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Abstract

Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained
optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual
level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training
phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample
extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the
structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing
distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large
scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that
real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-
art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a
major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels
of hierarchy using internal cluster quality metrics on 7 real-life networks.
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Introduction

Large scale complex networks are ubiquitous in the modern era.

Their presence spans a wide range of domains including social

networks, trust networks, biological networks, collaboration

networks, financial networks etc. A complex network can be

represented as a graph G~(V ,E) where V represent the vertices

or nodes and E represents the edges or interaction between these

nodes in this network. Many real-life complex networks are scale-

free [1], follow the power law [2] and exhibit community like

structure. By community like structure one means that nodes

within one community are densely connected to each other and

sparsely connected to nodes outside that community. The large

scale network consists of several such communities. This problem

of community detection in graphs has received wide attention

from several perspectives [3–14].

The community structure exhibited by the real world complex

networks often have an inherent hierarchical organization. This

suggests that there should be multiple levels of hierarchy in these

real-life networks with good quality clusters at each level. In other

words, there exist meaningful communities at refined as well as

coarser levels of granularity in this multilevel hierarchical system of

the real-life networks.

A state-of-the-art hierarchical community detection technique

for large scale networks is the Louvain method [15]. It uses a

popular quality function namely modularity (Q) [3,5,6,16] for

locating modular structures in the network in a hierarchical

fashion. Modularity measures the difference between a given

partition of a network and the expectation of the same partition for

a random network. By optimizing modularity, they obtain the

modular structures in the network. However, it suffers from a

drawback namely the resolution limit problem [17–19]. The issue

of resolution limit arises because the optimization of modularity

beyond a certain resolution is unable to identify modules even as

distinct as cliques which are completely disconnected from the rest

of the network. This is because modularity fixes a global resolution

to identify modules which works for some networks but not others.

Recently the authors of [20] show that methods trying to use

variants of modularity to overcome the resolution limit problem,

still suffer from the resolution limit. They propose an alternative

algorithm namely OSLOM [21] to avoid the issue of resolution.

However, in our experiments we observe that OSLOM works well

for benchmark synthetic networks [4] but in case of real-life
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networks it is unable to detect quality coarse clusters. We also

evaluate another state-of-the-art hierarchical community detection

technique called the Infomap method [7]. The Infomap method

uses an information theoretic approach to hierarchical community

detection. It uses the probability flow of random walks as a

substitute for information flow in real-life networks. It then

fragments the network into modules by compressing a description

of the probability flow.

Spectral clustering methods [10–14] belong to the family of

unsupervised learning algorithms where clustering information is

obtained by the eigen-decomposition of the Laplacian matrix

derived from the affinity matrix (S) for the given data. A drawback

of these methods is the construction of the large affinity matrix for

the entire data which limits the feasibility of the approach to small

sized data. To overcome this problem, a kernel spectral clustering

(KSC) formulation based on weighted kernel principal component

analysis (kPCA) in a primal-dual framework was proposed in [22].

The weighted kPCA problem is formulated in the primal in the

context of least squares support vector machines [23] which results

in eigen-decomposition of a centered Laplacian matrix in the dual.

As a result, a clustering model is obtained in the dual. This model

is build on a subset of the original data and has a powerful out-of-

sample extension property. This property allows cluster affiliation

for unseen data.

The KSC method was applied for community detection in

graphs by [24]. However, their subset and model selection

approach was computationally expensive and memory inefficient.

Recently, the KSC method was extended for big data networks in

[25]. The method works by building a model on a representative

subgraph of the large scale network. This subgraph is obtained by

the fast and unique representative subset (FURS) selection

technique as proposed in [26]. During the model selection stage,

the model parameters are estimated along with determining the

number of clusters k in the network. A self-tuned KSC model for

big data networks was proposed in [27]. The major advantage of

the KSC method is that it creates a model which has a powerful

out-of-sample extensions property. Using this property, we can

infer community affiliation for unseen nodes of the whole network.

In [28], the authors used multiple scales of the kernel parameter

s to determine the hierarchies in the data using KSC approach.

However, in this approach the clustering model is trained for

different values of (k,s) and evaluated for the entire dataset using

the out-of-sample extension property. Then, a map is created to

match the clusters at two levels of hierarchy. As stated by the

authors in [28], during a merge there might be some data points of

the merging clusters that go into a non-merging cluster which is

then forced to join the merging cluster of the majority. In this

paper, we overcome this problem and generate a natural

hierarchical organization of the large scale network in an

agglomerative fashion.

