line) stromal scores. (C) Stromal scores across T stages. 
Kaplan-Meier plots representing (D) progression-free interval and (E) overall survival of patients grouped by high (red line) and low (green line) 
ssGSEA scores. (F) The ssGSEA scores across T stages. Top 20 notably enriched (G) GO terms and (H) KEGG pathways among differentially expressed 
extracellular matrix genes. 
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2.12. Development and validation of the ECM related prognostic model 

We constructed a risk signature based on the core ECM genes that were highly expressed and significantly correlated with the 
progression-free interval (PFI) in colorectal cancer (CRC) patients. The TCGA-CRC cohort was split into a training group and an in
ternal validation group, following a 6:4 distribution. We used the least absolute shrinkage and selection operator (LASSO) Cox 
regression with 5-fold cross-validation to select the most strongly PFI-associated prognostic signature from the core ECM genes with 

Fig. 3. Single-cell RNA sequencing atlas revealing ECM gene expression across cell types in colorectal cancer tumors. (A) Visualization of 51 
colorectal cancer samples with t-distributed stochastic neighbor embedding (t-SNE) plot, which identified 10 identified cell types. (B) Distribution 
and abundance of the 10 cell types. (C) t-SNE plot with samples color-coded based on signature scores (blue to yellow) for up-regulated gene sets 
corresponding to collagens, proteoglycans, glycoproteins, extracellular matrix regulators, extracellular matrix affiliated proteins, and secreted 
factors. (D) Ligand-receptor signaling interactions originating from fibroblasts associated with up-regulated core extracellular matrix genes. (E) 
Chord diagram depicting significant ligand-receptor interactions associated with up-regulated secreted factors among different cell types. 
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glmnet R package (version 4.1–4) [27]. We then used a multivariate Cox regression model to determine the coefficient for each core 
ECM gene in the prognostic model. For each individual, a risk score was calculated by summing the products of gene expression and 
their corresponding coefficients. The sensitivity and specificity of the risk scores in predicting patient survival were measured with 
receiver operating characteristic (ROC) curves and the area under the ROC curves (AUC values). 

3. Results 

3.1. Distinct ECM patterns were identified in CRC samples 

To comprehensively profile the ECM landscape in CRC, we conducted a comparative analysis of gene expression between CRC 
tumor samples and non-tumor samples using bulk transcriptomic data from the TCGA database. We identified 6352 DEGs using the 
DESeq2 algorithm (Fig. 1A). About 5.3 % (335/6352) of DEGs are categorized as ECM genes. ECM genes can be classified as core ECM 
genes and ECM-associated genes. Core ECM genes code insoluble proteins that form structural components of the ECM, while the ECM- 
associated genes code proteins that bind to ECM or regulate the formation of the ECM [12]. DEGs include 93 core ECM genes (see 
Supplementary Table 1) and 242 ECM-associated genes (Fig. 1B and C). From another aspect, more than one-third (335/941, 35.6 %) 
of all the ECM genes are included in the DEGs (see Supplementary Table 2). Additionally, a proportion test revealed that the ratio of 
DEGs in the ECM gene set was significantly higher than in other genes, indicating a potentially important role for ECM genes in 
tumorigenesis (Supplementary Table 3). We further performed survival analysis, which indicated that 46 ECM genes were notably 
up-regulated and correlated with poor prognosis (see Supplementary Table 2). SFTA2, SERPINA4, COMP, IBSP, and ESM1 were the top 
five of these genes, as illustrated in Supplementary Table 2. 

To identify the top dysregulated genes in core ECM genes, we analyzed those with log-transformed transcripts per million (TPM) >
1.5 and ignored those with relatively low expression levels (Fig. 1D). The genes with the top 20 log fold changes were marked beside 
the heatmap. The most upregulated collagens were COL10A1, COL11A1, COL7A1, COL9A3, and COL1A1, while the most upregulated 
ECM glycoproteins were COMP, VWA2, SPP1, CTHRC1, and TGFB1. In addition, we performed PCA analysis with the 941 ECM genes. 
ECM genes could clearly distinguish the tumor samples from normal samples by themselves (Fig. 1E), suggesting distinct ECM patterns 
in the tumor tissue. 

