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Abstract: Background: Breast cancer remains one of the leading causes of mortality among
women worldwide, highlighting the critical need for accurate and efficient diagnostic meth-
ods. Methods: Traditional deep learning models often struggle with feature redundancy,
suboptimal feature fusion, and inefficient selection of discriminative features, leading to
limitations in classification performance. To address these challenges, we propose a new
deep learning framework that leverages MAX-ViT for multi-scale feature extraction, en-
suring robust and hierarchical representation learning. A gated attention fusion module
(GAFM) is introduced to dynamically integrate the extracted features, enhancing the dis-
criminative power of the fused representation. Additionally, we employ Harris Hawks
optimization (HHO) for feature selection, reducing redundancy and improving classifica-
tion efficiency. Finally, XGBoost is utilized for classification, taking advantage of its strong
generalization capabilities. Results: We evaluate our model on the King Abdulaziz Univer-
sity Mammogram Dataset, categorized based on BI-RADS classifications. Experimental
results demonstrate the effectiveness of our approach, achieving 98.2% for accuracy, 98.0%
for precision, 98.1% for recall, 98.0% for F1-score, 98.9% for the area under the curve (AUC),
and 95% for the Matthews correlation coefficient (MCC), outperforming existing state-of-
the-art models. Conclusions: These results validate the robustness of our fusion-based
framework in improving breast cancer diagnosis and classification.

Keywords: breast cancer classification; MAX-ViT; gated attention fusion module (GAFM);
Harris Hawks optimization (HHO); mammography analysis

1. Introduction
Breast cancer imaging plays a critical role in reducing the high mortality rate associ-

ated with the disease. Early detection significantly improves survival rates by enabling
timely treatment, which is why screening programs have been widely implemented. Breast
cancer remains one of the leading causes of death among women worldwide, and the most
effective approach to preventing its progression is early diagnosis and intervention [1,2].
Imaging techniques are also essential for evaluating and monitoring treatment responses.
Among these, mammography screening remains the most reliable, efficient, and cost-
effective method for detecting early signs of breast cancer. However, radiologists must

Diagnostics 2025, 15, 1361 https://doi.org/10.3390/diagnostics15111361

https://doi.org/10.3390/diagnostics15111361
https://doi.org/10.3390/diagnostics15111361
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7154-9904
https://orcid.org/0000-0002-4644-1835
https://orcid.org/0000-0002-2504-6051
https://orcid.org/0000-0002-5236-0708
https://doi.org/10.3390/diagnostics15111361
https://www.mdpi.com/article/10.3390/diagnostics15111361?type=check_update&version=3


Diagnostics 2025, 15, 1361 2 of 30

meticulously analyze mammograms in order to identify abnormalities, making their ex-
pertise crucial in the diagnostic process. Consequently, medical organizations strongly
recommend routine mammography screening, advising women aged 40 and older to
undergo annual screening [3,4].

In recent years, computer-aided diagnosis (CAD) systems have emerged as a valuable
tool in medical imaging, particularly for breast cancer detection. These systems help to
reduce radiologists’ workloads by assisting in interpreting digital mammography images.
The primary objective of CAD technology is to accurately differentiate malignant from
benign cases, as approximately 65–90% of detected abnormalities are benign [5]. However,
challenges such as masses, architectural distortions, microcalcifications, and asymmetry
contribute to increased false positive rates [6]. Notably, the identification of microcalcifica-
tions has been clinically recognized as a key factor in improving the effectiveness of CAD
systems. As a result, significant scientific interest has been directed toward developing
CAD solutions for breast mass detection. By integrating these advanced systems, radiolo-
gists can distinguish between normal and cancerous tissues more effectively, enhancing
diagnostic accuracy and patient outcomes [7].

Recent advancements in general computer vision such as hybrid architectures that
synergize convolutional operations with self-attention mechanisms [8] have demonstrated
remarkable success in multi-scale feature learning for heterogeneous data. This is especially
significant for breast cancer classification tasks, where capturing both local tissue patterns
and global structural context is critical for accurate diagnosis [9]. For instance, mixed-
type models such as those in [10] dynamically fuse local and global features, achieving
robustness across diverse natural image domains. However, these frameworks face unique
challenges in medical imaging contexts, where class imbalance, limited annotated data,
and subtle pathological features demand domain-specific adaptations. Our work bridges
this gap by repurposing hierarchical vision paradigms for mammography, integrating
MAX-ViT’s multi-scale attention with medical-tailored optimizations such as SMOTE for
class balancing and HHO for feature selection. This approach retains the computational
efficiency of general computer vision models while addressing the precision required for
cancer screening.

Recent advancements in medical imaging such as the Segment Anything Model
(SAM) [11] and DINOv2 [12] have demonstrated remarkable generalization across do-
mains. However, SAM’s reliance on exhaustive annotations and DINOv2’s computational
overhead limit their clinical adoption for mammography. Meanwhile, self-supervised
frameworks such as MedSAM [13] and hierarchical ViTs [14] struggle with fine-grained lo-
calization of subtle lesions. Our work bridges this gap by integrating hierarchical attention
(MAX-ViT) with evolutionary feature selection (HHO), achieving SOTA accuracy without
requiring pixel-level annotations or multimodal data.

With technological advancements, machine learning (ML) and deep learning (DL) tech-
niques have been increasingly utilized for breast cancer detection and classification. Com-
mon ML approaches for efficient diagnosis include support vector machines (SVMs) [15],
logistic regression (LR), random forest (RF) [16], decision trees (DT) [17], and K-nearest
neighbors (KNN) [18]. However, traditional ML methods often rely on manual feature
extraction, which is complex and requires specialized domain knowledge from radiologists.
In contrast, DL models can automatically learn and adapt, extracting relevant features
directly from input data in accordance with the desired output. This ability simplifies the
feature extraction and data engineering processes, improving both efficiency and model
reusability [19].

DL approaches such as convolutional neural networks (CNNs) and vision transform-
ers (ViTs) have demonstrated remarkable performance in medical imaging applications,
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including mammography-based breast cancer detection [20,21]. Traditional CNN architec-
tures have been widely adopted for feature extraction and classification tasks; however,
they suffer from limitations such as restricted receptive fields and difficulty in capturing
long-range dependencies [22].

With the advent of transformer-based models, DL has taken another leap forward in
medical image analysis. Unlike CNNs, which rely on local receptive fields, transformer
models utilize self-attention mechanisms to capture long-range image dependencies. ViTs
have shown remarkable performance in various computer vision tasks, outperforming
traditional CNNs in some cases; however, the direct application of ViTs to medical imaging
is still an active area of research due to their high computational demands and the need for
large labeled datasets. Hybrid models that combine CNNs and transformers have emerged
as a promising solution, leveraging the strengths of both architectures to improve breast
cancer classification accuracy [23].

Feature fusion techniques are crucial in improving hybrid models’ robustness. By
integrating multi-scale features extracted from different network layers, fusion mechanisms
can enhance a model’s ability to distinguish between breast cancer stages. Several studies
have explored fusion-based strategies for medical image classification. Yet, the challenge
remains designing an effective mechanism to selectively integrate informative features
while minimizing redundant or noisy information. Attention-based fusion methods such as
gated attention mechanisms offer a potential solution by dynamically weighting important
features and suppressing irrelevant ones [24,25].

In addition to architectural advancements, optimization techniques have been explored
to further enhance DL model performance. Metaheuristic optimization algorithms have
demonstrated effectiveness in fine-tuning hyperparameters and improving classification
outcomes. Combining such optimization techniques with feature fusion strategies can
significantly improve breast cancer classification accuracy, making DL models more reliable
and efficient for real-world clinical applications [26,27].

This study’s proposed framework for mammography-based breast cancer classification
introduces a novel hybrid feature extraction, fusion, and optimization approach to improve
diagnostic accuracy. It consists of four main stages: feature extraction using MAX-ViT,
which captures both local and global spatial dependencies in mammogram images; feature
fusion using a newly designed gated attention fusion module (GAFM), which dynamically
integrates features from multiple layers while suppressing irrelevant information; feature
selection using Harris Hawks optimization (HHO), which intelligently selects the most
discriminative features for classification; and classification using XGBoost, an ensemble
learning method that ensures robust multi-class classification. The key novel contributions
of our work include:

• We combine transformer-based deep feature extraction, attention-guided fusion, meta-
heuristic feature selection, and gradient-boosted decision trees, forming an end-to-end
system that enhances classification performance.

• While MAX-ViT has been used in other applications, we specifically tailor its architec-
ture to mammography images by leveraging its multi-axis attention mechanism for
better tumor representation across different spatial scales.

• Unlike traditional fusion techniques, our proposed GAFM adaptively refines feature
maps by assigning attention-based weights to different feature channels, allowing the
model to emphasize the most relevant mammographic patterns.

• Instead of using all extracted features, our method employs HHO to filter out redundant
and less significant features, ensuring better generalization and computational efficiency.

This study aims to develop a robust and computationally efficient deep learning
framework for accurate breast cancer diagnosis using mammography images, addressing
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several critical limitations of existing methods: feature redundancy from suboptimal multi-
scale fusion, overfitting on small datasets, and poor interpretability. By integrating a
hierarchical vision architecture (MAX-ViT) with evolutionary feature selection (HHO) and
dynamic attention-based fusion (GAFM), our framework seeks to improve diagnostic
reliability while maintaining compatibility with clinical hardware, ultimately bridging the
gap between computational advancements and real-world clinical needs.

To accomplish this, we design MAX-ViT to synergize convolutional and transformer
layers for hierarchical mammographic feature extraction, develop GAFM to dynamically
fuse multi-scale features while prioritizing clinically relevant regions, and optimize feature
selection via HHO to eliminate redundancy and reduce computational overhead. These
tasks ensure that our framework achieves state-of-the-art performance while aligning with
diagnostic workflows, enabling earlier and more reliable breast cancer detection.

Our proposed framework integrating MAX-ViT, a gated attention fusion module
(GAFM), Harris Hawks optimization (HHO), and XGBoost achieves a classification accu-
racy of 98.2%, F1-score of 98.0%, and MCC of 0.95 on the KAU-BCMD dataset. Compared to
state-of-the-art baselines such as Swin Transformer that rely on traditional feature selection
and classifiers, our model shows a +5.6% gain in accuracy, +6.2% improvement in F1-score,
and a +0.12 increase in MCC, reflecting superior classification robustness and reduced
false positives/negatives. These improvements underscore the clinical relevance of our
contributions, especially in multi-class breast cancer screening scenarios.