The purpose of hierarchical community detection is to

automatically locate multiple levels of granularity in the network

with meaningful clusters at each level. The KSC method has been

used effectively to obtain flat partitioning in real-world networks

[24,25,27]. In this paper, we exploit the structure of the eigen-

projections derived from the KSC model. The projections of the

validation set nodes in the eigenspace is used to create an iterative

set of affinity matrices resulting in a set of increasing distance

thresholds ( ). Since the validation set of nodes is a representative

subset of the large scale network [26], we use these distance

thresholds (ti[ ) on the projections of the entire network obtained

as a result of the out-of-sample extension property of the KSC

model. These distance thresholds, when applied in an iterative

manner, provide a multilevel hierarchical organization for the

entire network in a bottom-up fashion. We show that our proposed

approach is able to discover good quality coarse as well as refined

clusters for real-life networks.

There are some methods that optimize weighted graph cut

objectives [29–31] to provide multilevel clustering for the large

scale network. However, these methods suffer from the problem of

determining the right value of k which is user defined. In real-

world networks the value of k is not known beforehand. So in our

experiments, we evaluate the proposed multilevel hierarchical

kernel spectral clustering (MH-KSC) algorithm against the

Louvain, Infomap and OSLOM methods. These methods

automatically determine the number of clusters (k) at each level

of hierarchy. Figure 1 provides an overview of steps involved in the

MH-KSC algorithm and Figure 2 depicts the result of our

proposed MH-KSC approach on email network (Enron).

In all our experiments we consider unweighted and undirected

networks. All the experiments were performed on a machine with

12 Gb RAM, 2.4 GHz Intel Xeon processor. The maximum size

of the kernel matrix that is allowed to be stored in the memory of

our PC is 10,000610,000. Thus, the maximum cardinality of our

training and validation sets can be 10,000. We use 15% of the total

nodes as size of training and validation set (if less than 10,000)

based on experimental findings in [32]. We make use of the

procedure provided in [25] to divide the data into chunks in order

to extend our proposed approach to large scale networks. There

are several steps in the proposed methodology which can be

implemented on a distributed environment. We describe this in

detail later.

Kernel Spectral Clustering (KSC) Method

We first summarize the notations used in the paper.

Notations

1. A graph is mathematically represented as G~(V ,E) where

V represents the set of nodes and E(V|V represents the

set of edges in the network. Physically, the nodes represent

the entities in the network and the edges represent the

relationship between these entities.

Figure 1. Steps undertaken by the MH-KSC algorithm.
doi:10.1371/journal.pone.0099966.g001
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2. The cardinality of the set V is denoted as N.

3. The training, validation and test set of nodes is given by Vtr,

Vvalid and Vtest respectively.

4. The cardinality of the training, validation and test set is

given Ntr, Nvalid , Ntest.

5. The adjacency list corresponding to each vertex vi[V is

given by xi~A( : ,i).

6. maxk is the maximum number of eigenvectors that we want

to evaluate.

7. K(:,:) represents the positive definite kernel function.

8. The matrix S represents the affinity or similarity matrix.

9. P represents the latent variable matrix containing the eigen-

projections.

10. h represents the hth level of hierarchy and maxh stands for the

coarsest level of hierarchy.

Figure 2. Result of proposed MH-KSC approach on the Enron network.
doi:10.1371/journal.pone.0099966.g002
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11. Set C comprises multilevel hierarchical clustering informa-

tion.

12. Coarsest level of hierarchy corresponds to fine grained

clusters and finer levels of hierarchy correspond to coarse

clusters.

KSC methodology
Given a graph G, we use the fast and unique representative

subset (FURS) selection [26] technique to obtain training and

validation set of nodes Vtr and Vvalid . FURS [26] is a deterministic

subgraph selection technique where nodes with high degree

centrality are greedily selected from most or all the communities in

the network. Nodes with high degree centrality are usually located

Figure 3. Algorithm 1: MH-KSC Algorithm.
doi:10.1371/journal.pone.0099966.g003

Figure 4. Algorithm 2: GreedyMaxOrder.
doi:10.1371/journal.pone.0099966.g004
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at the center, away from the periphery of the network and can

better capture the inherent community structure. Since our goal is

a locate multilevel hierarchical clustering in the large scale

network, it is essential that the training and validation set are

representative of the underlying community structure of the

network. A detailed description of the FURS approach and its

comparison with other state-of-the-art subset selection techniques

is provided in [26].