Collectively, these results indicated the distinct expressed ECM genes in CRC tissues and were likely to contribute to the progress of 
colorectal cancer. 

3.2. ECM genes showed prognostic value and participated in the progress of CRC 

To explore the clinical relevance of ECM genes, we applied two algorithms: the ESTIMATE and ssGSEA algorithms. The ESTIMATE 
algorithm generates stromal and immune scores by utilizing predefined gene signatures specific to stromal and immune cells, 
respectively. These scores could be combined to calculate the tumor purity score, which indicates the relative abundance of cancer 
cells compared to non-cancerous immune and stromal cells within the tumor tissue. Additionally, we applied the ssGSEA method to 
evaluate the enrichment score of the core ECM signature, providing further insights into the stromal components. 

Kaplan–Meier plots illustrated that patients with higher stromal scores exhibited significantly shorter OS and PFI compared to those 
with lower stromal scores (Fig. 2A and B). These trends were consistently observed across patients with varying core ECM signature 
scores, as demonstrated in Fig. 2C and D. Additionally, stromal scores significantly increased with the process of advancing T stage (P 
= 0.02) (Fig. 2C). Similarly, core ECM signature scores also showed a significant increase with higher T stage (P = 0.02) (Fig. 2C and 
D). 

To identify the potential role of ECM genes in tumorigenesis and disease progression, we conducted GO and KEGG enrichment 
analysis on the up-regulated ECM genes in tumor tissues. The GO analysis indicated that these differential expressed ECM genes were 
primarily associated with extracellular matrix organization, collagen metabolism, leukocyte chemotaxis, and myeloid leukocyte 
migration (Fig. 2G). These processes are intimately linked to extracellular remodeling and immune cell infiltration, implying their 
potential influence on tumor microenvironment dynamics. Meanwhile, the KEGG analysis, illustrated in Fig. 2H, highlighted that the 
up-regulated ECM genes were notably enriched in pathways like cytokine-cytokine receptor interaction and various cancer-related 
pathways. These findings collectively underscore the pivotal role that ECM genes may play in the initiation and progression of 
tumor immune and tumorigenesis. 

3.3. Signature ECM genes are expressed in different cell types from a single-cell perspective 

To investigate the origins and potential impacts of ECM genes within the TME of CRC, we utilized a publicly available CRC single- 
cell dataset [28]. This dataset comprises 88,441 cells from 51 colorectal samples, encompassing 29 tumor samples, 6 tumor border 
samples, and 16 normal samples. These cells were identified as 10 major groups according to their expression of specific marker genes 
(Fig. 3A and B, and Supplementary Fig. 1). Additionally, we assessed for batch effects and confirmed that no significant batch effects 
were present (Supplementary Fig. 2). 

Upon analyzing the signature scores across these ten cell clusters, we observed a distinct pattern. As depicted in Fig. 3C and 
Supplementary Fig. 3A, fibroblasts are the major cell type secreting collagens and glycoproteins. While several immune cells, endo
thelial cells, and epithelial cells expressed high levels of regulator, affiliated protein and secreted factor genes. This finding suggests the 
critical fiber-secreting role of fibroblasts and the regulatory role of non-fibroblast cells within tumor tissue. Consistently, as shown in 
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Supplementary Figs. 3B and C, we compared the signature score of collagens and glycoproteins in tumor, border, and normal tissues. 
These data indicated that the collagen and glycoprotein signature score increased continuously in border and tumor tissues. These 
findings strongly suggest the involvement of up-regulated collagen, glycoprotein and multi-cell regulation in the complex process of 

