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Abstract

Fundamental to biological decision-making is the ability to generate bimodal expression pat-
terns where 2 alternate expression states simultaneously exist. Here, we use a combination
of single-cell analysis and mathematical modeling to examine the sources of bimodality in
the transcriptional program controlling HIV’s fate decision between active replication and
viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates
the intrinsic toggling of HIV’s promoter, the long terminal repeat (LTR), to generate bimodal
ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands
the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and
full-length virus. Strikingly, computational analysis indicates that the Tat circuit’'s noncooper-
ative “nonlatching” feedback architecture is optimized to slow the promoter’s toggling and
generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson
model, theory and experiment show that nonlatching positive feedback substantially damp-
ens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing
mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized
to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s
decision between active replication and latency provides a viral fitness advantage. More
broadly, the results suggest that positive-feedback circuits may have evolved not only for
signal amplification but also for robustly generating bimodality by decoupling expression
fluctuations (noise) from mean expression levels.
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Author summary

A central and recurring feature of cell-fate regulating circuits is their ability to generate
bimodal expression—2 alternate expression states that exist simultaneously—with each
state corresponding to a different cell fate. To understand the mechanisms enabling bimo-
dality in a natural decision-making circuit, we examined HIV’s fate-selection circuit, the
Tat circuit. This bimodal circuit is sufficient and necessary to generate a bet-hedging deci-
sion between 2 alternate HIV fates: active viral replication and long-lived dormancy (pro-
viral latency). The dormant state, which is resistant to most antiviral drugs, is the primary
clinical barrier to curing an HIV infection. While the canonical role of positive feedback is
to amplify a signal, surprisingly, we find that the HIV transactivator of transcription (Tat)
positive-feedback architecture is instead optimized to expand the regime of HIV expres-
sion bimodality. From an evolutionary perspective, the results suggest that positive-feed-
back circuits may have evolved to robustly generate bimodality in certain contexts, and,
given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate
bimodal expression patterns appears to support the hypothesis that HIV’s active-versus-
latent decision confers viral fitness.

Introduction

Bimodality is a recurring feature in many biological fate-selection programs [1], such as the
HIV active-versus-latent decision (Fig 1A). Bimodal expression is a population-wide distribu-
tion pattern comprises 2 gene-expression modes, each corresponding to a specific fate path
[2]. The mechanisms that can generate bimodal phenotypes have long been studied, and the
architecture of underlying gene-regulatory circuits appears to be a key driver of bimodality [3-
11]. Classically, bimodality has been associated with deterministic bistability in gene circuits
[12-15]. Deterministic bistability requires ultrasensitive input-output relations and can result
from nonlinear positive feedback (i.e., Hill coefficient > 1) on a constitutively expressed pro-
moter [16,17]. However, many promoters are nonconstitutive and instead toggle between
inactive and active expression states, generating episodic bursts of mRNA production (for
review, see [18]). The finding that promoters undergo episodic bursts of expression led to a
proposal that this toggling alone could generate bimodality without deterministic bistability.
Unlike constitutive expression, toggling increases the degrees of freedom in a system [19], and
if promoter toggling occurs relatively slowly, the resulting expression bursts can potentially
produce bimodality independent of ultrasensitivity [19,20]. However, the promoter toggling
kinetics required to generate bimodality appeared to be in a small portion of the experimen-
tally observed regime [18,21-23], with experimental measures of intrinsic promoter toggling
exhibiting kinetics that are typically too fast to produce bimodal expression patterns (Fig 1B)
—specifically, the measured promoter toggling rates were greater than the per capita protein
and mRNA decay rates [18,24,25]. Nevertheless, synthetic positive-feedback circuits that slo-
wed toggling could induce bimodality [26]. Thus, while computational models showed that
promoter ON-OFF toggling was sufficient for bimodal expression [20] and synthetic tran-
scriptional circuits lacking bistable feedback could generate bimodal expression [26], it
remained unclear how natural biological circuits exploit this mechanism to generate bimodal-
ity without bistability. Here, we determine if promoter toggling can intrinsically generate
bimodal distributions in a natural biological system (i.e., HIV) and the potential physiological
relevance.
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We focus on HIV as a physiological model system for expression bimodality driving a deci-
sion-making process (Fig 1A). Upon infection of a CD4" T lymphocyte, HIV undergoes a fate-
selection decision, either actively replicating to produce viral progeny and destroy the host cell
or entering a long-lived quiescent state called proviral latency [28,29]. A viral gene-regulatory
circuit is both necessary and sufficient to drive HIV fate selection [10]. At the core of this deci-
sion-making circuit is a virally encoded transcriptional positive-feedback loop comprises a sin-
gle HIV protein—the transactivator of transcription (Tat)—that amplifies expression from the
virus’s only promoter, the long terminal repeat (LTR) promoter. Molecularly, this positive-
feedback loop functions because the LTR is a relatively weak promoter, in the absence of Tat,
with RNA polymerase IT (RNAPII) elongation stalling approximately 69 nucleotides after initi-
ation [30]. Tat transactivates the LTR by binding to a short, approximately 69-nucleotide-long
RNA-hairpin loop called the Tat-activation RNA (TAR) loop and recruiting the positive tran-
scriptional elongation factor b (pTEFb)—principally composed of CDK9 and cyclinT1—
which hyperphosphorylates the carboxy-terminal domain (CTD) of RNAPII, thereby relieving
the RNAPII elongation block [30,31]. Thus, Tat acts much like a bacterial antiterminator
enhancing transcriptional elongation rather than initiation.