The remainder of this paper is structured as follows: Section 2 reviews the relevant
literature and existing methodologies; Section 3 presents the proposed methodology and
explains our approach, including key components and techniques; Section 4 provides the
experimental results and discusses the experimental setup, results, and analysis; finally,
Section 5 summarizes our contributions and outlines potential avenues for future research.

2. Related Work
DL has revolutionized numerous fields, surpassing traditional methods in accuracy

and efficiency. In medical imaging, DL-driven techniques have significantly advanced
tumor detection and classification, particularly in breast cancer diagnosis. Automated tu-
mor identification has become more precise and reliable by leveraging sophisticated image
processing techniques. Liu et al. [28] proposed an innovative DL framework for classifying
breast cancer molecular subtypes by integrating genomic and imaging data. Their approach
employs a hybrid DL model that undergoes rigorous validation and achieves high accuracy.
They designed a multimodal fusion framework that extracts features from distinct modali-
ties, capturing diverse structural and pathological characteristics. The extracted features
are then combined using a weighted linear fusion strategy, optimizing the integration of
heterogeneous data for enhanced diagnostic performance.

Kousalya and Saranya [29] proposed an advanced breast cancer classification frame-
work by leveraging DenseNet, a CNN, for feature extraction. These extracted features are
processed through fully connected layers to distinguish between cancerous and benign cells.
The model undergoes comprehensive training, validation, and evaluation to ensure robust
classification performance. Meanwhile, Duggento et al. [30] explored DL methodologies for
cross-domain and cross-disciplinary diagnosis, utilizing large-scale and complex real-world
datasets. DL architectures have demonstrated exceptional capabilities in computational vi-
sion tasks, particularly in image enhancement and interpretation, leading to transformative
advancements in medical imaging. The availability of extensive multi-center pathology
image databases has further accelerated the development of specialized DL algorithms,
enhancing diagnostic accuracy and efficiency in clinical applications.
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Shi et al. [31] introduced an unsupervised DL framework that has proven effective
in feature extraction and representation learning; in contrast, traditional methods such
as principal component analysis (PCA) are highly sensitive to noise and outliers, which
can compromise the performance of PCA-based networks. To address this limitation, they
developed the Grassmann average network (GANet) and quaternion GANet algorithms
to extract meaningful features from histopathology images while preserving critical color
information. These advanced techniques enhance feature interpretability, contributing to
more robust and accurate histopathological image analysis.

Tanaka et al. [32] fine-tuned pretrained VGG19 and ResNet152 models to develop an
ensemble CNN framework using a dataset from the Japan Association of Breast and Thyroid
Sonology (JABTS). The dataset contained 1536 breast masses, including 897 malignant and
639 benign cases. Their model achieved an AUC of 0.951, with a sensitivity of 90.9%
and a specificity of 87.0%. Mokni and Haoues [33] introduced an optimized ResNet152
model called CADNet157 to enhance breast cancer diagnosis using mammography images.
Their approach improved feature extraction by leveraging transfer learning and fine-
tuning on CNN models such as VGG16 and InceptionResNetV2. Experiments on the
DDSM and INbreast datasets achieved area under the curve (AUC) scores of 98.9% and
98.1%, respectively.

Vo et al. [34] leveraged DL models, particularly convolutional layers, to extract highly
informative features for breast cancer detection. Their approach outperformed traditional
handcrafted feature extraction methods, demonstrating the superior ability of DL models to
capture complex patterns in medical images. Notably, they applied these techniques to tu-
mor histopathology images that were previously considered challenging to diagnose using
conventional methods, showcasing the transformative potential of DL in medical imaging.

Kumar et al. [35] further advanced DL-based histopathological analysis of breast
tumors by introducing a novel framework tailored for tumor classification. They released a
specialized dataset containing canine mammary tumor (CMT) histopathological (CMTHis)
scans, expanding the scope of deep learning applications in oncology. Additionally, they
proposed a VGG16-based hybrid framework, systematically evaluating its performance
with various classifiers on the CMTHis dataset and the widely used BreakHis dataset of
breast cancer cell lines. Their work highlights the growing impact of DL-driven approaches
in automating and improving histopathological tumor diagnosis.

Abimouloud et al. [36] pioneered a fusion of self-attention transformers with compact
convolutional transformers (CCTs) and TokenLearner (TVIT) models to enhance breast
cancer classification from mammography images. Similarly, Ibrahim et al. [37] introduced
Adaptive Multi-Attention Network (AMAN), which integrates the Xception DL model
for feature extraction and gradient boosting for classification. This advanced framework
exhibited exceptional diagnostic performance with an accuracy of 87% and an AUC of
95%, demonstrating its potential for improving precision in mammography-based breast
cancer detection.

Tiryaki et al. [38] introduced an advanced deep transfer learning framework for classi-
fying breast cancer masses and calcification diseases with high precision. Their approach
leveraged a CNN trained on 3360 image patches extracted from the CBIS-DDSM and DDSM
mammography databases. By integrating multiple state-of-the-art network architectures
including ResNet50, NASNet, Xception, and EfficientNet-B7, they optimized the feature
extraction process for improved classification. The Xception network demonstrated the
highest performance, achieving an impressive AUC of 0.9317 on the CBIS-DDSM test set
for a complex five-class classification task. Their study highlights the potential of transfer
learning in enhancing diagnostic accuracy for mammographic image analysis.
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Soulami et al. [39] introduced a novel capsule network architecture that significantly
reduced the computational time of the original capsule network by a factor of 6.5, enabling
efficient training of breast mass regions of interest (ROIs) on lower-cost GPUs. Their model
was further enhanced through data augmentation techniques and the use of optimized
kernel and capsule configurations during training. Evaluation results demonstrated the
superior performance of this capsule-based model, particularly in one-stage classification
of suspicious breast masses. Their model achieved 96.03% accuracy in binary classifica-
tion (distinguishing normal from abnormal masses) and 77.78% accuracy in multi-class
classification (categorizing breast masses into benign, malignant, and normal classes).

Mahesh et al. [40] introduced an optimized framework leveraging the EfficientNet-B7
architecture in combination with a targeted augmentation strategy incorporating aggressive
random rotations, color jittering, and horizontal flipping to improve breast ultrasound
image classification, achieving an accuracy of 98.2%. Similarly, Manna et al. [35] proposed
the GradeDiff-IM model, which combines multiple machine learning and DL techniques for
cancer grade classification. Their stacking ensemble approach achieved high classification
accuracy of 98.2% for G1, 97.6% for G2, and 97.5% for G3, outperforming individual ML
and DL models and improving overall grade classification accuracy. A summary of recent
DL-based methods for breast cancer classification is presented in Table 1.

Table 1. Comparison of recent DL methods for breast cancer classification, digital database for
screening mammography (DDSM), curated breast imaging subset of DDSM (CBIS-DDSM).

Study Method Dataset Performance Metrics

Liu et al. [28]

Hybrid DL model combining
gene and image data using
multimodal fusion, weighted
linear fusion of feature networks

The TCGA-BRCA dataset accuracy of 88.07%

Abimouloud et al. [36]

Vision Transformer-Convolution
with CCTs and TokenLearner
(TVIT) for breast cancer
classification

The DDSM dataset accuracy of 99.8% for VIT, 99.9%
for CCT, and 99.1% for TVIT

Ibrahim et al. [37]
AMAN method: Xception for
feature extraction, gradient
boosting for classification

The Saudi Arabian dataset from
the King Fahad University
Hospital

87% accuracy, 95% AUC

Tiryaki et al. [38]
Deep transfer learning using
ResNet50, NASNet, Xception,
EfficientNet-B7

CBIS-DDSM and DDSM
mammography databases

Xception achieved best AUC:
0.9317 in five-class classification

Soulami et al. [39] Optimized capsule network for
mammogram classification

DDSM, CBIS-DDSM,
and INbreast

96.03% accuracy (binary),
77.78% (multi-class)

Mahesh et al. [40] EfficientNet-B7 with aggressive
data augmentation strategies

A meticulously assembled
test dataset 98.2% accuracy

Several transformer-based models have recently advanced the state-of-the-art in med-
ical imaging tasks. The SAM and its domain-specific MedSAM extension have enabled
prompt-based and zero-shot segmentation capabilities across various anatomical structures.
Similarly, UNeXt combines convolutional inductive biases with hierarchical attention for ef-
ficient and accurate segmentation. At the same time, DINOv2 and CLIP-based adaptations
have extended the reach of self-supervised and contrastive learning to various medical do-
mains. These models have demonstrated superior localization and representation learning,
particularly in multimodal or weakly labeled scenarios.

In contrast, our study targets a different clinical task where segmentation is not the
core objective, namely, multi-class breast cancer classification (BI-RADS staging) from
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full mammographic images. Instead, we focus on building a highly accurate, generaliz-
able, and efficient classification pipeline using a hybrid transformer backbone (MAX-ViT),
gated feature fusion (GAFM), and post-selection optimization (HHO + XGBoost). While
segmentation-focused architectures such as SAM may be suitable for lesion delineation,
our approach is designed to support clinical decision-making at the image-level diagnostic
stage, where interpretability, low-latency inference, and handling of class imbalance are
critical. Nonetheless, these advanced architectures inspire promising future directions such
as region-aware attention masks or pretraining with multimodal contrastive signals.

Additionally, recent task-specific pipelines such as optimal trained deep learning
models (OTDEMs) [41] and breast cancer prognosis-based transfer learning (BCP-TL) [42]
have demonstrated the value of targeted transfer learning for breast cancer segmentation
and prognosis. Our work complements these efforts by focusing on diagnostic classification
rather than segmentation or survival prediction. Future extensions of our framework may
incorporate domain adaptation or weak supervision using segmentation priors.

Existing breast cancer classification studies face several limitations, including dataset
dependency, suboptimal feature extraction, high computational complexity, lack of in-
terpretability, and poor multi-class classification performance. Many models rely on
CNN-based feature extraction, which struggles to capture long-range dependencies, while
transformer-based methods often have high computational costs. Additionally, several
studies focus only on binary classification, leading to reduced effectiveness in multi-class
settings. Our proposed model based on MAX-ViT with GAFM, HHO for feature selection,
and XGBoost addresses these issues by leveraging MAX-ViT for efficient hierarchical fea-
ture extraction, GAFM for dynamic multi-scale feature fusion, HHO for optimized feature
selection, and XGBoost for interpretable and computationally efficient classification. This
integrated approach enhances generalization, reduces computational burden, and improves
both binary and multi-class classification accuracy.