We use 15% of the total nodes as size of training and validation

set (if less than 10,000 otherwise 10,000 nodes) based on

experimental findings in [32]. Firstly, we apply FURS to obtain

the training set of nodes Vtr. Once these nodes are selected in the

training set we remove these nodes from the network but maintain

the topology (degree distribution) of the network. We then apply

FURS again to obtain the validation set of nodes Vvalid . Thus,

both these sets Vtr and Vvalid are selected such that they retain the

inherent community structure of the large scale network. We then

use the entire large scale network as the test set Vtest.

For Vtr training nodes the dataset is given by D~fxigNtr

i~1,

xi[RN . The adjacency list xi can efficiently be stored into memory

as real-world networks are highly sparse and have limited

connections for each node vi.

Given D and maxk, the primal formulation of the weighted

kernel PCA [22] is given by:

min
w lð Þ ,e lð Þ ,bl

1

2

Xmaxk{1

l~1

w lð Þ w lð Þ{
1

2Ntr

Xmaxk{1

l~1

cle
lð Þ D{1

V e lð Þ

such that e lð Þ~Ww lð Þzbl1Ntr ,l~1, . . . ,maxk{1,

ð1Þ

where e lð Þ~ e
lð Þ

1 , . . . ,e
lð Þ

Ntr

h i>
are the projections onto the eigen-

space, l~1, . . . ,maxk-1 indicates the number of score variables

required to encode the maxk clusters. However, it was shown in

[27] that we can discover more than maxk communities using these

maxk-1 score variables. D{1
V [RNtr|Ntr is the inverse of the degree

matrix associated to the kernel matrix V with

Vij~K xi,xj

� �
~w xið Þ>w xj

� �
. W is the Ntr|dh feature matrix

such that W~ w x1ð Þ>; . . . ; w xNtr

� �>h i
and cl[Rz is the regular-

ization constant. We note that Ntr%N i.e. the number of nodes in

the training set is much less than the total number of nodes in the

large scale network.

The kernel matrix V is constructed by calculating the similarity

between the adjacency list of each pair of nodes in the training set.

Each element of V, defined as Vij~
x>i xj

xik k xjk k is calculated by

estimating the cosine similarity between the adjacency lists xi and

xj using notions of set intersection and union. This corresponds to

using a normalized linear kernel function K x,zð Þ~ x>z
xk k zk k [23].

The primal clustering model is then represented by:

e
lð Þ

i ~w lð Þ>w xið Þzbl ,i~1, . . . ,Ntr, ð2Þ

where w : RN?Rdh is the feature map i.e. a mapping to high-

dimensional feature space dh and bl are the bias terms,

l~1, . . . ,maxk-1. For large scale networks we can utilize the

explicit expression of the underlying feature map as shown in [25]

and set dh~N. The dual problem corresponding to this primal

formulation is given by:

D{1
V MDVa(l)~lla

(l), ð3Þ

where MD is the centering matrix which is defined as

MD~INtr{
1Ntr

1>
Ntr

D{1
V

� �

1>
Ntr

D{1
V

1Ntr

0
@

1
A. The a(l) are the dual variables

and the kernel function K : RN|RN?R plays the role of

similarity function. The dual predictive model is:

Figure 5. Algorithm 3: GreedyFirstOrder.
doi:10.1371/journal.pone.0099966.g005
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êe(l)(x)~
XNtr

i~1

a
(l)
i K(x,xi)zbl , ð4Þ

which provides clustering inference for the adjacency list x

corresponding to the validation/test node v.

Multilevel Hierarchical KSC

We use the predictive KSC model in the dual to get the latent

variable matrix for the validation set Vvalid represented as

Pvalid~ e1, . . . ,eNvalid
½ �> and the test set Vtest (entire network)

denoted by Ptest. In [27] the authors create an affinity matrix Svalid

using the latent variable matrix Pvalid which is a Nvalid|(maxk-1)

matrix, as:

Svalid i,jð Þ~CosDist ei,ej

� �
~1{cos ei,ej

� �
~1{

e>i ej

eik k ej

�� �� , ð5Þ

where CosDist(:,:) function calculates the cosine distance between

2 vectors and takes values between [0,2]. Nodes which belong to

the same community will have CosDist(ei,ej) closer to 0, i, j in the

same cluster. It was shown in [27] that a rotation of the Svalid

matrix has a block diagonal structure. This block diagonal

structure was used to identify the ideal number of clusters k in

the network using the concept of entropy and balanced clusters.