Importantly, minimal LTR-Tat positive-feedback circuits are sufficient to generate bimodal
expression patterns [32], and in the full-length viral context, this circuit is both necessary and
sufficient to drive HIV’s active-versus-latent decision [27]. There are 2 specific quantitative
features of the Tat-LTR feedback circuit that are curious, given its obligate role in viral fate
selection. First, unlike many other positive-feedback circuits that control phenotypic decisions
[33,34], the Tat positive-feedback loop is noncooperative (Hill coefficient ~ 1) and not deter-
ministically bistable [35]. Second, the LTR promoter itself displays large episodic expression
bursts toggling between ON and OFF states at virtually all integration sites throughout the
human genome [24,36,37], raising the possibility that the LTR itself may be sufficient to gener-
ate bimodal expression patterns independent of Tat feedback.

In this study, we construct minimal circuits to examine if the LTR itself is capable of gener-
ating bimodal expression patterns in the absence of Tat feedback and then computationally
examine the precise role of Tat positive feedback in bimodality. The results indicate that the
LTR is intrinsically capable of generating bimodal ON-OFF expression even in the absence of
feedback but that Tat feedback shifts and expands the regime of LTR bimodality into physio-
logical ranges by slowing LTR toggling. In fact, the architecture and parameters of the Tat cir-
cuit appear optimized to robustly generate bimodal expression. Given the rapid evolution of
HIV, the presence of a circuitry that appears optimized to slow promoter toggling and generate
bimodality may be consistent with the hypothesis that the circuit has been selectively main-
tained and that bimodal expression (between active replication and latency) provides a viral
fitness advantage [38].

Results

LTR promoter toggling is capable of generating bimodality in the
absence of feedback

Previous studies demonstrated that Tat positive feedback can generate bimodal expression pat-
terns from the HIV LTR [32]. However, given the large, episodic bursts of expression that
characterize LTR activity [24,36,37], we set out to test if the LTR was capable of bimodal
expression, even in the absence of feedback (i.e., whether feedback was dispensable for bimo-
dality, possibly having an orthogonal function in HIV). Analysis of experimental and com-
putational literature reports indicated that the regime for generating bimodality through
promoter toggling alone fell outside the experimentally observed values of LTR toggling but
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Fig 1. The mechanistic problem underlying bimodal fate-selection programs: Promoter toggling is theoretically sufficient to generate
bimodality, but only in a narrow parameter regime. (A) A simplified fate-selection decision in HIV. Upon infection of a CD4* T lymphocyte, HIV either
enters into an active state of replication (red), producing viral progeny and destroying the host cell, or enters into a quiescent state of silenced gene
expression termed proviral latency (blue). This fate bifurcation between active replication and latency is not controlled by the cell state [27] but rather by
an HIV gene-regulatory program that can generate bimodal gene-expression distributions from its long terminal repeat (LTR) promoter. (B) The LTR is
accurately described by a 2-state promoter model (e.g., random telegraph models) in which the LTR switches between an inactive (represented by Prom-
Gene that is crossed out, top) to an active (represented by Prom-Gene) state of expression at rate koy. In the active state, mMRNAs are produced, before
the promoter flips back to the inactive state at rate kogr. Promoter toggling between these active and inactive states can produce bimodal distributions in
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gene-expression products, but only within a restricted regime of phase space. Each parameter set was checked to see if it generated unimodal latency
(blue), unimodal active replication (red), or bimodality (orange), as described in the Materials and methods section. For the modality analysis, each mode
was required to contain at least 0.1% of the population; otherwise, the parameter set was determined to produce a unimodal population.

https://doi.org/10.1371/journal.pbio.2000841.g001

that slightly slower LTR toggling transitions might generate bimodality without feedback (Fig
1 and S1 Fig).

To test this prediction that Tat feedback was dispensable for bimodality, HIV circuitry was
refactored to split the Tat positive-feedback loop [27] into open-loop parts (Fig 2A). This mini-
mal circuit system allows Tat concentrations to be modulated by doxycycline (Dox) and Tat
protein stability to be tuned through Shield-1 addition [27]. As Tat is fused to Dendra, the Tat
concentrations can be quantified, while LTR activity is simultaneously tracked in single cells.
This open-loop doxycyline-inducible circuit was integrated into T cells by viral transduction,
and cells were exposed to varying concentrations of activator (Dox) and Tat proteolysis inhibi-
tor (Shield-1)—generating approximately 48 unique unimodal Tat inputs to the LTR (52 and
S3 Figs and S1-523 Data). Expression profiles from the LTR are all unimodal in the absence of
Tat (S2 Fig), in agreement with previous findings [32,36,37]. However, in striking contrast, the
presence of Tat induces bimodality from the LTR despite the lack of cooperativity or feedback
in this open-loop system (Fig 2B, S2 and S3 Figs and S1-523 Data). In other words, despite a
fixed, unimodal concentration of active Tat transactivator, bimodal LTR distributions can be
generated, and single-cell time-lapse microscopy confirms that the activity of the LTR is
dependent on Tat input (54 Fig and S24 Data). From the known requirements for bimodality
to arise from a toggling promoter (Fig 1), the data suggest that LTR toggling becomes suffi-
ciently slow in the presence of Tat to produce bimodal expression patterns, even in the absence
of positive feedback.

Independent of feedback or cooperativity, LTR promoter toggling is
sufficient to control full-length HIV fate

The bimodality in the minimal open-loop system (Fig 2) represents the 2 fate paths of the virus
—active replication and proviral latency [40]—and suggests that positive feedback may also be
dispensable for controlling viral fate in full-length HIV. Importantly, results from a Tat-defi-
cient full-length HIV virus [27], where Tat is introduced in trans (S5 Fig), confirm that Tat
feedback is not required to select between alternate HIV fate paths. Thus, unlike other deci-
sion-making circuits [17,26], fate selection can occur independent of positive feedback or
cooperativity in HIV.