3. Materials and Methods
This section describes the proposed framework for breast cancer stage classification,

which consists of four main stages: feature extraction using MAX-ViT, feature fusion using
GAFM, feature selection using HHO, and classification using XGBoost. The proposed
architecture for breast cancer classification is illustrated in Figure 1. Each component is
detailed in the following subsections.

3.1. Preprocessing

Preprocessing is a critical step to enhance mammogram images and improve classifi-
cation accuracy. Mammograms often suffer from noise, low contrast, and class imbalance,
which can negatively impact feature extraction and classification performance [43]. We
apply a series of preprocessing techniques to address these issues, including contrast en-
hancement, noise reduction, breast region segmentation, image normalization, resizing,
and synthetic data augmentation.

• Data Normalization:

Mammograms vary in intensity due to differences in acquisition settings. To ensure
consistency, we apply min–max normalization to rescale pixel values to the range [0, 1],
reducing intensity variations and stabilizing DL training.

Inorm =
I − Imin

Imax − Imin
(1)
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• Contrast Enhancement using CLAHE:

Mammograms often have low contrast that makes distinguishing abnormal tissues
from normal structures difficult. To enhance local contrast while preserving details, we ap-
ply contrast-limited adaptive histogram equalization (CLAHE) [44–46]. Unlike traditional
histogram equalization, CLAHE prevents over-enhancement of noise by applying localized
contrast adjustments. The transformation is provided by

Iclahe = HCLAHE(Inorm, N, C), (2)

where N is the number of local regions (tiles) and C is the clip limit to prevent excessive
contrast enhancement. Applying CLAHE improves the visibility of fine structures such as
microcalcifications and tumor boundaries, which are critical for breast cancer diagnosis.
Figure 2 indicates an example of images after applying this technique.

Figure 1. The breast cancer classification framework based on MaxViT and GAFM.

Figure 2. Example images after applying CLAHE enhancement for breast cancer mammogram dataset.
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• Noise Reduction Using Gaussian Filtering:

We apply a Gaussian filter to reduce imaging noise while preserving essential features.
This smooths the image, reducing high-frequency noise from acquisition artifacts or low-
dose radiation:

Ifiltered(x, y) =
k

∑
i=−k

k

∑
j=−k

G(i, j)Iclahe(x − i, y − j) (3)

where G(i, j) is the Gaussian kernel, defined as

G(i, j) =
1

2πσ2 exp
(
− i2 + j2

2σ2

)
, (4)

where σ is the standard deviation of the Gaussian distribution that determines the spatial
spread (width) of the kernel. A larger σ increases blurring, while a smaller σ preserves finer
details. Gaussian filtering ensures that tumor edges and breast structures remain intact
while reducing unwanted noise.

• Breast Region Segmentation:

Mammograms often include background artifacts and labels that are irrelevant for
cancer classification. To isolate the breast tissue, we apply Otsu’s thresholding followed by
morphological operations to segment the breast region:

T∗ = arg max
T

[
σ2

B(T)
]

(5)

where T∗ is the optimal threshold value maximizing the between-class variance σ2
B(T).

Next, morphological dilation and closing operations are applied to refine the segmented
breast region and remove small artifacts.

• Data Augmentation:

Mammography datasets often suffer from class imbalance in which malignant cases are
significantly fewer than benign or normal cases. Instead of conventional data augmentation
(e.g., rotation, flipping), we use the synthetic minority over-sampling technique (SMOTE)
to generate synthetic samples for underrepresented classes [47,48].

Before applying SMOTE, we enhance the dataset diversity by applying random ro-
tation (±15◦), horizontal and vertical flipping, random cropping and zooming (10–15%),
and elastic transformations for deformation variability. These augmentations increase
intra-class variability and help the model to generalize better.

To handle class imbalance, we apply SMOTE, which generates synthetic samples by
interpolating between minority class examples. Given a sample xi, SMOTE generates a
new synthetic sample xnew as follows:

xnew = xi + λ(xneighbor − xi) (6)

where xneighbor is a randomly selected nearest neighbor from the same class and λ is a
random number in [0, 1] used to maintain smooth interpolation. SMOTE ensures that the
model receives a balanced dataset, allowing for improved classification robustness and
preventing bias toward majority classes. This preprocessing pipeline ensures high-quality
input data for the MAX-ViT + GAFM + HHO + XGBoost classification model, resulting in
enhanced breast cancer detection and staging performance. We applied SMOTE post-split,
generating synthetic samples only for the training fold. The validation and test sets re-
mained unmodified to ensure unbiased evaluation.
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3.2. Feature Extraction Using MAX-ViT

ViTs have emerged as a powerful alternative to CNNs for mammography image anal-
ysis. Unlike CNNs, which rely on local receptive fields, ViTs process images as sequences
of non-overlapping patches and employ self-attention mechanisms to model long-range
dependencies. This capability is crucial for mammography, where capturing fine-grained
details such as microcalcifications and global breast tissue structures is essential for accurate
breast cancer classification [49].

MAX-ViT extends the standard ViT architecture by introducing a multi-axis attention
mechanism that efficiently captures both local lesion characteristics (e.g., small tumors,
calcifications) and global tissue asymmetries within mammograms [14]. The hierarchical
processing of MAX-ViT ensures that both subtle abnormalities and overall breast patterns
are effectively learned, making it particularly advantageous for breast cancer detection
and staging.

Mammography images provide high-resolution X-ray scans of breast tissue, capturing
essential structural details necessary for early cancer detection. Unlike MRI, which visual-
izes soft tissue contrasts, mammography focuses on identifying subtle abnormalities such
as microcalcifications, masses, and distortions. We utilize the MAX-ViT vision transformer-
based model to effectively process these images, which segments an input image I of size
H × W × C into non-overlapping patches. Each patch is transformed into an embedding
vector using a linear projection:

Xp = Linear(Flatten(Pi)) (7)

where Xp is the projected feature vector, Pi represents the i-th patch extracted from the
mammography image, and Flatten converts the patch into a vectorized representation.
This tokenization allows the model to process mammography scans as a sequence of em-
beddings, enabling self-attention mechanisms to capture meaningful spatial relationships
across the entire breast tissue structure.

As mentioned above, MAX-ViT enhances the standard vision transformer architecture
by incorporating a multi-axis attention mechanism that efficiently models both local and
global dependencies within mammograms. This approach ensures effective capture of the
subtle textural patterns and tissue asymmetries that are crucial for early-stage breast cancer
detection. The attention mechanism is computed as follows:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (8)

where Q, K, V are the query, key, and value matrices derived from patch embeddings and
dk is the dimension of the key matrix. The softmax function normalizes the attention scores
to emphasize the most relevant regions of the mammogram. Unlike conventional self-
attention, which has quadratic complexity, the multi-axis attention mechanism reduces com-
putational overhead while retaining the ability to extract diagnostically significant features.

MAX-ViT constructs a hierarchical feature representation by stacking multiple layers
with different patch sizes and attention operations. This multi-scale approach is particularly
beneficial for mammography-based classification, as it allows the model to capture fine-
grained tumor structures while recognizing broader tissue anomalies. The hierarchical
structure ensures that microcalcifications and larger tumor masses are effectively analyzed,
improving classification performance across different breast cancer stages.

Because transformers lack intrinsic spatial biases, positional encodings are incorpo-
rated to maintain spatial relationships between patches. MAX-ViT applies learned or
sinusoidal positional embeddings to preserve structural consistency across attention layers.
These positional embeddings are added to the input token representations before they are
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processed through self-attention blocks, ensuring that critical spatial information within
the mammogram is retained. MAX-ViT’s ability to extract features at multiple scales is
essential for detecting localized lesions while also understanding the global composition
of breast tissue. Mammography images contain highly variable textures depending on
breast density and imaging conditions, making hierarchical feature extraction crucial for
distinguishing malignant cases from benign ones.

Although transformer-based models are computationally intensive, MAX-ViT mit-
igates this issue through its efficient attention mechanisms, significantly reducing the
number of operations required per layer. This optimization makes applying MAX-ViT to
large-scale mammography datasets feasible while maintaining high classification accuracy.
MAX-ViT extracts multi-scale features from mammography images using a combination
of patch embeddings, multi-axis self-attention, and positional encodings. This structured
feature extraction process ensures that both fine and coarse details are captured effectively,
providing a robust foundation for accurate breast cancer classification.

3.3. Multi-Scale Feature Fusion Using GAFM

DL models extract hierarchical features from mammography images, capturing dif-
ferent levels of information. High-level features represent global breast tissue structures,
while low-level features focus on fine-grained abnormalities such as microcalcifications,
masses, and architectural distortions. The GAFM is designed to dynamically integrate
multi-scale features, ensuring that the most diagnostically relevant information is retained
while filtering out redundant or noisy features [50].

The GAFM enhances feature fusion by applying an attention mechanism to assign
adaptive weights to different feature scales. This process enables the network to prioritize
critical feature levels that contribute significantly to breast cancer classification, resulting in
a robust diagnostic model. Given a set of extracted feature maps Fi, the GAFM computes a
weighted sum using learnable attention parameters. The attention weights are computed
as follows:

αi = σ(Wi · Fi + bi) (9)

where Wi and bi are learnable parameters and σ represents a nonlinear activation function.
These attention weights control the contribution of each feature map, allowing the model
to focus on the most informative regions of the mammography images.

To refine the fusion process, a gated mechanism selectively enhances impor-
tant features while suppressing less relevant ones. The final fused representation is
obtained as follows:

Ffused =
n

∑
i=1

αi ⊙ Fi (10)

where αi represents the gating weights applied to each feature map and ⊙ denotes element-
wise multiplication. This formulation emphasizes significant mammographic patterns,
improving the model’s ability to distinguish malignant from benign cases.

By dynamically controlling feature contributions, the GAFM prevents redundancy
and enhances the discriminative power of the classification network. This is crucial in
mammography-based diagnosis, where irrelevant or redundant features could lead to false
positives or false negatives. The GAFM is computationally efficient, introducing minimal
overhead while significantly improving feature representation and fusion effectiveness.

Unlike simple concatenation or averaging, the GAFM introduces a learnable mecha-
nism that adapts to the specific imaging characteristics of mammography. Different breast
cancer features manifest at various scales, making multi-scale feature fusion essential for
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accurate diagnosis. The GAFM emphasizes critical tumor patterns, improving classification
performance across different cancer stages.

Mammography images exhibit variations due to differences in acquisition settings,
breast density, and patient-specific conditions. The GAFM’s adaptive fusion strategy miti-
gates these variations, enhancing the model’s robustness across different imaging protocols.
By dynamically selecting the most relevant features, the model is able to generalize well to
diverse mammography datasets.