Determining the Distance Thresholds
We propose an iterative bottom-up approach on the validation

set to determine the set of distance thresholds T . In our approach,

we refer to the affinity matrix at the ground level of hierarchy as

S
(0)
valid . The S

(0)
valid matrix is obtained by calculating the CosDist(:,:)

between each element of the latent variable matrix Pvalid as

mentioned earlier. After several empirical evaluations, we observe

that distance threshold at level 0 of hierarchy can be set to values

between [0.1,0.2]. In our experiments we set t(0)~0:15. This

allows to make the approach tractable to large scale networks

which will be explained later.

Figure 6. Result of MH-KSC algorithm on benchmark Net1 network.
doi:10.1371/journal.pone.0099966.g006
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We then use a greedy approach to select the validation node

with maximum number of similar nodes in the latent space i.e we

select the projection ei which has a maximum number of

projections ej satisfying S
(0)
valid (i,j)vt(0). We put the indices of

these nodes in C
(0)
1 representing the 1st cluster at level 0 of

hierarchy. We then remove these nodes and corresponding entries

from S
(0)
valid to obtain a reduced matrix. This process is repeated

iteratively until S
(0)
valid becomes empty. Thus, we obtain the set

C(0)~fC(0)
1 , . . . ,C(0)

q g where q is the total number of clusters at

ground level of hierarchy. The set C(0) has communities along

with the indices of the nodes in these communities.

To obtain the clusters at the next level of hierarchy we treat the

communities at the previous levels as nodes. We then calculate the

average cosine distance between these nodes using the information

present in them. At each level h of hierarchy we create a new

affinity matrix as:

S
(h)
valid (i,j)~

P
m[C

(h{1)
i

P
l[C

(h{1)
j

S
(h{1)
valid (m,l)

DC(h{1)
i D|DC(h{1)

j D
, ð6Þ

where D:D represents the cardinality of the set. In order to determine

the threshold at level h of hierarchy, we estimate the minimum

Figure 7. Result of MH-KSC algorithm on benchmark Net2 network.
doi:10.1371/journal.pone.0099966.g007
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cosine distance between each individual cluster and the other

clusters (not considering itself). Then, we select the mean of these

values as the new threshold for that level to combine clusters. This

makes the approach different from the classical single-link

clustering where we combine two clusters which are closest to

each other at a given level of hierarchy and the average-link

agglomerative clustering where we combine based on the average

distance between all the clusters.

The reason for using mean of these minimum cosine distance

values as the new threshold is that if we consider the minimum of

all the distance values then there is a risk of only combining 2

clusters at that level. However, it is desirable to combine multiple

sets of different clusters. Thus, the new threshold t(h) at level h is set

as:

t(h)~mean(minj(S
(h)
valid (i,j))),i=j: ð7Þ

We use this process iteratively till we reach the coarsest cluster

where we have 1 cluster containing all the nodes. As a

consequence we obtain the hierarchical clustering

~fC(0), . . . ,C(maxh)g automatically. As we move from one level

of hierarchy to another the value of distance threshold increases

since we are merging large clusters at coarser levels of hierarchy.

We finally end up with a set of increasing distance thresholds

~ft(0), . . . ,t(maxh)g.

Requirements for Feasibility to Large Scale Networks
The whole large scale network is used as test set. The latent

variable matrix for the test set is obtained by out-of-sample

extensions of the predictive KSC model and defined as

Ptest~ e1, . . . ,eNtest
½ �>. Since we use the entire network as test

set, therefore, Ntest~N . The Ptest matrix is a N|(maxk-1)

dimensional matrix. So, we can store this Ptest matrix in memory

but cannot create an affinity matrix of size N|N due to memory

constraints.

To make the approach feasible to large scale network we put a

condition that the maximum size of a cluster at ground level

cannot exceed 10,000 (depending on the available computer

memory) and the maximum number of clusters allowed at the

ground level is 10,000. This limits the size of the affinity matrix at

that level of hierarchy to be less than 10,000610,000. It also effects

the choice of the initial value of the distance threshold t(0). If we set

t(0) too high (&0:2) then majority of the nodes at the ground level

in the test case will fall in one community resulting in one giant

connected component. If we set the value of t(0) too low (%0:1)

then we will end up with lot of singleton clusters at the ground

level in the test case. In our experiments, we observed that the

interval any value between [0.1,0.2] is good choice for the initial

threshold value at level 0 of hierarchy. To be consistent we chose

t(0)~0:15 for all the networks.