Fig. 4. Analysis of transcription factor enrichment of top dysregulated ECM genes. (A) Transcription factor enrichment analysis of top 10 dysre
gulated core ECM genes, and ECM associated genes. Dot size indicates the percentage of genes in that cluster mapping to that transcription factor, 
and color indicates the rank of the chEA score (low number = high enrichment strength). (B) Circos plot showing gene regulatory relationships, with 
TFs represented in the lower part and target genes in the upper part. (C) Boxplot of expression levels of transcription factors regulating the top 10 
up-regulated core ECM genes in tumor (red) and normal (blue) tissues. (D) Pearson correlation coefficient heatmap of up-regulated 10 transcrip
tional factors and 41 corresponding core ECM genes. 
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Fig. 5. Development and validation of prognostic model utilizing core ECM genes. (A) Venn diagram of included genes to construct the prognostic 
signature. (B) The hazard ratio of model genes. (C, E, G, I) Individuals with higher risks have worse prognosis in the TCGA training set, TCGA testing 
set, and GSE33113, GSE16158. (D, F, H, J) The ROC curve of the model for 1, 3, and 5 years. (K) Signature risk scores in four T stages of CRC 
patients, with p-value calculated using the Kruskal-Wallis test. (L, M) Signature risk scores in N and M stages, with the p-value calculated using the 
Wilcoxon rank sum test. 
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tumorigenesis. 

3.4. Potential cell-cell interactions involved with ECM components and CRC progression 

To elucidate the intricate cell-cell communication that was related to up-regulated ECM components during CRC, we use CellChat R 
packages to infer the cell-cell interactions. As represented in Supplementary Figs. 4A and B, fibroblasts were closely engaged in in
teractions with immune cells, endothelial cells, and epithelial cells. Subsequently, we analyzed communication pathways linked to the 
up-regulated collagens and glycoproteins, our findings indicated that COLLAGEN and TBHS pathways potentially played pivotal roles 
in these cell-cell interactions. These pathways are secreted from fibroblasts and are closely associated with up-regulated core ECM 
components (see in Supplementary Table 4). Moreover, our analysis pinpointed the COL1A1 signaling pathway as the most significant 
contributor to communication between fibroblasts and macrophages and monocytes (Fig. 3D). This was further validated by exploring 
the correlation between THBS2 and COL1A1 with markers associated with regulatory T cells and macrophages in the TCGA-CRC 
cohort (Supplementary Fig. 4C), revealing the potential proliferation and activation of immunosuppressive cells by the collagen 
and THBS pathway. 

ECM-related secreted factors are recognized or presumed to bind to structural elements of the ECM [12]. As indicated in Sup
plementary Fig. 3A, secreted factors were notably elevated in non-fibroblasts of CRC tumor tissue, we wonder whether these 
ECM-related secreted factors play a role in CRC progression. Consequently, we analyzed signaling pathways originating from these 
non-fibroblast cells and associated with the up-regulated secreted factors (Fig. 3D, Supplementary Fig. 4D). Intriguingly, most of these 
pathways targeted regulatory T cells and endothelial cells. Particularly noteworthy was the notable association between the expression 
of CXCL8 and higher levels of endothelial markers such as PECAM1, FLI1, and ERG in the TCGA-CRC cohort, suggesting a potential role 
for secreted factors CXCL8 in tumor angiogenesis (Supplementary Fig. 4E). 

Collectively, these data underscore the potential tumor-promoting effect of up-regulated ECM components within the colorectal 
cancer microenvironment. They appear to render this effect through the promotion of immunosuppressive cells, including macro
phages and regulatory T cells, as well as by influencing angiogenesis. 

3.5. Transcriptional regulation network of up-regulated ECM components in tumor tissues 

To explore the molecular mechanisms that drive the changes in ECM patterns, we predicted the transcription factors (TFs) that may 
be associated with the observed ECM gene expression alterations. We conducted a transcription factor analysis using the chEA3 
package. In this study, we identified the top 10 prioritized TFs and related target genes for each module (Fig. 4A and B). Consistently, 
most of the TFs were markedly up-regulated and positively associated with the target ECM gene expression in the TCGA-CRC cohort 
(Fig. 4C and D), which further confirmed the TF relationships with the ECM targets. 