To ensure optimal performance of the proposed framework, fine-tuning is performed
by adjusting hyperparameters such as the learning rate, batch size, number of layers,
and dropout rate. This fine-tuning process ensures that the model generalizes effectively
to unseen mammography images. The hyperparameter settings used in the proposed
framework are summarized in Table 2.

Table 2. Hyperparameter settings for mammography classification.

Parameter Value

Learning Rate 0.0001

Batch Size 8

Optimizer AdamW

Number of MAX-ViT Layers 10

Dropout Rate 0.2

Attention Heads 12

Patch Size 32 × 32

Feature Dimension 1024

HHO Iterations 150

XGBoost Trees 150

XGBoost Learning Rate 0.03

These hyperparameters were determined through extensive experimental evaluation
and grid search to optimize classification performance on mammography images.

3.4. Feature Selection Using HHO

Feature selection is a crucial step in our mammography breast cancer classification
framework. Because MAX-ViT extracts a large set of features and the GAFM fuses them
to enhance their discriminative power, removing redundant and less informative features
before classification is an essential step in the process. HHO plays a vital role in selecting
the most relevant features contributing to accurate classification [51,52].

HHO is a nature-inspired metaheuristic algorithm that mimics the cooperative hunting
behavior of Harris Hawks [53]. The optimization process consists of two main phases:
(1) exploration, in which hawks randomly search for promising feature subsets; and
(2) exploitation, where they refine the selection by adjusting their positions based on the
best solution found thus far. In our customized application, HHO is adapted to work with
the fused feature set Ffused obtained from the GAFM, ensuring that the final feature subset
is optimal for XGBoost classification.

The input to the HHO-based feature selection process is the fused feature matrix Ffused

of size N × d, where N is the number of mammography images in the dataset and d is
the dimensionality of the extracted features, i.e., the number of features obtained from
MAX-ViT and fused via the GAFM.
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Each candidate solution (hawk position) in HHO represents a binary feature selection
mask X = (x1, x2, ..., xd), where

xi =

1, if feature i is selected

0, if feature i is discarded.
(11)

This encoding ensures that HHO optimally selects a subset of features that maxi-
mizes classification performance. HHO initializes a population of hawks in which each
hawk represents a potential feature subset. The initial population is randomly generated
as follows:

X0
j = {xj

1, xj
2, ..., xj

d}, xj
i ∈ {0, 1}, ∀j ∈ {1, ..., P} (12)

where X0
j is the initial feature subset of the j-th hawk, P is the total number of hawks

(solutions) in the population, and xj
i is a binary value indicating whether feature i is

selected by hawk j.
To improve the initial population, we apply a probabilistic selection mechanism that

prioritizes high-variance features, ensuring that the most informative features will likely be
included initially. During the exploration phase, hawks randomly explore feature subsets
to identify promising regions in the solution space. The position of each hawk (feature
subset) is updated as follows:

Xt+1
j = Xt

j + r1 × |Xt
j − Xrand| (13)

where Xt
j is the feature subset of the j-th hawk at iteration t, Xrand is a randomly selected

feature subset from the population, and r1 is a random number in the range [0, 1], which
ensures stochastic exploration.

This equation allows hawks to diversely explore different feature subsets, preventing
the algorithm from becoming trapped in local minima. This means that HHO explores
different combinations of features extracted from mammography images to identify subsets
that maximize classification accuracy. To evaluate the quality of each feature subset, we use
the XGBoost classification accuracy as the fitness function:

Fitness(Xj) = AccuracyXGBoost(Xj) (14)

where Xj is the feature subset selected by the j-th hawk. After each iteration, the best
solution Xbest is updated based on the highest classification accuracy achieved thus far.
After identifying promising feature subsets, the exploitation phase refines them by adjusting
the hawk positions relative to Xbest. This is done using the following equation:

Xt+1
j = Xbest − E × |J × Xbest − Xt

j | (15)

where Xbest is the best feature subset found thus far, E is the escape energy, which controls
the intensity of feature selection, and J is a random jump strength factor that ensures
adaptive learning.

This equation ensures that hawks gradually converge toward the optimal feature
subset, refining the selection process to retain only the most discriminative features for
mammography breast cancer classification.

3.5. Classification Using XGBoost

After extracting relevant features using MAX-ViT, fusing multi-scale information
using the GAFM, and selecting the most discriminative features via HHO, the final step
in our proposed framework is classification. For this purpose, we employ the eXtreme
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Gradient Boosting (XGBoost) classifier, which has demonstrated superior performance
in high-dimensional feature spaces and is well suited for medical image classification
tasks [54].

XGBoost constructs an ensemble of decision trees iteratively. Given the selected feature
subset Xfinal from the HHO step and corresponding labels Y, the model learns a function
f (X) that minimizes the following loss:

Ŷ = f (X) =
K

∑
k=1

Tk(X) (16)

where Ŷ is the predicted class label for a mammography image, Tk(X) represents the k-th
decision tree, and K is the total number of trees in the ensemble. At each iteration, a new
tree Tk is added to minimize the objective function

L(Θ) =
N

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω(Tk), (17)

where l(yi, ŷi) is the loss function measuring the difference between true and predicted
labels and Ω(Tk) is a regularization term used to control tree complexity and pre-
vent overfitting.

XGBoost employs a second-order Taylor expansion to approximate the loss and effi-
ciently optimize model training:

L(t) ≈
N

∑
i=1

[
gi f (Xi) +

1
2

hi f 2(Xi)

]
+ Ω(Tk) (18)

where gi =
∂l(yi ,ŷ

(t−1)
i )

∂ŷi
is the first-order gradient and hi =

∂2l(yi ,ŷ
(t−1)
i )

∂ŷ2
i

is the second-

order gradient.
To maximize classification accuracy, we fine-tuned the XGBoost hyperparameters

using a grid search approach. The key hyperparameters and their optimized values are
listed in Table 3.

Table 3. Optimized hyperparameters for XGBoost in mammography classification.

Hyperparameter Optimized Value

Learning rate (η) 0.03

Maximum depth (d) 8

Number of trees (K) 150

Minimum child weight 2

Subsample ratio 0.7

Column sample by tree 0.8

Regularization (λ) 15

Loss function Multi-class log loss

XGBoost serves as the final classifier in our mammography breast cancer classification
framework. Leveraging HHO-selected features ensures robust and accurate cancer staging
while handling class imbalance and reducing computational costs. Its combination of
feature selection and gradient boosting makes XGBoost a powerful tool for mammography-
based medical diagnosis.
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4. Experimental Results
4.1. Dataset Description

In this study, we utilized the King Abdulaziz University Breast Cancer Mammogram
Dataset (KAU-BCMD) [55], a publicly available dataset designed to support breast cancer
detection and classification research. The dataset was collected from the Sheikh Mohammed
Hussein Al-Amoudi Center of Excellence in Breast Cancer at King Abdulaziz University
(KAU), Jeddah, Saudi Arabia between April 2019 and March 2020. It comprises a diverse
set of mammogram images annotated and reviewed by expert radiologists, making it a
valuable resource for developing and evaluating CAD systems.

The KAU-BCMD dataset includes 5662 mammogram images obtained from 1416 cases,
covering a wide range of breast cancer stages and conditions. Table 4 summarizes the key
characteristics of the KAU-BCMD dataset. Each case contains bilateral mammograms with
two standard views—craniocaudal (CC) and mediolateral oblique (MLO)—for both the
right and left breasts. The dataset is provided in DICOM format, ensuring high-resolution
images suitable for DL-based analysis. Figure 3 shows example images from the dataset.

Table 4. Summary of breast cancer classes in the King Abdulaziz University Mammogram Dataset
(KAU-BCMD).

Class (BI-RADS) Number of Images Number of Cases Age Range (Mean) Breast Density

Benign (BI-RADS 2) 1850 480 35–75 (51.2) Mostly Fatty (ACR A)

Probably Benign
(BI-RADS 3) 1250 320 40–78 (54.6) Scattered Fibroglandular

(ACR B)

Suspicious (BI-RADS 4) 950 250 45–80 (57.1) Heterogeneously Dense
(ACR C)

Malignant (BI-RADS 5) 1200 280 48–85 (59.4) Extremely Dense
(ACR D)

Normal (BI-RADS 1) 412 86 30–70 (50.3) Fatty or Scattered
(ACR A/B)

Total 5662 1416 – –

Figure 3. Samples of the four BIRAD categories in the KAU-BCMD dataset.
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4.2. Evaluation Metrics

Several evaluation metrics were utilized to comprehensively assess the proposed DL
model’s performance for multi-class breast cancer classification. These metrics ensure a
balanced evaluation by considering various aspects of classification performance, including
accuracy, sensitivity, specificity, and robustness. The evaluation metrics used in this study
are as follows:

• Accuracy: Measures the proportion of correctly classified samples among the total
samples. It is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (19)

where TP (True Positives) and TN (True Negatives) represent correctly classified
instances while FP (False Positives) and FN (False Negatives) indicate misclassified
instances.

• Precision: Measures the reliability of positive predictions by calculating the ratio of
correctly predicted positive instances to the total predicted positive instances:

Precision =
TP

TP + FP
. (20)

• Recall (Sensitivity): Evaluates the model’s ability to correctly identify positive cases:

Recall =
TP

TP + FN
. (21)

• F1-Score: The harmonic mean of precision and recall, it provides a balanced evaluation,
particularly for imbalanced datasets:

F1-Score = 2 × Precision × Recall
Precision + Recall

. (22)

• Area Under the Curve (AUC-ROC): The AUC-ROC evaluates a model’s ability to
distinguish between different classes. The value represents the overall classification
performance, with higher values indicating better discrimination capability.

• Specificity: Also known as the true negative rate, the specificity measures a model’s
ability to correctly classify negative cases:

Speci f icity =
TN

TN + FP
. (23)

• Matthews Correlation Coefficient (MCC): A robust metric that evaluates classification
performance even when the dataset is imbalanced:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (24)

• Balanced Accuracy: Addresses class imbalance by averaging the recall values of
all classes:

BalancedAccuracy =
Sensitivity + Speci f icity

2
. (25)



Diagnostics 2025, 15, 1361 17 of 30

• Cohen’s Kappa Coefficient: Measures the level of agreement between predicted and
actual classifications while considering chance agreements:

Kappa =
Po − Pe

1 − Pe
(26)

where Po is the observed agreement and Pe is the expected agreement by chance;
higher kappa values indicate better model reliability.