Multilevel Hierarchical KSC for Test Nodes
The validation set is a representative subset of the whole

network as shown in [26]. Thus, the threshold set can be used to

obtain a hierarchical clustering for the entire network. To make

the proposed approach self-tuned, we use t(i)
wt(0)

w0:15, i.0,

during the test phase.

In order to prevent creating the affinity matrix for the large

network we follow a greedy procedure. We select the projection of

the first test node and calculate its similarity with the projections of

all the test nodes. We then locate the indices (j) of those projections

s.t. CosDist(e1,ej)vt(1). If the total number of such indices is less

than 10,000 then we put them in cluster C
(1)
1 otherwise we select

the first 10,000 indices and place them in cluster C
(1)
1 . This is due

to the constraint that the size of a cluster (C
(1)
1 ) at ground level

cannot exceed 10,000. We then remove entries corresponding to

those projections in Ptest to obtain a reduced matrix. We perform

this procedure iteratively until Ptest is empty to obtain

C(1)~fC(1)
1 , . . . ,C(1)

r g where r is the total number of clusters at

hierarchical level 1. After the 1st level, we use the same procedure

that was for validation set i.e. creating an affinity matrix at each

level using the cluster information along with the threshold set to

obtain the hierarchical structure in an agglomerative fashion. The

cluster memberships are propagated iteratively from the 1st level to

the highest level of hierarchy. The multilevel hierarchical kernel

spectral clustering (MH-KSC) method is described in Figure 3

which refers to Algorithm 2 and Algorithm 3 in Figure 4 and

Figure 5 respectively.

Time Complexity Analysis
The two steps in our proposed approach which require the

maximum computation time are the out-of-sample extensions for

the test set and the creation of the affinity matrix from the ground

level clusters.

Since we use the entire network as test set the time required for

out-of-sample extension is O(Ntr|N). Our greedy procedure to

obtain the clustering information at the ground level C(1) requires

O(r|N) computations where r is the number of clusters at 1st level

of hierarchy for the test set. This is because for each cluster

C
(1)
1 [C(1) we remove all the indices belonging in that cluster from

the matrix Ptest. As a result the size of Ptest decreases till it reduces

to zero resulting in O(r|N) computations. The affinity matrix

Table 3. Nodes (V), Edges (E) and Clustering Coefficients (CCF) for each network.

Network Nodes Edges CCF

Facebook (Fb) 4,039 88,234 0.6055

PGPnet (PGP) 10,876 39,994 0.008

Cond-mat (Cond) 23,133 186,936 0.6334

Enron (Enr) 36,692 367,662 0.497

Epinions (Epn) 75,879 508,837 0.1378

Imdb-Actor (Imdb) 383,640 1,342,595 0.453

Youtube (Utube) 1,134,890 2,987,624 0.081

doi:10.1371/journal.pone.0099966.t003
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S
(1)
test is a symmetric matrix so we only need to compute the upper

or the lower triangular matrix. The number of cluster-cluster

similarities that we have to calculate is
r|(r{1)

2
where the size of

each cluster at ground level can be maximum 10,000.

However, as shown in [25], we can perform the out-of-sample

extensions in parallel on n computers and rows of the affinity

matrix can also be calculated in parallel thereby reducing the

complexity by
1

n
.

Figure 8. Tree based visualization of the multilevel hierarchical organization prevalent in 2 real-life networks.
doi:10.1371/journal.pone.0099966.g008
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Experimental Results

We conducted experiments on 2 synthetic datasets obtained

from the toolkit in [4] and 7 real-world networks obtained from

Stanford SNAP library (http://snap.stanford.edu/data/index.

html).

Synthetic Network Experiments
The synthetic networks are referred as Net1 and Net2 and have

2,000 and 50,000 nodes respectively. The ground truth for these 2

benchmark networks are known at 2 levels of hierarchy. These 2

levels of hierarchy for these benchmark networks are obtained by

using 2 different mixing parameters i.e. m1 and m2 for macro and

micro communities. We fixed m1~0:1 and m2~0:2 in our

experiments. Since the ground truth is known beforehand, we

evaluate the communities obtained by our proposed MH-KSC

approach using an external quality metric like Adjusted Rand

Index (ARI) and Variation of Information (VI) [33]. We also

evaluate the cluster information using internal cluster quality

metrics like Modualrity (Q) [3] and Cut-Conductance (CC) [29].