Tat slows promoter toggling by inhibiting LTR ON-to-OFF transitions,
leading to bimodality

To understand the molecular mechanisms enabling LTR bimodality in the absence of feed-
back, we used a validated computational model of HIV [27] and adapted it to an open-loop
system where Tat would either modulate (1) burst frequency alone, kon modulation; (2) burst
frequency and burst size, kopr modulation; or (3) burst size alone by affecting transcriptional
efficiency, o modulation (top of Fig 2C, S1-53 Tables and S1 Data). To model Tat modulation
of kopr alone, a third promoter state, termed Tat-LTRoy, was added such that it maintained
the same transcriptional efficiency, o, as the LTRy state. Thus, the transactivated LTR pro-
moter must first transition from Tat-LTRoy to LTRoy and only then can it transition from
LTRon to LTRogr and fully turn off. This third promoter state, Tat-LTRoy;, is necessary to
generate changes in burst sizes without altering transcriptional efficiency or toggling from the

PLOS Biology | https://doi.org/10.1371/journal.pbio.2000841 October 18, 2017 5/26
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Fig 2. Long terminal repeat (LTR) promoter toggling is sufficient to generate bimodality and control
HIV fate. (A) Schematic of the open-loop HIV circuit. Doxycycline addition induces transcription from the Tet-
ON promoter. Shield-1 addition controls the stability of the transactivator of transcription (Tat) fused to
Dendra-FKBP fusion protein. Tat induces transcription from the HIV LTR. (B) The (Iso) term represents an
independent isoclonal population; consequently, each cell within a clone has the same integration site for the
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LTR. Nine Iso populations were exposed to 48 different doxycycline and Shield-1 conditions (S2 and S3 Figs
and S1-S23 Data), and bimodality was tested for by the Hartigan Dip Test [39] (the threshold for determining
bimodality was p < 0.3, agreeing with an independent test, S3 Fig and S24 Data). Gray squares indicate
populations that were determined to be unimodal, and black squares represent bimodal populations. (C)
Open-loop stochastic model of Tat transactivation of the LTR by 1 of 3 mechanisms. Left column, increasing
burst frequency by promoting transitions into the LTRy state (left, increasing ko, blue); middle column,
increasing burst size by increasing transcriptional efficiency (middle, increasing a, red); and right column,
increasing burst size through addition of a third promoter state (effectively inhibiting kogg, green arrow). Note
that for the model in which Tat effectively modulates kogr (right), there is an additional production of mCh from
the LTRop state (arrow not shown) at rate a so that changes in burst sizes can be generated without altering
transcriptional efficiency. Model equations and details are presented in S1-S3 Tables. Plotted histograms are
steady-state results of 1,000 simulations (at 1,000 hours) showing that slowing promoter toggling by inhibiting
transitions into the active state is sufficient to generate bimodal distributions (i.e., right column, middle panel).
Insets: Zoom of a modulation so the scale of the x-axis matches the koy (left column) and kogr (right column)
modulation graphs (S1 Data).

https://doi.org/10.1371/journal.pbio.2000841.9002

LTRogr to LTRoy state. The model results are consistent with previous findings that bimodal-
ity is not induced through frequency modulation of the LTR (i.e., koy modulation) or
increases in burst size through transcriptional efficiency, o [24,36,37]. However, the model
shows that slowing toggling kinetics, or increasing the dwell time in the LTRon and LTRr0n
states (i.e., kopr modulation), is required for bimodality, and if Tat only affects a single param-
eter, kopr modulation is necessary and sufficient (bottom of Fig 2C, S6 Fig and S1 Data).

The interpretation of these results is that, while natural LTR promoter toggling is too quick
to generate large enough expression fluctuations for bimodality, Tat transactivation is able to
slow the kinetics of toggling, expanding the bimodal regime (Fig 1). The slowing of toggling
kinetics reinforces the findings that Tat stabilizes transient pulses of expression from LTR fluc-
tuations [40], by effectively reducing kogg. If Tat does stabilize pulses of expression to control
gene-expression variability, then the prediction is that altering Tat-feedback strength would,
similar to the open-loop system, control the shape of the gene-expression distribution and
bimodality.

Positive-feedback strength controls whether the expression distribution
is unimodal or bimodal in HIV

To test the prediction that Tat-feedback strength shapes the expression distribution, we used a
synthetic Tat circuit [27] where positive-feedback strength could be manipulated pharmaco-
logically by the addition of a small-molecule, Shield-1, that stabilizes Tat proteolysis (Fig 3A).
In this system, a subset of isoclonal cell populations carrying this synthetic circuit naturally
generate bimodal distributions (Fig 3B and S25-529 Data). These clonal differences are mainly
due to the genomic location of HIV integration, which can dictate the transcriptional bursting
parameters, and the effectiveness of Tat transactivation [24,36]. Though the differences in Tat
transactivation potential are not clear, transcriptional parameters of the LTR in the absence of
feedback vary due to promoter methylation status, nucleosome acetylation and methylation
state, or gene-proximity dependencies [41]. When positive-feedback strength is increased, a
significant fraction of the cells generate bimodal distributions and even convert from a unimo-
dal (low peak) into a bimodal (low and high peak) distribution or from a bimodal (low and
high peak) to a unimodal (high peak) distribution (Fig 3B, S7 Fig and S25-S30 Data).
Importantly, simulations of Tat positive-feedback circuitry corroborate this phenomenon
of bimodal expression at intermediate feedback strength if Tat acts by decelerating LTR tog-
gling kinetics (Fig 3C and S26 Data), in agreement with simulations of the open-loop circuit
(Fig 2). Thus, these simulations indicate that Tat-feedback strength likely alters the natural
LTR toggling kinetics set by the local integration site [42] to control HIV bimodal-expression
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Fig 3. Positive-feedback strength controls whether the expression distribution is unimodal or bimodal in HIV. (A)
Schematic of the LTR-mCherry-IRES-Tat-FKBP closed-loop, positive-feedback circuit. The transactivator of transcription
(Tat) stability is tuned through the addition of Shield-1 to alter Tat feedback strength (i.e., loop transmission) (S9 Fig). (B) Flow
cytometry histograms showing bimodal distribution for 9 isoclonal cell lines exposed to various concentrations of Shield-1. A
fraction of isoclones can naturally generate bimodal distributions with low feedback strength (e.g., red [0 nM Shield-1]), but
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with intermediate positive-feedback strength, bimodal distributions are more prevalent (e.g., green [100 nM Shield-1] or blue
[500 nM Shield-1]). The “ON"/ “OFF” threshold was set based on the background level of expression from a naive Jurkat cell
line. (C) Measurement of bimodality for each Shield-1 condition for each isoclonal population in (B) as quantified by the
Hartigan Dip Test. The results agree with another metric for measuring bimodality (S7 Fig and S30 Data). Gray squares are
determined to be unimodal, and black squares are bimodal. (D) A closed-loop stochastic model (in contrast to the open-loop
model in Fig 2C) of long terminal repeat (LTR) promoter toggling that incorporates Tat positive feedback through 1 of 3
alternate mechanisms (Fig 2C). Note that for Tat modulation of kogr (right), both the LTRop state and the Tat-LTRgy state
produce mCh and Tat at the same rate, a, as described for Fig 2C. The steady-state results for 1,000 simulation runs
(modeled for 1,000 hours) show that Tat inhibition of promoter turnoff is sufficient to generate bimodalities (right column,
middle panel), whereas alternate Tat positive-feedback mechanisms are unable to generate bimodality in the requisite
parameter regimes (S26 Data).