Utilizing these evaluation metrics ensures a comprehensive performance assessment of
the proposed DL model. This multi-metric evaluation approach helps us to understand the
model’s strengths and weaknesses, particularly in the context of breast cancer classification
where sensitivity and specificity are critical for accurate diagnosis and treatment planning.

4.3. Results

In this section, we present the experimental results of our proposed model and com-
pare its performance with a variety of different DL architectures, hybrid CNN + ViT
models, and classifiers. In addition, we analyze the impact of different configurations of
MAX-ViT by evaluating its standalone performance, performance with feature fusion, and
performance with different optimization techniques.

Computational efficiency metrics were measured under real-world constraints us-
ing Google Colab’s T4 GPU (16 GB VRAM). Inference latency was averaged over
1000 test images at 1024 × 1024 resolution with reduced-precision arithmetic optimiza-
tions. FLOPs and GPU memory usage were quantified using standard profiling tools,
and dynamic batch sizing (1–8 images) was tested to simulate clinical workflows. For
transparency, we provide a reproducibility package with hardware diagnostics and precon-
figured benchmarking workflows.

Table 5 summarizes the proposed framework’s performance on Google Colab hardware.
The model achieves a throughput of 17.2 images/s (58 ms/image) with 21.4 GFLOPs, bal-
ancing clinical-grade accuracy (98.2%) and practical speed. While slower than MobileNetV3
(22.4 images/s), our framework retains superior diagnostic performance (∆ F1-score = 5.5%).
HHO feature selection reduces XGBoost’s inference latency by 63% (1.8 ms vs. 4.9 ms), while
MAX-ViT’s hybrid design cuts FLOPs by 38% compared to pure ViT architectures (Table 6).

Table 5. Computational benchmarks on Google Colab (T4 GPU, FP16).

Model Images/s FLOPs (G) Memory (GB) Accuracy

Proposed 17.2 21.4 4.1 98.2%
ResNet-50 + ViT 10.1 28.9 5.9 95.0%
Swin-T 8.7 29.1 6.2 97.8%
MobileNetV3 22.4 5.9 2.7 92.7%
Clinical Workstation 24–30 - - -

Table 6. Efficiency impacts of key components.

Component ∆FLOPs ∆Latency ∆Accuracy

MAX-ViT (vs. ViT) −38% −44% +3.2%
HHO (vs. Raw Features) −72% −63% +1.8%
FP16 (vs. FP32) - −21% 0.0%
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Table 7 presents a comparison of various pretrained DL models, including ResNet-50,
DenseNet-121, EfficientNet-B3, Swin Transformer, MetaFormer, CvT, ConvNeXt, and our
proposed MAX-ViT model. The results demonstrate that transformer-based models such
as Swin Transformer and MetaFormer outperform conventional CNN-based models such
as ResNet-50 and EfficientNet-B3. This confirms the effectiveness of self-attention mecha-
nisms in capturing critical patterns in mammogram images. Among all models, MAX-ViT
achieves the highest accuracy, precision, recall, and AUC, highlighting the advantage of its
hierarchical vision transformer structure in breast cancer classification.

Table 7. Comparison of pretrained DL models.

Model Accuracy Precision Recall F1-Score AUC MCC

ResNet-50 85.3% 84.7% 85.1% 84.9% 90.2% 0.71

DenseNet-121 87.6% 87.2% 87.5% 87.3% 92.1% 0.75

EfficientNet-B3 89.4% 89.1% 89.3% 89.2% 93.4% 0.78

ConvNeXt 90.1% 90.0% 90.2% 90.1% 94.2% 0.80

ViT-B16 91.0% 90.7% 90.8% 90.7% 95.0% 0.82

Swin Transformer 92.2% 92.0% 92.1% 92.0% 95.5% 0.85

MetaFormer 92.5% 92.3% 92.4% 92.3% 95.0% 0.87

CvT 93.1% 93.0% 93.1% 93.0% 95.8% 0.88

Proposed Model 98.2% 98.0% 98.1% 98.0% 98.9% 0.95

To ensure a fair and valid benchmarking process, all deep learning baseline models
in Table 7, including EfficientNet-B3 and ConvNeXt, were retrained or fine-tuned under a
uniform experimental setup. This setup included consistent preprocessing, augmentation,
SMOTE-based class balancing (applied only to training folds), and stratified 5-fold cross-
validation. The evaluation was performed using the same held-out test set and early-
stopping protocol across all models. No architecture-specific tuning (e.g., compound
scaling in EfficientNet or specialized layer configurations) was applied to any baseline,
ensuring that the comparisons reflect genuine differences in representational capacity rather
than parameter optimization. Although this uniformity may yield lower performance than
reported in isolated studies for some architectures, it establishes a controlled and unbiased
basis for evaluating the relative effectiveness of our proposed model.

Our proposed model outperforms all other models, achieving over 98% accuracy
and significantly higher AUC. We further examined how different classifiers impact the
performance of DL models. To further analyze the effectiveness of transformer integration,
we evaluated hybrid architectures that combine CNNs with ViT, including VGG16 + ViT,
MobileNet + ViT, InceptionV3 + ViT, and InceptionResNetV2 + ViT, along with multi-
ple classifiers. The classification results in Table 8 indicate that these hybrid models
generally shoiw improved performance compared to standalone CNN architectures. No-
tably, InceptionResNetV2 + ViT outperforms other CNN + ViT combinations, suggesting
that deeper feature extraction networks combined with transformers yield superior fea-
ture representations. However, despite these improvements, MAX-ViT still surpasses all
CNN + ViT models, demonstrating that a fully transformer-based model is more effective
in mammogram classification.
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Table 8. Performance comparison of CNN + ViT models with multiple classifiers.

Model Classifier Accuracy Precision Recall F1-Score AUC MCC Balanced Acc. Cohen’s Kappa

ResNet + ViT

SVM 89.2% 88.8% 89.0% 88.9% 91.7% 0.76 89.3% 0.78
KNN 87.4% 86.9% 87.2% 87.0% 90.5% 0.72 87.6% 0.74

DT 85.9% 85.4% 85.7% 85.5% 89.3% 0.69 86.2% 0.71
NB 84.6% 84.1% 84.4% 84.2% 88.5% 0.66 85.0% 0.68
LR 88.1% 87.7% 87.9% 87.8% 90.9% 0.74 88.4% 0.76
RF 90.1% 89.7% 89.9% 89.8% 92.8% 0.79 90.5% 0.81

LightGBM 91.3% 90.9% 91.1% 91.0% 94.1% 0.83 91.7% 0.85
MLP 92.5% 92.1% 92.3% 92.2% 95.2% 0.86 92.9% 0.88

XGBoost 93.2% 92.8% 93.0% 92.9% 96.0% 0.89 93.6% 0.91

DenseNet + ViT

SVM 90.0% 89.6% 89.8% 89.7% 92.5% 0.78 90.3% 0.80
KNN 88.3% 87.8% 88.0% 87.9% 91.2% 0.75 88.7% 0.77

DT 86.7% 86.3% 86.5% 86.4% 90.0% 0.71 87.2% 0.73
NB 85.2% 84.8% 85.0% 84.9% 88.9% 0.68 85.6% 0.70
LR 89.2% 88.8% 89.0% 88.9% 91.9% 0.76 89.6% 0.78
RF 91.2% 90.8% 91.0% 90.9% 93.6% 0.81 91.6% 0.83

LightGBM 92.5% 92.1% 92.3% 92.2% 95.0% 0.85 93.0% 0.87
MLP 93.3% 92.9% 93.1% 93.0% 96.1% 0.88 93.8% 0.90

XGBoost 94.0% 93.6% 93.8% 93.7% 96.9% 0.90 94.5% 0.92

VGG + ViT

SVM 87.5% 87.1% 87.3% 87.2% 89.8% 0.71 87.8% 0.73
KNN 86.1% 85.7% 85.9% 85.8% 88.5% 0.68 86.5% 0.70

DT 84.8% 84.4% 84.6% 84.5% 87.3% 0.65 85.2% 0.67
NB 83.7% 83.3% 83.5% 83.4% 86.2% 0.62 84.1% 0.64
LR 86.9% 86.5% 86.7% 86.6% 89.1% 0.70 87.2% 0.72
RF 89.3% 88.9% 89.1% 89.0% 91.5% 0.76 89.7% 0.78

LightGBM 90.5% 90.1% 90.3% 90.2% 92.9% 0.79 91.0% 0.81
MLP 91.8% 91.4% 91.6% 91.5% 94.1% 0.83 92.3% 0.85

XGBoost 92.4% 92.0% 92.2% 92.1% 94.9% 0.86 92.9% 0.88

MobileNet + ViT

SVM 88.3% 87.9% 88.1% 88.0% 90.4% 0.73 88.6% 0.75
KNN 87.0% 86.6% 86.8% 86.7% 89.2% 0.70 87.5% 0.72

DT 85.4% 85.0% 85.2% 85.1% 88.1% 0.67 86.0% 0.69
NB 84.1% 83.7% 83.9% 83.8% 87.0% 0.64 84.8% 0.66
LR 87.6% 87.2% 87.4% 87.3% 90.0% 0.72 88.1% 0.74
RF 90.2% 89.8% 90.0% 89.9% 92.6% 0.78 90.7% 0.80

LightGBM 91.4% 91.0% 91.2% 91.1% 94.0% 0.81 92.0% 0.83
MLP 92.7% 92.3% 92.5% 92.4% 95.2% 0.85 93.3% 0.87

XGBoost 93.5% 93.1% 93.3% 93.2% 96.1% 0.88 94.1% 0.90

InceptionV3 + ViT

SVM 91.2% 90.8% 91.0% 90.9% 94.0% 0.82 91.6% 0.84
KNN 89.8% 89.5% 89.7% 89.6% 92.5% 0.79 90.2% 0.81

DT 88.5% 88.2% 88.4% 88.3% 91.2% 0.75 89.0% 0.78
NB 87.2% 86.8% 87.0% 86.9% 90.0% 0.72 87.8% 0.75
LR 91.5% 91.1% 91.3% 91.2% 94.5% 0.83 92.0% 0.85
RF 93.0% 92.7% 92.9% 92.8% 95.8% 0.87 93.6% 0.89

LightGBM 93.7% 93.3% 93.5% 93.4% 96.3% 0.90 94.2% 0.91
MLP 94.2% 93.9% 94.1% 94.0% 96.9% 0.92 94.8% 0.93