We compare MH-KSC with Louvain, Infomap and OSLOM.

Figures 6 and 7 showcase the result of MH-KSC algorithm on

the Net1 and Net2 respectively. From Figures 6a and 7a, we

observe the affinity matrices generated corresponding to the test

set for Net1 and Net2 respectively. From Figures 6b and 7b, we

can observe the communities prevalent in the original network and

the communities estimated by MH-KSC method for Net1 and

Net2 respectively. In Net1 there are 9 macro communities and 37

Figure 9. MH-KSC algorithm for the PGP network. Communities with same colour belong to one cluster.
doi:10.1371/journal.pone.0099966.g009
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micro communities while in Net2 there are 13 macro communities

and 141 micro communities as depicted by Figures 6b and 7b.

Table 1 illustrates the first 10 levels of hierarchy for Net1 and

Net2 and evaluates the clusters obtained at each level of hierarchy

w.r.t. quality metrics ARI, VI, Q and CC. Higher values of ARI

(close to 1) and lower values of VI (close to 0) represent good

quality clusters. Both these external quality metrics are normalized

as shown in [33]. Higher values of modularity (Q close to 1) and

lower values of cut-conductance (CC close to 0) indicate better

clustering information.

Table 2 provides the result of Louvain, Infomap and OSLOM

methods and compares it with the best levels of hierarchy for Net1

and Net2. The Louvain, Infomap and OSLOM methods require

multiple runs as in each iteration they result in a different

partition. We perform 10 runs and report the mean results in

Table 2. From Table 2, it can be observed that the best results for

Louvain and Infomap methods generally occur at finer levels of

hierarchy w.r.t. to ARI, VI and Q metric. Thus, these two methods

work well to identify macro communities. The Louvain method

works the better than MH-KSC for Net2 at macro and micro

Figure 10. Results of Louvain, Infomap and OSLOM methods for PGP network.
doi:10.1371/journal.pone.0099966.g010
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level. However, it cannot obtain similar quality micro communities

when compared with MH-KSC method for Net1 as inferred from

Table 2. The Infomap method performs the worst among all the

methods w.r.t. detection of communities at coarser levels of

granularity. OSLOM performs well w.r.t. to locating both macro

communities for Net1 and micro communities for Net2 as

observed from Table 2. It performs better than any method

w.r.t. locating micro communities for Net2 w.r.t. ARI and VI

metric. However, it performs worst while trying to identify the

macro communities for the same benchmark network. The MH-

KSC performs best on Net1 while it performs better w.r.t. locating

macro communities for Net2.

Real-Life Network Experiments
We experimented on 7 real-life networks from the Stanford

SNAP datasets. These networks are anonymous networks and are

converted to undirected and unweighted networks before

performing experiments on them. Table 3 provides information

about topological characteristics of these real-life networks. The Fb

and Epn networks are social networks, PGP is a trust based

network, Cond is a collaboration network between researchers,

Enr is an email network, Imdb is an actor-actor collaboration

network and Utube is a web graph depicting friendship between

the users of Youtube.

In case of real-life networks the true hierarchical structure is not

known beforehand. Hence, it is important to show whether they

exhibit hierarchical organization which can be tested by identi-

fying good quality clusters w.r.t. internal quality metrics like Q and

CC at multiple levels of hierarchy.

We showcase the results for 10 levels of hierarchy in a bottom-

up fashion for the MH-KSC method in Table 4. The finest level of

hierarchy has all nodes in one community and is not very

insightful. Clusters at finer levels of granularity comprises giant

connected components. So, it is more meaningful to give more

emphasis to fine grained clusters at coarser levels of hierarchy. To

Figure 11. Representing the 2 best levels of hierarchy for Epn network w.r.t. modularity criterion.
doi:10.1371/journal.pone.0099966.g011
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show that real-life networks exhibit hierarchy we evaluate our

proposed MH-KSC approach in Table 4.

We compare MH-KSC algorithm with Louvain [15], Infomap

[7] and OSLOM [21]. We perform 10 runs for each of these

methods as they generate a separate partition each time when they

are executed. The mean results of Louvain method is reported in

Table 5. Table 6 showcases the results for Infomap and OSLOM

method.