These results indicated that the TFs may modulate the ECM gene expression and contribute to the ECM remodeling in CRC. 

Table 1 
Univariate and multivariate Cox analysis of risk score and clinical features.  

Characteristic Univariate analysis Multivariate analysis 

HR 95 % CI p-value HR 95 % CI p-value 

Riskscore 1.6 1.37, 1.87 <0.001 1.49 1.23, 1.80 <0.001 
Age 1 0.98, 1.01 0.54 1.01 0.99, 1.03 0.2 
Gender       
Female – –  – –  
Male 1.35 0.97, 1.88 0.073 1.12 0.79, 1.60 0.5 
pT       
T1 – –  – –  
T2 0.81 0.17, 3.80 0.79 0.55 0.11, 2.88 0.5 
T3 2.61 0.64, 10.6 0.18 0.8 0.10, 6.10 0.8 
T4 8.12 1.94, 34.0 0.004 1.74 0.22, 13.7 0.6 
pN       
Negative – –  – –  
Positive 2.76 1.98, 3.85 <0.001 0.76 0.29, 1.98 0.6 
pM       
M0 – –  – –  
M1 5.78 4.02, 8.31 <0.001 8.63 1.78, 41.9 0.007 
AJCC_stage       
I – –  – –  
II 2.43 1.09, 5.41 0.029 1.53 0.34, 6.98 0.6 
III 3.81 1.71, 8.46 0.001 2.47 0.49, 12.5 0.3 
IV 14.7 6.66, 32.5 <0.001    
Location       
Colon – –  – –  
Rectum 0.94 0.65, 1.37 0.74 0.96 0.64, 1.45 0.8  
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3.6. Development and evaluation of the prognostic model based on tumor-associated ECM 

To further explore the prognostic availability of the ECM genes in CRC, we developed a prognostic model of CRC patients based on 
up-regulated core ECM components in the TCGA-CRC cohort. We integrated clinical information with gene expression profiles. The 
TCGA-CRC cohort was partitioned as a training cohort and an internal validation cohort with a 6:4 distribution. Venn diagram 
indicated the filtering strategy of 46 up-regulated core ECM genes included in the model construction (Fig. 5A). Then, we performed a 
LASSO regression analysis 5-fold cross-validation to identify the best ECMs for creating a prognostic model (Supplementary Table 5). 
Lastly, we applied a multivariate Cox regression analysis to create a prognostic signature and estimate the corresponding coefficients of 
the ECM genes selected through the LASSO analysis (Fig. 5B). 

The final model comprises THBS3, LAMB3, ESM1, SRPX, and COL9A3, with the risk score calculated as the aggregate of the 
products of gene expression values and their corresponding coefficients. The specific formula was as follows: RiskScore =

∑
βi × Expi, 

where i indicates the log2 (TPM+1) value of the five selected genes, and β corresponds to their Cox regression coefficients. This is the 
final formula for determining risk scores using the 5-gene signature: 

Fig. 6. Correlations between immune cell infiltration levels and signature scores. (A) Heatmap of Pearson correlation coefficients between signature 
scores and estimated immune cell infiltration levels calculated using four algorithms: CIBERSORT, EPIC, QUANTISEQ, and ESTIMATE. Statistical 
significance is marked as follows: * for p < 0.05, ** for p < 0.01 and *** for p < 0.001. (B, C, D, E) Pearson’s correlation of the expression level of 
THBS3 and overall signature risk score with markers for macrophages and Tregs, including CD163 and FOXP3. (F) Ligand-receptor signalings sent 
from fibroblasts that were associated with THBS3. The scale color represents the level of communication probability from minimum (blue) to 
maximum (red). 
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RiskScore = 0.476 * THBS3 + 0.428 * LAMB3 + 0.409 * ESM1 + 0.403 * SRPX +0.137 * COL9A3. 
Then we assessed the performance of this model using the TCGA-CRC training and validation sets, as well as in two external GEO 