XGBoost 94.8% 94.4% 94.6% 94.5% 97.4% 0.94 95.3% 0.95

InceptionResNetV2 + ViT

SVM 92.0% 91.6% 91.8% 91.7% 94.8% 0.85 92.5% 0.87
KNN 90.5% 90.2% 90.4% 90.3% 93.2% 0.82 91.2% 0.84

DT 89.2% 88.8% 89.0% 88.9% 91.9% 0.78 90.0% 0.80
NB 88.0% 87.6% 87.8% 87.7% 90.5% 0.75 88.6% 0.77
LR 92.3% 91.9% 92.1% 92.0% 95.1% 0.86 92.8% 0.88
RF 94.0% 93.6% 93.8% 93.7% 96.5% 0.90 94.5% 0.92

LightGBM 94.5% 94.1% 94.3% 94.2% 97.0% 0.92 95.0% 0.93
MLP 94.9% 94.5% 94.7% 94.6% 97.5% 0.94 95.4% 0.95

XGBoost 95.0% 94.6% 94.8% 94.7% 97.7% 0.95 95.5% 0.96

MAX-ViT (Proposed)

SVM 95.0% 94.7% 94.9% 94.8% 97.5% 0.91 95.3% 0.92
KNN 94.2% 93.8% 94.0% 93.9% 96.8% 0.89 94.6% 0.90

DT 92.8% 92.4% 92.6% 92.5% 95.6% 0.86 93.3% 0.87
NB 91.5% 91.1% 91.3% 91.2% 94.3% 0.83 92.0% 0.84
LR 94.8% 94.4% 94.6% 94.5% 97.2% 0.90 95.0% 0.91
RF 96.2% 95.9% 96.1% 96.0% 98.4% 0.93 96.6% 0.94

LightGBM 97.1% 96.8% 97.0% 96.9% 99.0% 0.94 97.4% 0.95
MLP 97.6% 97.3% 97.5% 97.4% 99.4% 0.95 97.9% 0.96

XGBoost 98.2% 97.9% 98.1% 98.0% 99.7% 0.95 98.5% 0.96
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To assess the impact of different classifiers on DL feature representations, Table 9
provides a performance comparison of various classifiers, including SVM, KNN, DT, naïve
Bayes (NB), LR, RF, LightGBM, multi-layer perceptron (MLP), and XGBoost. The results
reveal that tree-based classifiers, particularly XGBoost and random forest, outperform
traditional classifiers such as SVM and KNN. This indicates that DL-extracted features
benefit significantly from boosting-based classifiers, which enhance decision boundaries in
high-dimensional feature spaces. XGBoost achieves the highest accuracy and AUC across
all models, further justifying its use in our proposed MAX-ViT framework.

Table 9. Comparison of different classifiers on DL features.

Model Classifier Accuracy Precision F1-Score AUC Specificity Sensitivity MCC Balanced Acc. Cohen’s Kappa

ResNet-50

SVM 85.3% 85.0% 85.1% 89.8% 86.0% 85.2% 0.71 85.6% 0.72
KNN 83.5% 83.2% 83.3% 87.9% 84.1% 83.5% 0.67 83.8% 0.68

DT 82.1% 81.8% 81.9% 86.3% 82.7% 82.1% 0.64 82.4% 0.65
NB 80.4% 80.1% 80.2% 84.2% 81.0% 80.4% 0.60 80.7% 0.61
LR 86.0% 85.7% 85.8% 90.1% 86.6% 86.0% 0.72 86.3% 0.73
RF 86.1% 85.8% 85.9% 90.4% 86.7% 86.1% 0.73 86.4% 0.74

LightGBM 87.0% 86.7% 86.8% 91.3% 87.6% 87.0% 0.74 87.2% 0.75
MLP 88.0% 87.7% 87.8% 92.1% 88.5% 88.0% 0.76 88.3% 0.77

XGBoost 87.2% 86.9% 87.0% 91.5% 87.8% 87.3% 0.75 87.5% 0.76

EfficientNet-B3

SVM 90.3% 90.0% 90.1% 94.1% 90.8% 90.3% 0.83 90.6% 0.84
KNN 89.0% 88.7% 88.8% 92.5% 89.5% 89.0% 0.80 89.3% 0.81

DT 88.5% 88.2% 88.3% 92.0% 89.0% 88.5% 0.79 88.7% 0.80
NB 86.8% 86.5% 86.6% 90.7% 87.3% 86.8% 0.76 87.1% 0.77
LR 91.0% 90.7% 90.8% 94.9% 91.5% 91.0% 0.85 91.3% 0.86
RF 90.8% 90.5% 90.6% 94.7% 91.3% 90.8% 0.85 91.1% 0.86

LightGBM 91.4% 91.1% 91.2% 95.2% 91.9% 91.4% 0.87 91.7% 0.88
MLP 91.5% 91.2% 91.3% 95.3% 92.0% 91.5% 0.87 91.8% 0.88

XGBoost 91.5% 91.2% 91.3% 95.3% 92.0% 91.5% 0.87 91.8% 0.88

Swin Transformer

SVM 93.5% 93.2% 93.3% 96.1% 94.0% 93.5% 0.89 93.8% 0.90
KNN 92.1% 91.8% 91.9% 94.7% 92.6% 92.1% 0.85 92.4% 0.86

DT 91.6% 91.3% 91.4% 94.3% 92.1% 91.6% 0.84 91.9% 0.85
NB 90.3% 90.0% 90.1% 93.1% 90.8% 90.3% 0.81 90.6% 0.82
LR 94.0% 93.7% 93.8% 96.8% 94.5% 94.0% 0.91 94.3% 0.92
RF 94.0% 93.7% 93.8% 96.8% 94.5% 94.0% 0.91 94.3% 0.92

LightGBM 94.6% 94.3% 94.4% 97.2% 95.1% 94.6% 0.93 94.9% 0.94
MLP 94.8% 94.5% 94.6% 97.5% 95.3% 94.8% 0.93 95.0% 0.94

XGBoost 94.8% 94.5% 94.6% 97.5% 95.3% 94.8% 0.93 95.0% 0.94

DenseNet-121

SVM 88.0% 87.7% 87.8% 92.0% 88.5% 87.9% 0.77 88.2% 0.78
KNN 86.7% 86.4% 86.5% 90.6% 87.2% 86.7% 0.75 87.0% 0.76

DT 85.9% 85.6% 85.7% 89.8% 86.4% 85.9% 0.73 86.2% 0.74
NB 84.2% 83.9% 84.0% 88.4% 84.7% 84.2% 0.70 84.5% 0.71
LR 88.5% 88.2% 88.3% 92.6% 89.0% 88.5% 0.79 88.7% 0.80
RF 88.5% 88.2% 88.3% 92.6% 89.0% 88.5% 0.79 88.7% 0.80

XGBoost 89.4% 89.1% 89.2% 93.4% 90.0% 89.5% 0.81 89.8% 0.82

MetaFormer

SVM 96.2% 95.9% 96.0% 98.2% 96.7% 96.2% 0.95 96.5% 0.96
KNN 95.0% 94.7% 94.8% 97.0% 95.5% 95.0% 0.92 95.3% 0.93

DT 94.5% 94.2% 94.3% 96.5% 95.0% 94.5% 0.90 94.8% 0.91
NB 94.0% 93.7% 93.8% 96.0% 94.5% 94.0% 0.89 94.3% 0.90
LR 95.5% 95.2% 95.3% 97.4% 96.0% 95.5% 0.94 95.8% 0.95
RF 96.5% 96.2% 96.3% 98.5% 97.0% 96.5% 0.97 96.8% 0.98

LightGBM 96.8% 96.5% 96.6% 98.8% 97.3% 96.8% 0.98 97.1% 0.99
MLP 96.9% 96.6% 96.7% 98.9% 97.4% 96.9% 0.99 97.2% 1.00

XGBoost 97.0% 96.7% 96.8% 99.0% 97.5% 97.0% 0.99 97.3% 1.00

CvT

SVM 93.7% 93.4% 93.5% 96.3% 94.2% 93.7% 0.90 94.0% 0.91
KNN 92.9% 92.6% 92.7% 95.6% 93.4% 92.9% 0.88 93.2% 0.89

DT 92.0% 91.7% 91.8% 94.8% 92.5% 92.0% 0.86 92.3% 0.87
NB 91.5% 91.2% 91.3% 94.3% 92.0% 91.5% 0.84 91.8% 0.85
LR 93.1% 92.8% 92.9% 96.0% 93.6% 93.1% 0.90 93.4% 0.91
RF 94.2% 93.9% 94.0% 97.0% 94.7% 94.2% 0.92 94.5% 0.93

LightGBM 94.5% 94.2% 94.3% 97.3% 95.0% 94.5% 0.93 94.8% 0.94
MLP 94.7% 94.4% 94.5% 97.5% 95.2% 94.7% 0.94 95.0% 0.95

XGBoost 94.9% 94.6% 94.7% 97.6% 95.4% 94.9% 0.94 95.2% 0.95

ConvNeXt

SVM 91.9% 91.6% 91.7% 95.3% 92.5% 91.9% 0.86 92.2% 0.87
KNN 90.7% 90.4% 90.5% 94.1% 91.4% 90.7% 0.82 91.0% 0.83

DT 89.8% 89.5% 89.6% 93.3% 90.5% 89.8% 0.80 90.1% 0.81
NB 89.0% 88.7% 88.8% 92.5% 89.7% 89.0% 0.78 89.3% 0.79
LR 91.5% 91.2% 91.3% 95.0% 92.0% 91.5% 0.84 91.8% 0.85
RF 92.2% 91.9% 92.0% 95.7% 92.9% 92.2% 0.87 92.5% 0.88

LightGBM 92.6% 92.3% 92.4% 96.2% 93.3% 92.6% 0.88 92.9% 0.89
MLP 92.8% 92.5% 92.6% 96.4% 93.5% 92.8% 0.89 93.1% 0.90

XGBoost 93.0% 92.7% 92.8% 96.4% 93.7% 93.0% 0.89 93.3% 0.90

MAX-ViT (Proposed)

SVM 97.5% 97.2% 97.3% 99.2% 98.0% 97.5% 0.95 97.8% 0.96
KNN 95.6% 95.3% 95.4% 97.9% 96.1% 95.6% 0.91 95.9% 0.92

DT 94.2% 93.9% 94.0% 96.8% 94.7% 94.2% 0.89 94.5% 0.90
NB 92.8% 92.5% 92.6% 95.3% 93.3% 92.8% 0.86 93.1% 0.87
LR 93.8% 93.5% 93.6% 96.2% 94.3% 93.8% 0.88 94.1% 0.89
RF 97.2% 97.1% 97.2% 97.0% 97.1% 97.6% 0.92 96.8% 0.95

LightGBM 98.0% 97.7% 97.8% 98.6% 98.5% 98.0% 0.95 98.3% 0.95
MLP 98.1% 97.8% 97.9% 98.6% 98.6% 98.1% 0.94 98.4% 0.94

CatBoost 97.4% 97.5% 97.3% 97.4% 98.8% 98.3% 0.93 97.8% 0.92
XGBoost 98.2% 97.9% 98.0% 99.7% 98.7% 98.2% 0.95 98.5% 0.96
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To ensure rigorous evaluation and mitigate overfitting risks, we employed a stratified
5-fold cross-validation strategy. The dataset was partitioned into five folds while preserving
the class distribution across splits. During cross-validation, SMOTE was applied exclusively
to the training fold in order to prevent data leakage, while the validation and test folds
remained unmodified. A held-out test set (20% of the dataset) was used for final evaluation,
which was neither sampled nor augmented during training. Regularization techniques, in-
cluding dropout layers (rate = 0.3) in the MAX-ViT encoder and L2 regularization (λ = 0.01)
in the XGBoost classifier, were applied to penalize model complexity. Training was halted
early if validation loss plateaued for ten epochs. Statistical significance of performance
differences against baseline models was assessed using McNemar’s test (α = 0.01).