From Table 5 it is evident that the Louvain method works best

w.r.t. the modularity (Q) criterion. This aligns with methodology as

it is trying to optimize for Q. However, the Louvain method always

performs worse than MH-KSC algorithm w.r.t. cut-conductance

CC as observed from Tables 4 and 5. Another issue with the

Louvain method is that except for the Fb and PGP networks it is

not able to detect (,1000 clusters) high quality clusters at finer

levels of granularity. This is attributed to the resolution limit

problem suffered by Louvain method. From Table 6 we observe

that the Infomap method produces only 2 levels of hierarchy. In

most of the cases, the clusters at one level of hierarchy perform

good w.r.t. only 1 quality metric except the PGP and Cond

networks. The difference between the quality of the clusters at the

2 levels of hierarchy is quite drastic. This reflects that the Infomap

method is not very consistent w.r.t. various quality metrics.

We compare the performance of MH-KSC method with

OSLOM in detail. From Tables 4 and 5 we observe that the

MH-KSC technique outperforms OSLOM w.r.t. both quality

metrics for Fb, Enr, Imdb and Utube networks while OSLOM

does the same only for Cond network. In case of PGP, Cond and

Epn networks OSLOM results in better Q than MH-KSC.

However, MH-KSC approach has better CC value for PGP and

Epn networks. For large scale networks like Enr, Imdb and Utube,

OSLOM cannot identify good quality coarser clusters i.e. number

of clusters detected are always .1000.

Visualization and Illustrations
We provide a tree based visualization of the multilevel

hierarchical organization for Fb and Enr networks in Figure 8.

The hierarchical structure is depicted as tree for Fb and Enr

network in Figures 8a and 8b respectively.

We plot the results corresponding to fine, intermediate and

coarse levels of hierarchy for PGP network using the software

provided in [21]. The software requires all the nodes in the

Figure 12. Representing the 2 best levels of hierarchy for Epn network w.r.t. cut-conductance criterion.
doi:10.1371/journal.pone.0099966.g012
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network along with 2 levels of hierarchy. In Figure 9 we plot the

results for PGP net corresponding to MH-KSC algorithm using 2

fine, 4 intermediate and 2 coarse levels of the hierarchical

organization. For Louvain method we use 3rd and 4th level of

hierarchy as inputs for the fine clusters, 4th and 5th level of

hierarchy as inputs for intermediate clusters and 5th and 6th level

of hierarchy as inputs for plotting coarsest clusters. The Infomap

method only generates 2 level of hierarchy which correspond to a

plot for coarse clusters. Similarly, for OSLOM we plot coarse and

fine clusters. The results for Louvain, Infomap and OSLOM

methods are depicted in Figure 10.

Figures 9 and 10 show that MH-KSC algorithm allows to depict

richer structures than the other methods. It has more flexibility

and allows the visualization at coarser, intermediate and finer

levels of granularity. From Figures 10a, 10b, 10c and Table 5, we

observe that the Louvain method can only detect quality clusters at

coarser levels of granularity and cannot detect less than 1,00

communities. While the Infomap method can only locate giant

connected components for the PGP network as observed from

Figure 10d and Table 6. The OSLOM method also seems to work

reasonably well as observed from Figures 10e and 10f. However, it

detects fewer levels of hierarchy and thus has less flexibility in

terms of selection for the level of hierarchy than the proposed MH-

KSC approach.

We provide a visualization of the 2 best layers of hierarchy for

Epn network based on the Q and the CC criterion for MH-KSC,

Louvain, Infomap and OSLOM methods respectively in

Figures 11 and 12. The result for Infomap method in both the

figures is the same as it only generates 2 levels of hierarchy.

Conclusions

We proposed a new multilevel hierarchical kernel spectral

clustering (MH-KSC) algorithm. The approach relies on the KSC

primal-dual formulation and exploits the structure of the

projections in the eigenspace. The projections of the validation

set provided a set (T) of increasing distance thresholds. These

distance thresholds were used along with affinity matrix obtained

from the projections in an iterative procedure to obtain a

multilevel hierarchical organization in a bottom-up fashion. We

highlighted some of the necessary conditions for the feasibility of

the approach to large scale networks. We showed that many real-

life networks exhibit hierarchical structure. Our proposed

approach was able to identify good quality clusters for both

coarse as well as fine levels of granularity. We compared and

evaluated our MH-KSC approach against several state-of-the-art

large scale hierarchical community detection techniques.
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