https://doi.org/10.1371/journal.pbio.2000841.9003

patterns. To test if Tat feedback in fact extends pulses of expression (i.e., effective kopr reduc-
tion), HIV gene-expression was activated to a high-expression state, using tumor necrosis fac-
tor alpha (TNFa), and the circuit was then allowed to relax back to the unperturbed state
under varying feedback strengths. TNFa enhances HIV expression by stimulating recruitment
of a p50-RelA heterodimer to nuclear factor kappa-light-chain-enhancer of activated B cells
(NFkB) binding sites within the LTR [42]. The cells were exposed to TNFa for 24 hours and
then allowed to relax back in the presence of strong or weak feedback (S8 Fig). The results
show that increasing feedback strength, by dosing cells with increasing amounts of Shield-1,
increases the transient in the expressive states, leading to slower transitions from ON to OFF
states (S8 Fig and S31 Data), which corroborates previous findings [27,40]. Thus, relaxation to
various baseline states is dictated by feedback acting on promoter toggling.

One simplifying assumption in the model is that Tat only modulates a single bursting
parameter. To test how relaxing this assumption affects bimodal generation, new simulations
in which Tat could modulate multiple bursting parameters were performed. The models allow
Tat to alter both burst size and frequency through koy and kogg, kon and o, or kopr and o
modulation (S9 Fig). Interestingly, the simulations show that any combination of parameters
could yield bimodality (S9 Fig). In each scenario, Tat positive feedback yields nonexponen-
tially distributed “OFF” times and slows toggling kinetics. This result is in agreement with the
previous findings that slowing promoter toggling kinetics yields bimodal distributions (Figs 1-
3 and S6 Fig).

A few alternate explanations are possible for the observed bimodality. The first is that the
bimodality may arise from deterministic cell-to-cell variability [43] where the transcriptional
parameters vary between cells, leading to bimodality. However, these minimal circuits display
a high level of ergodicity [24,40], suggesting the cell-to-cell variability in the transcriptional
parameters is minimal. Second, HIV feedback may be bistable (i.e., exist in 1 of 2 stable states
[high or low] [17]). Bimodality observed from bistable circuits results from fluctuations
around latching feedback strengths (S11 Fig). Previous studies analyzing fluctuations in noise
to measure feedback strength, cooperativity in feedback, or stability of the “ON” state found
that HIV feedback lacks the canonical features of bistability [34,35,40]. Last of all, HIV feed-
back may latch, meaning small increases in Tat would be drastically amplified to saturable lev-
els upon which the system would then latch in a high state. Note that the latching behavior
can be present in deterministically monostable feedback [40]. To test this, here, we directly
quantified the feedback strength—to test if the feedback-induced bimodality results from
latching feedback—by use of the small-signal loop gain, a direct measure of feedback strength
[40,44,45]. The small-signal loop gain was quantified by measuring changes in LTR expression
associated with changing Tat stability (S11 Fig) or increasing Tat concentration (S12 Fig and
S32 Data). First, we verified that green fluorescent protein (GFP) fluorescence intensity was
linearly correlated to GFP-protein abundance, as shown [32,46], by quantifying the fluores-
cence intensity of known concentrations of soluble GFP by microscopy and then comparing
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these values to the GFP fluorescence intensity of the LTR-GFP-IRES-Tat-FKBP circuit in 2 iso-
clonal populations when feedback was either inactive or active (S10 Fig and S33 and S34
Data). As expected, the GFP fluorescence intensity was well within the linear GFP-protein con-
centration regime for both microscopy and flow cytometry (S10 Fig and S33 and S34 Data).
After verifying that fluorescence intensity scales linearly with protein abundance, we used fluo-
rescence intensity to quantify changes in protein expression associated with altering Tat stabil-
ity or Tat concentration. In agreement with other measures of HIV feedback strength [40], we
find that Tat positive feedback appears to be nonlatching (S11 and S12 Figs and S32 Data).
Interestingly, unlike systems that latch, nonlatching feedback strength inherently renders the
system relatively insensitive to small fluctuations [47] (i.e., HIV will not drastically change
expression profile or latch in response to a small fluctuation) lending a molecular explanation
for the insensitivity of HIV circuitry to external cues [48,49].