datasets, GSE33113 and GSE161158. The Kaplan–Meier plots revealed that patients in the high-risk category had a notably shorter PFI 
(p < 0.001 for TCGA training set and p = 0.002 for TCGA validation set) as well as a shorter DFS in the GEO datasets (p = 0.002 for 
GSE33113 and p < 0.001 for GSE161158) (Fig. 5C–E, G, I). We also plotted the time-dependent ROCs for the model. The model showed 
1-, 3-, and 5-year AUCs of 0.70, 0.67, and 0.67 for the training group, while in the validation group, the ACUs were 0.62, 0.62, and 0.71 
(Fig. 5D and F). The external validation for the model with the two GEO datasets are presented in Fig. 5H and J. Furthermore, the 
model was validated with additional GEO datasets, GSE17536, GSE17537, and GSE38832 (Supplementary Fig. 5), demonstrating 
similar prognostic value. 

In addition, we applied the model to the whole TCGA-CRC cohort and examined the association of risk scores with clinical features. 
We found that the risk score escalated in correlation with the progression of the T, N, and M stages (Fig. 5K, L, M), indicating a strong 
association between the risk score and tumor development. We also carried out both univariate and multivariate Cox regression 
analysis on risk score and clinical characteristics. Our results indicated that the risk score was a significant predictor of survival 
(Table 1). These findings imply that the model based on upregulated core ECM genes could be a reliable prognostic indicator. 

Collectively, these data indicate that the model, which was built from upregulated core ECM genes, could serve as a valuable 
prognostic predictor for CRC. In addition, upregulated ECM gene expression suggested a negative effect on CRC patient survival. 

3.7. The relevance of the prognostic model and tumor immune landscape 

To further investigate the internal link between the prognostic model and TME, a correlation analysis was performed to assess the 
relationship between the risk score of the prognostic model and the immune cell infiltration level using four methods, namely 
CIBERSORT, ESTIMATE, quanTIseq, and EPIC (Fig. 6A). The risk score and the signature gene expression levels were significantly 
associated with the relative abundance of regulatory T cells, M2 macrophages, and endothelial. Compared to single gene expression, 
the risk score showed more significant correlations with immune cells. Moreover, the THBS3 expression level and the risk score were 
significantly related to the Treg and M2 macrophage markers (Fig. 6B, C, D, E). Cell-cell interaction analysis, CellChat, showed that the 
THBS3 produced by fibroblasts might participate in several pathways that communicate with macrophages, Tregs, epithelial, and 
endothelial (Fig. 6F). These findings suggested that the central gene of the signature score might play a tumor-promoting role by 
interacting with immune suppressive cells and tumor angiogenesis. 

4. Discussion 

Colorectal cancer ranks as the third most common cancer and the second leading cause worldwide [1]. However, treatment options 
and efficacy remain limited [2]. As a key component in TME, ECM has drawn more and more attention in recent years [29]. The ECM 
not only provides structural support for cancer cells but also modulates cell-cell or cell-ECM interactions [8]. Cancer cells and 
tumor-associated stromal cells may employ the ECM remodeling process to create a tumor-prompting environment, thus facilitating 
tumorigenesis, tumor invasion, and immune evasion [30]. Therefore, the ECM could be considered a potential target for innovative 
cancer therapy. Unfortunately, we still do not fully understand the role of ECM in colorectal cancer, as well as the molecular mech
anism through which ECM exerts its tumor-prompting effect. In this study, we analyzed the clinical implications of ECM deposition, 
and we explored the potential molecular mechanism of ECM exerting its tumor-prompting effect. In addition, we constructed a 
prognostic model that demonstrated reliable stability and precision across both training and validation sets. 