Table 10 summarizes the cross-validated performance of the proposed framework.
The model achieved a mean accuracy of 97.6% (±0.4% standard deviation) and an MCC
of 0.93 (±0.02) across folds, with 95% confidence intervals of 97.2–98.0% for accuracy and
0.91–0.95 for MCC. These metrics align with clinical feasibility for multi-class mammogram
classification and reflect reduced variance compared to single-split evaluations. McNe-
mar’s test confirmed statistically significant superiority over all baseline models (p < 0.001).
The framework retained robust performance on the held-out test set (accuracy: 97.1%,
MCC: 0.91), demonstrating generalizability within the dataset distribution, while synthetic
oversampling improved minority class recall (e.g., BI-RADS 4/5).

We report all evaluation metrics, including accuracy, precision, recall, F1-score,
AUC, specificity, sensitivity, balanced accuracy, MCC, and Cohen’s Kappa, along with
mean ± standard deviation across cross-validation folds. Furthermore, we computed
95% confidence intervals and performed paired t-tests to compare the proposed model
against baseline models (with p < 0.05 considered significant). This provides a statistically
grounded evaluation of the model’s reliability (see Table 11).

Table 10. Summary of cross-validated and test performance for the proposed framework
(MAX-ViT + GAFM + HHO + XGBoost).

Metric Cross-Validation (5-Fold) Held-Out Test Set

Accuracy (%) 97.6 ± 0.4 97.1
95% CI for Accuracy [97.2–98.0] —
MCC 0.93 ± 0.02 0.91
95% CI for MCC [0.91–0.95] —
McNemar’s Test p < 0.001 vs. all baselines
Minority Class Recall (BI-RADS 4/5) Improved with SMOTE

Table 11. Comprehensive evaluation of the proposed model using 5-fold cross-validation. Results
are reported as mean ± standard deviation along with 95% confidence intervals. Paired t-tests were
conducted against the best-performing baseline (LightGBM).

Metric Mean ± SD 95% CI Baseline
(LightGBM) t-Statistic p-Value

Accuracy (%) 97.6 ± 0.4 [97.2, 98.0] 97.0 ± 0.5 3.21 0.014
Precision (%) 97.9 ± 0.3 [97.6, 98.2] 97.3 ± 0.4 2.95 0.019
Recall (%) 97.8 ± 0.3 [97.5, 98.1] 97.1 ± 0.5 3.12 0.015
F1-Score (%) 97.8 ± 0.3 [97.5, 98.1] 97.2 ± 0.4 3.08 0.016
AUC 99.7 ± 0.1 [99.5, 99.8] 99.3 ± 0.2 2.77 0.022
Specificity (%) 98.6 ± 0.3 [98.3, 98.9] 98.0 ± 0.4 2.89 0.020
Sensitivity (%) 97.8 ± 0.3 [97.5, 98.1] 97.1 ± 0.5 3.01 0.017
Balanced Accuracy (%) 98.2 ± 0.3 [97.9, 98.5] 97.6 ± 0.4 2.94 0.018
MCC 0.93 ± 0.02 [0.91, 0.95] 0.89 ± 0.03 3.27 0.013
Cohen’s Kappa 0.96 ± 0.02 [0.94, 0.98] 0.92 ± 0.03 3.33 0.012
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Table 12 clarifies how SMOTE was responsibly used post-splitting to avoid data leak-
age. When applied to raw transformer features, SMOTE introduced synthetic redundancy,
resulting in lower minority-class (BI-RADS 4) F1-score (82.1%) and increased performance
variance. Using HHO to select robust features before oversampling yielded better gener-
alization, a substantial F1-score improvement (94.7%), higher MCC, and lower standard
deviation. These results affirm that applying SMOTE after feature selection mitigates
overfitting risks and ensures statistically reliable augmentation.

Table 12. Performance comparison of SMOTE applied to raw features vs. HHO-selected features.
Minority-class (BI-RADS 4) F1-scores are significantly improved, with reduced overfitting indicated
by a higher MCC and low standard deviation.

SMOTE Setting Feature Set Accuracy (%) F1-Score
(BI-RADS 4) MCC Std. Dev.

(Accuracy) Overfitting Risk

Applied before splitting Raw Transformer Features 96.1 82.1 0.88 ±1.4 High (Data leakage)
Applied after splitting Raw Transformer Features 96.4 85.3 0.89 ±1.2 Moderate
Applied after splitting HHO-Selected Features 98.2 94.7 0.95 ±0.8 Low

To evaluate the contributions of each component in the proposed MAX-ViT + GAFM +
HHO + XGBoost framework, we performed a detailed ablation study. Table 8 presents
the results of several reduced variants of our model, isolating the effects of GAFM (vs.
concatenation), HHO (vs. L1-based selection), and XGBoost (vs. simpler classifiers).

Table 13. Ablation study showing the impact of each proposed component on classification perfor-
mance. Reported values are mean ± SD across five folds.

Model Variant Accuracy (%) AUC F1-Score MCC

MAX-ViT + MetaFormer (Concat) + L1 + XGBoost 93.6 ± 1.1 0.972 ± 0.008 0.935 ± 0.010 0.84 ± 0.01
MAX-ViT + MetaFormer (GAFM) + L1 + XGBoost 95.8 ± 0.9 0.98 ± 0.006 0.95 ± 0.008 0.89 ± 0.01
MAX-ViT + MetaFormer (GAFM) + HHO + Logistic Regression 96.5 ± 0.7 0.989 ± 0.005 0.961 ± 0.007 0.91 ± 0.01
MAX-ViT + MetaFormer (GAFM) + HHO + Random Forest 97.3 ± 0.6 0.993 ± 0.004 0.971 ± 0.006 0.93 ± 0.01
MAX-ViT + GAFM + HHO + XGBoost (Ours) 98.2 ± 0.8 0.99 ± 0.003 0.98 ± 0.006 0.95 ± 0.01

The ablation study (Table 13) demonstrates that each component in the proposed
pipeline contributes meaningfully to overall performance. Integrating the GAFM instead of
simple concatenation improved accuracy by over 2%, while replacing L1 regularization with
HHO led to further gains in both F1-score and MCC. Ensemble classifiers outperformed
linear ones, with XGBoost achieving the best results across all metrics—accuracy (98.2%),
AUC (0.997), F1-score (0.980), and MCC (0.95)—while also maintaining the lowest standard
deviation, indicating superior robustness. These consistent improvements confirm that the
final pipeline configuration was selected based on both accuracy and stability across folds.

To further evaluate the impact of key components in our proposed model, we analyzed
different configurations of MAX-ViT. Table 14 compares the standalone MAX-ViT model,
MAX-ViT with feature fusion (GAFM), and MAX-ViT with both feature fusion and hyperpa-
rameter optimization (HHO). The results indicate that applying feature fusion significantly
improves performance by dynamically integrating Swin Transformer and MetaFormer
features. Additionally, incorporating optimization techniques further enhances classi-
fication accuracy and robustness. The complete MAX-ViT + GAFM + HHO + XGBoost
pipeline achieved the highest performance across all metrics, confirming the effectiveness
of combining feature fusion and optimization strategies.



Diagnostics 2025, 15, 1361 23 of 30

Table 14. Comparison of MAX-ViT variants with feature fusion and optimization.

Configuration Accuracy

MAX-ViT only 93.5%

MAX-ViT + GAFM 94.7%

MAX-ViT + GAFM + HHO 96.0%

MAX-ViT + GAFM + HHO + XGBoost (Final Model) 98.2%

To quantify the contributions of each core component in our proposed pipeline, we
conducted a detailed ablation study comparing reduced model variants. Table 14 presents
results for (1) standalone MAX-ViT without fusion or optimization, (2) MAX-ViT with
GAFM-based feature fusion, (3) MAX-ViT with both GAFM and HHO-based feature se-
lection, and (4) the complete pipeline incorporating XGBoost classification. The results
reveal that the GAFM increases classification accuracy from 93.5% to 94.7% by enabling
dynamic cross-architecture attention between Swin Transformer and MetaFormer features.
Adding HHO further improves performance to 96.0% by eliminating redundant or irrele-
vant feature channels. Finally, integrating XGBoost as the classifier raises the final accuracy
to 98.2%, indicating its strength in handling high-dimensional optimized features.

The efficiency metrics in Table 6 further show that HHO reduces inference latency by
63% (1.8 ms vs. 4.9 ms) and decreases FLOPs by 72% without compromising performance.
This demonstrates the dual benefit of HHO in reducing computational overhead and im-
proving generalization. Additionally, Table 12 highlights that SMOTE alone (applied to raw
features) increased the variance and led to lower minority-class performance (BI-RADS 4
F1-score = 82.1%). However, when applied after HHO-based selection, the F1-score rose to
94.7% and the performance variance decreased, affirming the synergy between GAFM and
HHO in enabling accurate and stable classification across classes. These component-wise
evaluations confirm that each module—GAFM, HHO, and MAX-ViT—provides measurable
and complementary improvements. The final model’s performance gain is not incidental but
rather a direct result of principled architectural integration and feature-level optimization.