HIV Tat positive feedback appears optimized to robustly generate
bimodal distributions

The combination of nonlatching feedback coupled to a toggling promoter allows for bimodal
generation across a wide range of Tat concentrations (Fig 2) and feedback strengths (Fig 3).
Promoters driving nonlatching feedback can exhibit extended, transient pulses of expression
before reverting back to the initial system state [8]. To test if this mechanism of extended-dura-
tion transient pulses was responsible for generating bimodality in the LTR, we built a specific
model of the LTR to map out the phase space of feedback strengths that would allow for LTR
bimodality given the known toggling parameters (S1 Table). The model specifically considers
promoter toggling coupled to weak positive feedback and examined the effect of changing
feedback strength (from weak nonlatching to strong nonlatching). In agreement with previous
theoretical predictions [19,20], intrinsic slow promoter toggling is sufficient to generate bimo-
dality, but only in a very narrow parameter regime (Figs 1 and 4A).

To explore if weak nonlatching positive feedback might explain the robust generation of
bimodality that was experimentally observed, we incorporated dose-response data from the
open-loop circuit into the model and generated an input-output function (S13 Fig) to quantify
the relationship between Tat and kogg values. This approach allows the open-loop data to be
mapped onto a model containing feedback (Fig 4A). The output of the resulting model shows
a striking dependence of bimodality on feedback strength (Fig 4B and S31 Data). Specifically,
as feedback strength increases from zero, the bimodality regime significantly expands. How-
ever, as feedback increases further, to strong nonlatching feedback strengths, there is a drastic
reduction in the potential for bimodal generation (Fig 4B, S14 Fig and S35 Data). This acute
contraction of the bimodal regime likely results from drastic amplifications of small noise
spikes that drive the system to stay on [17]. Interestingly, the model predicts that bimodality is
generated across approximately 13% of the parameter values for the HIV system (Fig 4B and
S35 Data), in agreement with experimentally observed frequencies for spontaneous bimodal
generation across the HIV-integration landscape [32]. Thus, HIV’s moderate feedback
strength (S11 and S12 Figs and S32 Data) appears optimized to slow promoter-toggling kinet-
ics into the regime that enables bimodality.

Robust bimodality results from positive feedback decoupling expression
noise from mean levels
Since the circuit’s bimodality is ultimately dependent upon fluctuation-driven (i.e., stochastic)

extinction of Tat, we next sought to determine how increasing expression levels influenced
bimodality. In the classical Poisson or super-Poissonian transcriptional burst models [50], the
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Fig 4. HIV positive feedback appears optimized to robustly generate bimodal distributions. (A) Varying the positive-
feedback strength changes the toggling kinetics to yield a larger regime for bimodality within the physiological parameter range.
The results for the parameter scans are shown for “No Feedback” (left) and increasing feedback strengths. Whether a population
was unimodal latent (blue), unimodal active replication (red), or bimodal (orange) was determined for each set of parameters as
described in the Materials and methods section. For the modality analysis, each mode was required to contain at least 0.1% of the
population. (B) The percent of toggling kinetics that yield bimodal distributions for varying feedback strengths. The asterisks above
the bars represent the feedback strengths shown in (A) (S35 Data).

https://doi.org/10.1371/journal.pbio.2000841.9004
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expression mean scales with variance (0* x w) such that the noise magnitude (CV*=0%/ pz)
decreases proportionally to the inverse of the mean squared (Fig 5A) and the extinction proba-
bility can be shown to be as follows (S1 Text):

1 _(p-p?

e 22 dP 1
V2102 v

0
PTObextinct = ffoc

However, nonlatching positive feedback breaks the Poissonian relationship such that o” oc
pN with 1 < N < 2 [44]. In the extreme case where N = 2, CV* becomes independent of the
mean and the extinction probability becomes the following (S1 Text):

1 _(e—nngp)®
—————e > dx (2)
\/2na? ’
NFB

where 0?ypp and pnrp are the variance and the mean for the nonfeedback case, respectively.
Importantly, Eq 2 shows that stochastic extinction can be decoupled from the mean (when

N = 2), and simulations verified that such perfect decoupling was possible (Fig 5B). Analysis of
the experimental data in Fig 3 shows that the Tat circuit displays partial decoupling of noise
and mean with N~ 1.5 (Fig 5C). Thus, Tat circuitry enables greater stochastic extinction over
a broader range than other circuitries (e.g., no feedback or latching positive feedback) would

Prob = ff)x

extinct

be able to achieve.

Discussion

In summary, HIV’s Tat circuit seems particularly well suited for generating bimodal expres-
sion patterns, and alternate single-parameter mechanisms for Tat function (e.g., increasing
burst frequency alone rather than slowing toggling kinetics) appear to severely limit or com-
pletely abrogate the potential for bimodality. The precise architecture of this robust bimodal-
generator circuit in such a rapidly adapting virus suggests that bimodality in HIV expression
(i.e., latent and active replication modes) may be a beneficial trait that has been selectively
maintained [38]. In contrast with other known roles for positive feedback (e.g., bistability and
noise amplification), these findings demonstrate a further role for positive feedback as a mech-
anism for robust generation of bimodality [51]. On a conceptual level, this ability of positive
feedback to expand the bimodal regime into physiological ranges may be related to positive
feedback’s ability to expand the regime where sustained oscillations occur [52,53]. Conse-
quently, positive-feedback circuits may have evolved not only for signal amplification but also
to stabilize certain dynamic phenotypes (e.g., bimodality and oscillations) in diverse biological
systems.