PCA analysis indicated distinct ECM patterns in tumor tissues compared with normal tissues. In addition, the abundance of ECM 
was expected to be closely associated with patients’ survival, and the prognostic model based on core ECM genes showed relatively 
high predictive values. Consistent with previous studies [31], amount as well as the composition of ECM, which might affect the 
biochemical and mechanical ECM properties, could be fundamental in tumorigenesis and tumor progression of CRC patients. Besides, 
we explored the top dysregulated ECM components, including collagens such as COL1A1, COL7A1, COL9A3, COL10A1, COL11A1, and 
TGFB1. Collagens influence the physical and biochemical properties of the TME, which in turn affects the migration, polarity, and 
signaling of cancer cells [32]. Collagen type I alpha 1 (COL1A1), a primary constituent of type I collagen, is reported that increased 
COL1A1 expression was significantly correlated with serosal invasion, lymph node metastasis, and distant metastasis status in patients 
with CRC [33]. However, the roles of different collagens involved in cancers have not been thoroughly determined. This study provides 
a comprehensive view of collagen composition changes in CRC, which might facilitate new drug development. 

We further explored the molecular mechanism involved with ECM components, integrating both the single-cell and bulk RNA 
sequencing datasets. We found that the ECM components were closely related to various cancer-associated signaling, cell migration, 
and extracellular remodeling processes, which were vital in tumorigenesis and tumor invasion [34]. Moreover, we demonstrated that 
most up-regulated ECM components are derived from fibroblasts, which are also termed cancer-associated fibroblasts (CAF) [35], in 
the single-cell resolution. These data highlight the importance of CAF in the tumorigenesis process of colorectal, as in pancreatic 
cancer, breast cancer, and other solid tumors [36]. Furthermore, we have identified that THBS2 and collagen type I (including COL1A1 
and COL1A2) frequently interact with epithelial cells and immune suppressive cells including regulatory T cells and macrophages. It 
was reported that THBS2 was a biomarker for a unique subset of CAF which plays a crucial role in driving the aggressiveness of 
early-stage lung cancer [37], and THBS2 might be crucial in tumorigenesis in colorectal as well, which needs further investigation. In 
addition to genes expressed by fibroblasts, there are secreted factors, such as CXCL8 and other chemokines, that highly expressed by 
non-fibroblast cells in CRC TME. CXCL8 has been demonstrated to promote immune evasion in gastric cancer [38]. Collagen genes and 
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collagen-related regulatory factors may display a broader spectrum of effects in the progression of CRC. 
Transcriptional factors (TFs) play a critical role as intracellular regulators in numerous vital biological processes. The association of 

TFs and up-regulated core ECM genes were visualized with a network, which was consistent with the correlated expression levels 
between TFs and ECM genes. Above all, SHOX2 was reported to be involved with breast cancer metastasis [39], and PRRX1 functions 
as a key transcription factor driving the differentiation of stromal fibroblasts into myofibroblastic lineage [40]. These results suggest 
another opportunity for cancer treatment by targeting central TFs. 

While this study has yielded clinically actionable insights from ECM profiling of tumors, it has some limitations. First, all the results 
were based on RNA-seq analysis, and further experimental verification is required. Second, our study cohort for constructing the 
prognostic model was collected from different sequencing platforms, the intratumor or intrapatient tumor heterogeneity was inevi
table. Nonetheless, our prognostic model demonstrated that the ECM components were significantly related to poor clinical outcomes 
in patients with CRC. 

5. Conclusion 

In summary, this study analyzed ECM components in tumor and normal samples and identified several ECM components that were 
dysregulated in colorectal cancer. These ECM components were involved in various cell-cell interactions and correlated with tumor 
development and poor survival outcomes. The genes encoding these ECM components could be prognostic markers and potential 
targets for novel therapeutic interventions in colorectal cancer. 
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