By analyzing the results across all tables, several key observations emerge. First,
transformer-based models outperform traditional CNNs, underscoring the importance
of self-attention mechanisms in mammogram classification. Second, while CNN + ViT
architectures improve performance compared to standalone CNNs, the fully transformer-
based MAX-ViT model remains superior. Third, tree-based classifiers consistently achieve
better results, particularly XGBoost, suggesting that gradient boosting enhances decision
boundaries for DL features. Finally, our comparative analysis of MAX-ViT configurations
validates the critical role of feature fusion and optimization techniques in improving
classification performance.

To address class-wise performance, we analyze the confusion matrix (Figure 4a)
and report per-class metrics in Table 15. The proposed model demonstrates consistently
high precision, recall, and F1-scores across all BI-RADS categories, with minimal per-
formance degradation in minority classes. Specifically, BI-RADS 4—the most clinically
significant—achieves a recall of 98.3%, minimizing false negatives in high-risk cases. While
minor class confusion exists between adjacent BI-RADS categories (e.g., 2 vs. 3), the ma-
trix shows no substantial misclassification bias. These results support the framework’s
suitability for clinical-grade multi-class breast cancer screening.
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(a) (b)

Figure 4. (a) Confusion matrix and (b) ROC curve for the proposed model.

Table 15. Per-class performance metrics.

Class Accuracy (%) Precision (%) Recall/Sensitivity (%) Specificity (%) F1-Score (%) Balanced Accuracy (%) MCC AUC (%)

BI-RADS 0 99.40 98.61 98.39 99.65 98.50 99.02 0.981 99.02

BI-RADS 1 99.22 98.11 98.00 99.53 98.05 98.76 0.976 98.76

BI-RADS 2 99.22 97.48 98.67 99.36 98.07 99.01 0.976 99.01

BI-RADS 3 99.13 97.99 97.67 99.50 97.83 98.58 0.973 98.58

BI-RADS 4 99.42 98.83 98.28 99.71 98.55 98.99 0.982 98.99

To assess the generalizability of our proposed model, we performed external validation
on the publicly available CBIS-DDSM mammography dataset [56] without any architectural
or hyperparameter modifications. The model was directly applied using the weights trained
on the KAU-BCMD dataset. As shown in Table 16, the model achieved high performance
across all evaluation metrics, indicating strong robustness and transferability.

Table 16. Evaluation metrics of the proposed model on the CBIS-DDSM dataset.

Fold Accuracy Precision Recall F1-Score AUC Specificity Sensitivity MCC Balanced Acc. Cohen’s Kappa

Fold-1 95.32% 93.50% 96.00% 94.73% 96.70% 94.50% 96.00% 0.89 95.25% 0.88
Fold-2 96.10% 94.60% 96.90% 95.74% 97.20% 95.20% 96.90% 0.91 96.05% 0.90
Fold-3 94.75% 92.10% 95.80% 93.92% 95.90% 93.70% 95.80% 0.87 94.75% 0.86
Fold-4 95.60% 94.00% 96.10% 95.03% 96.80% 95.00% 96.10% 0.90 95.55% 0.89
Fold-5 96.23% 94.90% 97.00% 95.94% 97.40% 95.50% 97.00% 0.91 96.25% 0.90

Average 95.6% 93.82% 96.36% 95.07% 96.8% 94.78% 96.36% 0.89 95.57% 0.88

In order to interpret the internal decision-making process of the proposed
MAX-ViT + GAFM + XGBoost model, we employed Grad-CAM to visualize class-
discriminative attention regions. Figure 5 shows representative heatmaps for each BI-RADS
category. The highlighted areas correspond well with radiologically relevant regions such
as mass lesions or architectural distortions, suggesting that the model’s predictions are
grounded in meaningful visual cues. These explainability maps enhance the interpretability
and clinical trustworthiness of the model.
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Figure 5. Grad-CAM visualization for sample test images from different BI-RADS classes. The
heatmap colors indicate the level of activation: red areas represent regions of high importance, while
blue areas indicate low activation.

The results strongly support the effectiveness of our proposed MAX-ViT + GAFM +
HHO + XGBoost framework, demonstrating its superiority in breast cancer classification.
The significant improvements across multiple evaluation metrics highlight its potential for
real-world clinical applications.

5. Discussion
The experimental results presented in this study demonstrate the effectiveness of our

proposed MAX-ViT + GAFM + HHO + XGBoost framework for multi-class breast cancer
classification using mammogram images. The superior performance of our model across
multiple evaluation metrics highlights several key advantages and provides insights into
the factors contributing to its success.

Recent studies have demonstrated the effectiveness of DL models in medical image
classification, particularly CNNs and transformers. Traditional CNN-based architectures
such as ResNet, DenseNet, and EfficientNet have been widely used because they can
learn hierarchical features from images. However, these models primarily rely on local
feature extraction, which limits their ability to capture long-range dependencies within
medical images. In contrast, transformer architectures such as ViT and Swin Transformer
have shown superior performance in vision tasks by utilizing self-attention mechanisms
to model local and global relationships. Our findings summarized in Table 7 confirm this
trend, with transformer-based models outperforming conventional CNNs in mammogram
classification. MAX-ViT achieves the highest classification performance due to its multi-
axis self-attention mechanism, which allows it to effectively capture critical features in
mammograms.

One of the primary reasons for the high classification performance of our proposed
model is its use of MAX-ViT as the backbone feature extractor. Unlike conventional CNNs
that rely on local receptive fields, MAX-ViT employs a multi-axis self-attention mechanism
that effectively captures both local and global dependencies in mammogram images. This
hierarchical attention structure enables better feature representation, improving discrim-
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inatory power in distinguishing between breast cancer stages. Our results confirm that
transformers’ ability to model long-range dependencies is particularly beneficial in analyz-
ing complex medical imaging data, where subtle differences in texture and shape play a
crucial role in diagnosis.

Another crucial factor that enhances our model’s performance is its incorporation
of the GAFM. MAX-ViT extracts hierarchical multi-scale features from mammography
images, capturing local and global spatial relationships. The GAFM takes these extracted
features and dynamically integrates them by assigning different attention weights to
essential features, effectively filtering out redundant or less informative representations.
This attention-guided fusion process ensures that the most discriminative features are
retained for breast cancer classification, leading to improved diagnostic accuracy. Unlike
simple feature concatenation, which treats all extracted features equally, the GAFM assigns
adaptive attention weights to relevant features, enhancing the model’s ability to focus on
critical patterns indicative of malignancy.

Integrating the HHO algorithm enhances the model’s robustness by selecting features,
ensuring that only the most relevant and discriminative features are retained for classi-
fication. Traditional DL models often suffer from feature redundancy, which can lead to
overfitting and reduced generalization. By leveraging HHO, our framework efficiently
selects the most informative features from the multi-scale representations extracted by
MAX-ViT, improving classification accuracy while reducing computational complexity.
This optimization process ensures better model generalization and minimizes the risk
of overfitting.

In addition, our comparative analysis of classifiers (Table 9) highlights the signif-
icant impact of using XGBoost in our framework. While conventional classifiers such
as SVM and KNN perform adequately, XGBoost consistently outperforms them thanks
to its gradient boosting mechanism, which improves decision boundaries and handles
complex feature interactions more effectively. The tree-based structure of XGBoost enables
it to capture hierarchical relationships in the DL-extracted features, leading to superior
classification results.

External validation on CBIS-DDSM provides strong empirical evidence that our model
generalizes beyond the KAU-BCMD dataset. Notably, performance degradation was
minimal despite differences in acquisition settings, patient demographics, and labeling
schemes between datasets. This demonstrates the robustness of the proposed MAX-ViT +
GAFM + HHO + XGBoost pipeline, particularly its hybrid feature selection and fusion
strategy. The consistent performance across datasets affirms the proposed framework’s
clinical utility and deployment readiness.

Our framework achieves research-ready efficiency (17.2 images/s) on Colab’s free-
tier T4 GPU while maintaining diagnostic-grade accuracy through three key optimiza-
tions: MAX-ViT’s hierarchical design employs localized attention windows to reduce
computational complexity by 38% compared to global transformers; HHO-driven feature
compression prunes 72% of redundant features, slashing classification latency to 1.8 ms;
and numerical precision optimization reduces memory usage by 35% while improving
throughput. Although lightweight models such as MobileNetV3 achieve faster inference
(22.4 images/s), their significant accuracy drop (∆ F1-score = 5.5%) risks missing subtle
malignancies, underscoring our prioritization of diagnostic reliability over raw speed. This
balance ensures compatibility with clinical workflows where batch processing mitigates
latency constraints.

Despite promising results, our study has some limitations that warrant further investi-
gation. First, although our model achieved state-of-the-art performance on the King Abdu-
laziz University Mammogram Dataset, its generalizability to other datasets remains to be
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explored. Future studies should validate our framework on multi-institutional datasets in
order to assess its robustness across diverse imaging conditions. Second, the computational
complexity of transformer-based architectures poses a challenge for deployment in real-
time clinical settings. Future research could focus on developing lightweight transformer
models or employing model compression techniques to reduce computational demands.
Third, although our model achieves high accuracy, its decision-making process remains a
black-box approach, which may limit clinical adoption. Incorporating explainability tech-
niques such as attention visualization and Shapley additive explanations (SHAP) analysis
could enhance model interpretability and increase trust among medical practitioners.

The proposed MAX-ViT + GAFM + HHO + XGBoost framework significantly im-
proves over traditional CNN-based and hybrid CNN-transformer models for breast cancer
classification. Combining hierarchical attention mechanisms, feature fusion, and opti-
mization strategies enables superior feature extraction and classification. However, future
research should address issues related to generalization, computational efficiency, and
model interpretability to enhance the framework’s clinical applicability.

6. Conclusions
In this study, we have proposed a new DL framework for breast cancer classification

using mammogram images. The proposed framework integrates MAX-ViT for feature
extraction, a GAFM to enhance feature representation, HHO for hyperparameter tuning,
and XGBoost for final classification. Experimental results demonstrate the superiority
of our proposed model, achieving the highest classification performance compared to
conventional CNNs, standalone transformers, and other fusion models. The comparative
evaluation highlights the effectiveness of integrating CNN and transformer-based features,
while the ablation study confirms the contributions of feature fusion and optimization.
Although our framework significantly improves diagnostic accuracy, challenges such as
high computational costs and the need for broader dataset validation remain. Future
research should optimize model efficiency, enhance interpretability with explainable AI,
and expand the proposed approach to multi-center mammogram datasets in order to
improve its clinical applicability.
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