From a basic HIV biology standpoint, these results on Tat’s mechanism of action may have
therapeutic implications for HIV cure approaches. Specifically, Tat protein addition reactivates
HIV latency more potently than current chromatin remodeling latency-reversing agents
(LRASs) such as histone deacetylase inhibitors (HDACis) [42]. Despite the known role of Tat as
a transcriptional elongation factor, there has been no clear mechanistic explanation as to why
Tat protein is more potent than LRAs that are transcriptional activators (e.g., HDACis). Con-
ventional LRAs (e.g., protein kinase C [PKC] agonists and HDACis) only affect koy, and we
have previously shown that agents that simultaneously reduce kopr and koy potentiate reacti-
vation [54]. Hence, the finding herein that Tat alters kogg, coupled with the magnitude of the
Tat-induced kopr change, provides a mechanistic explanation as to why Tat is so effective for
latency reversal. The findings also suggest that Tat-based strategies and conventional LRA
strategies could be used synergistically, and new approaches aimed at simultaneously reducing

PLOS Biology | https://doi.org/10.1371/journal.pbio.2000841 October 18, 2017 12/26


https://doi.org/10.1371/journal.pbio.2000841

o
@ : PLOS | BIOLOGY Robust bimodality in the HIV fate-specification circuit

A CV2uyN2 — % OFF«1/u?N
B N=1; Poisson (no positive feedback)
mN=1.5; Positive feedback (CV2-mean partially decoupled)
mN=2; Positive feedback (CV?-mean fully decoupled)

0.50 100
™
S 0.25 o 50
o \¥\ RS
0'000 0.5 1 00 0.5 1
Normalized Mean Normalized Mean
B Noise scales as 1/mean Noise scales with mean
70 (No positive feedback) (Positive feedback)
40
35
20
[1) | YR olls clhmul L
0 50 100 0 70 140
20 50
> >
1) 1)
5 5
3> 10 S 25
o o
[9] (1]
™ ™
T T
0 0: P Y T T
0 50 100 0 90 180
S 40
0 0 al L by L 1
0 40 80 0 300 600

Protein Count

‘ %OFFe1/pu2N

B N=1; Poisson (no positive feedback)
@ Positive feedback data from Figure 3B
m Positive feedback, model fit

100
%OFF =100 - 82.57*%%"
& R? = 0.995
(o) 50
X
ot
0

0.5
Normalized Mean
Fig 5. Nonlatching positive feedback substantially dampens the Poissonian noise-mean inverse
relationship, allowing stochastic extinction despite increasing mean-expression levels. (A) In the
classical Poisson or super-Poissonian transcriptional burst models [50], the expression mean scales with
variance (02 x W) such that the noise magnitude (CV2 = 62/ y?) decreases proportionally to the inverse of the
mean. Nonlatching positive feedback breaks the Poissonian relationship such that 02 o« uN with 1 < N<2[44].
In the extreme case where N =2, CV? becomes independent of the mean. (B) Monte-Carlo (Gillespie)
simulations for three different population mean values in absence (left) and presence (right) of positive
feedback showing that stochastic extinction can be decoupled from the mean (when N =2). (C) Analysis of
the data in Fig 3 shows that the Tat circuit displays partial decoupling of noise and mean (N~ 1.5).

https://doi.org/10.1371/journal.pbio.2000841.9005
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kopr and increasing kon would be optimal for “shock-and-kill” strategies, while conversely
increasing kopr and decreasing kon would be optimal for “block-and-lock” strategies.

Materials and methods
Molecular cloning procedures

The sequence of Tat from recombinant clone pNL4-3, GenBank: AAA44985.1, M19921, was
used. To clone the LTR-mCherry-IRES-Tat-FKBP construct, d2GFP was swapped with
mCherry using BamHI and EcoRI restriction sites [27]. To clone the Tet-Tat-Dendra-FKBP
plasmids, Tat-Dendra or Tet-Tat-Dendra was swapped with YFP-Pif from the pHR-TREp-
YFP-Pif plasmid (a gift from Wendell Lim’s laboratory at UCSF) using BamHI and NotI
restriction sites. The full-length virus was generated as described [27].

Preparation of the GFP standard curve

For the GFP standard curve, a stock solution of 1 g/L (= 30.58 uM) recombinant eGFP (Cell
Biolabs) was diluted 500-, 1,000-, 5,000-, and 10,000-fold (= 61.12, 30.58, 6.11, and 3.06 nM,
respectively). These soluble GFP standards of known concentration were imaged in an 8-well
chambered imaging dish using the same confocal microscope settings as subsequent cellular
GFP imaging.

Cellular GFP imaging

Isoclonal populations were incubated with shield for 20 hours (if applicable). Approximately

6 x 10° cells were washed with 2 mL of PBS solution and then immobilized on a Cell-Tak
(Fisher) coated 8-well chambered imaging dish, using the manufacturer’s protocol. Both solu-
ble GFP standards and cellular GFP were imaged on a Nikon Ti-E microscope equipped with
a W1 Spinning Disk unit, an Andor iXon Ultra DU888 1k x 1k EMCCD camera, and a Plan
Apo VC 100x/1.4 oil objective in the UCSF Nikon Imaging Center; the exposure time was 500
ms with 50% laser power. Approximately 15 xy locations were randomly selected for each iso-
clonal population. After background and autofluorescence subtraction from the cellular GFP
images, the cellular GFP concentration was determined from the GFP standard curve. The cel-
lular volume was approximated from the measured cellular dimensions, assuming a spherically
shaped cell.

Recombinant virus production and infections

Lentivirus was generated in 293T cells and isolated as described [32,55]. To generate the iso-
clonal closed-loop circuit populations, lentivirus was added to Jurkat T Lymphocytes at a low
MOI to ensure a single integrated copy of proviral DNA in the infected cells. The cells were
stimulated with TNFa and Shield-1 for 18 hours before sorting for mCherry. Isoclonal and
polyclonal populations were created as described [32]. The sorting and analysis of the cells
infected was performed on a FACSAria II. Inducible-Tat cells were generated by transducing
Jurkat cells with Tet-Tat-Dendra-FKBP and SFFV-rTta lentivirus at high MOI [27]. The cells
were incubated in Dox for 24 hours and then FACS sorted for Dendra+ cells to create a poly-
clonal population. To create the Tet-Tat-Dendra-FKBP + LTR-mCherry cells, the polyclonal
population was infected with LTR-mCherry lentivirus at a low MOI. Before sorting for
mCherry+ and Dendra+ cells, Dox was added at 500 ng/mL for 24 hours, and single cells were
FACS sorted and expanded to isolate isoclonal populations.
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Flow cytometry analysis

Flow cytometry data were collected on a BD FACSCalibur DxP8, BD LSR I, or HTFC Intelli-
cyt for stably transduced lines and sorting. Flow cytometry data were analyzed in FlowJo
(Treestar, Ashland, Oregon, United States) and using customized MATLAB code [27].

Mathematical model and stochastic simulations

A simplified 2-state model of LTR toggling and Tat positive feedback was constructed based
on experimental data of LTR toggling [24,36] and simulated using the Gillespie algorithm [56]
in MATLARB to test how altering toggling kinetics and feedback strength would affect the activ-
ity of the circuit. At least 1,000 simulations were run for each condition.

Alternatively, to sweep the parameter space of different modulations of the Tat circuit, the
accurate chemical master equation (ACME) method [57,58] was used to directly solve the
chemical master equation (CME) to obtain the full probability landscapes of protein copy
number. For each parameter pair in the sweeping, the protein probability landscape was com-
puted at day 3 or at steady state. The phenotype of bimodality or unimodality at different
parameter pairs was based on the numbers and locations of probability peaks in the landscape
using the bimodality analysis approach described in the Materials and methods section.

Bimodal analysis

Two approaches were taken to quantify whether a distribution from the experimental data or
simulations was bimodal or unimodal. The first, applied to both simulations and experimental
data, was to convert the fluorescence density data using the bkde function in the KernSmooth
package in R to a binned kernel density [59]: the KernSmooth R package is available at https://
cran.r-project.org/web/packages/KernSmooth/index.html. To filter out biologically irrelevant
noise in the data, the data points with fluorescence density less than 1 or small peaks lower
than 0.05 in calculated kernel density function were ignored. The number of modality peaks
was determined by calculating the second-order derivative of the kernel density. The second
approach, only applied to the experimental data, was to utilize the Hartigan Dip Test, a dip sta-
tistic that can test for multimodality by testing for maximal differences and ascertain the prob-
ability that a particular distribution is unimodal [39]. Code for the Hartigan Dip Test was
obtained from http://nicprice.net/diptest/, adapted from Hartigan’s original Fortran Code for
MATLAB.

Supporting information

S1 Data. Experimental setup for Fig 2B and S2, S3, S12 and S13 Figs and the raw numbers
for Fig 2C. The excel spreadsheet has multiple pages. The first page provides the experimental
setup for Fig 2B and S2, S3, S12 and S13 Figs. The setup also explains which of the flow cytom-
etry (.fcs) files in S3-S11 Data correspond to each condition. The second through the fourth
pages provide the raw numbers used to generate Fig 2C from simulations as explained in the
Materials and methods section.

(XLSX)

$2 Data. Tables of the raw numbers of the Hartigan Dip Test corresponding to Fig 2B. The
file (.mat format) gives the Hartigan Dip Test value corresponding to each condition in S3-
S11 Data. The threshold of p < 0.3 was used to generate Fig 2B.

(MAT)
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S3 Data. Flow cytometry files for Isoclone 1 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S12 Data) were taken according to the gating strategy in
§21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(Z1P)

$4 Data. Flow cytometry files for Isoclone 2 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S13 Data) were taken according to the gating strategy in
§21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(Z1P)

S5 Data. Flow cytometry files for Isoclone 3 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S14 Data) were taken according to the gating strategy in
S21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(ZIP)

S6 Data. Flow cytometry files for Isoclone 4 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S15 Data) were taken according to the gating strategy in
S21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(ZIP)

S7 Data. Flow cytometry files for Isoclone 5 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S16 Data) were taken according to the gating strategy in
S21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(ZIP)

S8 Data. Flow cytometry files for Isoclone 6 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S17 Data) were taken according to the gating strategy in
S21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(Z1P)

S9 Data. Flow cytometry files for Isoclone 7 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S18 Data) were taken according to the gating strategy in
§21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(Z1P)

$10 Data. Flow cytometry files for Isoclone 8 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S19 Data) were taken according to the gating strategy in
§21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(Z1P)

S11 Data. Flow cytometry files for Isoclone 9 of the open-loop system. The files are labeled
according to the experimental setup on the first sheet of S1 Data. The corresponding mCherry
and Dendra fluorescence values (see S20 Data) were taken according to the gating strategy in
S21 Data and were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(ZIP)
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$12 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 1 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S3 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$13 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 2 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S4 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$14 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 3 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S5 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Fig,.

(MAT)

$15 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 4 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in 521 Data applied to the flow cytometry files (S6 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$16 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 5 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in 521 Data applied to the flow cytometry files (S7 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$17 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 6 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S8 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$18 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 7 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S9 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$19 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 8 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S10 Data) and
were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(MAT)

$20 Data. Raw numbers of mCherry and Dendra fluorescence values for Isoclone 9 of the
open-loop system. The corresponding mCherry and Dendra fluorescence values were taken
according to the gating strategy in S21 Data applied to the flow cytometry files (S11 Data) and
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were used to generate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.
(MAT)

$21 Data. Gating strategy on flow cytometry data for isoclonal open-loop populations. The
forward-scatter and side-scatter values were used to determine the live population (top left).
The live population was gated on green fluorescent protein (GFP) values over the axis (top
right) to then quantify the mCherry values (bottom left) and GFP values (bottom right). The
gating strategy in S21 Data applied to the flow cytometry files (S10 Data) and was used to gen-
erate the numbers in Fig 2B and S2, S3, S12 and S13 Figs.

(PDF)

$22 Data. Bimodal test raw values for the open-loop system. This file presents the binary
values for determining whether an experimental condition in 1 of the open-loop populations
(S3 Fig) is bimodal according to the bimodality test described in the Materials and methods
section.

(XLSX)

$23 Data. Gating strategy for the LA2GITF (positive feedback loop expressing GFP) popu-
lation. The forward-scatter and side-scatter values were used to determine the live population
(left). The live population green fluorescent protein (GFP) values were used to generate the
data in S8 and S10 Figs.

(PDF)

$24 Data. Raw values of the Cherry and Dendra signal from single-cell time-lapse micros-
copy data in S4 Fig. The file contains each individual cell’s signal for mCherry and Dendra
over time and the mean values for each condition in S4 Fig (all contained in a.mat file).
(MAT)

$25 Data. Experimental setup and Hartigan Dip Test p-values for the closed-loop system
in Fig 3 and S7 and S11 Figs. The excel file explains which flow cytometry file in S27 Data cor-
responds to each isoclone and condition in the closed-loop system used in Fig 3. The second
sheet of the file gives the raw p-values of the Hartigan Dip Test for each condition of each iso-
clone and the TRUE/FALSE for whether the value is <0.3.

(XLSX)

$26 Data. Raw numbers used to generate Fig 3D. The excel sheet gives the raw numbers
used to generate the graphs in Fig 3D for different modes of action and different feedback
strengths of Tat used in the simulations.

(XLSX)

$27 Data. Flow cytometry files for all of the closed-loop isoclonal populations in Fig 3. The
file labels in conjunction with S25 Data can be used to track which file corresponds to which
condition and isoclonal population. The gating strategy is found in S28 Data, and the raw
numbers extracted from the files used to generate Fig 3B and 3C and S7 and S11 Figs can be
found in 529 Data.

(Z1P)

$28 Data. Gating strategy for the LChITF (positive feedback loop expressing mCherry) iso-
clonal populations. The forward-scatter and side-scatter values were used to determine the
live population (left). The live mCherry population was then gated to remove debris that fluo-
resced at the axis (middle graph), and the mCherry values were extracted. These values were
used in Fig 3B and 3C and S7 and S11 Figs and can be found in S29 Data.

(PDF)
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$29 Data. Raw numbers of mCherry for the isoclonal closed-loop populations. The corre-
sponding mCherry fluorescence values were taken according to the gating strategy in 528 Data
applied to the flow cytometry files (527 Data) and were used to generate the numbers in Fig 3B
and 3C and S7 and S11 Figs.

(ZIP)

$30 Data. Bimodal test raw values for the closed-loop system. This file presents the binary
values for determining whether an experimental condition in 1 of the closed-loop populations
(S7 Fig) is bimodal according to the bimodality test described in the Materials and methods
section.

(XLSX)

$31 Data. Raw values for the data in S8 Fig. This file contains the raw numbers used to gen-
erate S8 Fig according to the gating strategy described in S23 Data.
(XLSX)

$32 Data. Raw values for the data in S12 Fig. This file contains the raw numbers used to gen-
erate S12 Fig according to the gating strategy described in S21 Data and the files and raw num-
bers extracted from S3-520 Data.

(XLSX)

$33 Data. Flow cytometry files corresponding to S10 Fig. The raw numbers were extracted
from these flow cytometry files to generate S10 Fig according to the gating strategy described
in 523 Data.

(Z1P)

$34 Data. Raw values for the data in S10 Fig. The raw numbers were extracted from the flow
cytometry files in S33 Data according to the gating strategy described in 523 Data. These data
were used to show the linear relationship between fluorescence intensity and protein numbers
that allows for quantification of the small-signal gain in S11 and S12 Figs.

(XLSX)

§$35 Data. Raw values quantifying the amount of bimodality observed in the simulations in
Fig 4 and S14 Fig according to various cutoffs. The excel file contains the raw numbers for
how many of the simulation parameters yield bimodality according to various cutoffs. FB
stands for feedback strength, and the percent is the implied cutoff.

(XLSX)

S1 Fig. Promoter toggling kinetics control the separation of gene-expression peaks due to
transient production and decay. For a given time, the rate of switching between the ON and
OFF promoter states (top pulse trains) is related to the duration of time in a specific promoter
state. The duration of the promoter state determines the length, or separation from the mean
(cyan line, same value for each panel), of the transient production or decay of gene-expression
products. Increasing promoter kinetics reduces transients and the separation between poten-
tial peaks in a bursty system (top left moving to the right and then bottom left moving to the
right).

(TIF)

S2 Fig. The long terminal repeat (LTR) produces bimodal distributions in response to
unimodal Tat inputs. (A) Histograms of the transactivator of transcription (Tat) input to the
LTR, as measured by Dendra fluorescent signal, are unimodal across all combinations of doxy-
cycline and Shield-1. The colors of the lines indicate increasing doxycycline concentrations
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(red, 0 ng/mL — orange, 2.5 ng/mL — yellow, 5 ng/mL — green, 12.5 ng/mL — cyan, 25 ng/
mL — blue, 50 ng/mL — pink, 250 ng/mL — magenta, 500 ng/mL), and the increasing bright-
ness of the same color represents increasing Shield-1 concentrations (0, 10, 50, 100, 500, and
1,000 nM). (B) Histograms of LTR output as measured by mCherry fluorescent signal. The
“Dim”/“Bright” threshold was set based on each population’s mCherry expression in the
absence of doxycycline or Shield-1 (i.e., no Tat). The change in signal in the Bright population
was used to determine the small-signal loop gain (S12 Fig) in response to Tat. The graphs were
generated by ks-density clustering of the data, which can smooth features of a rough distribu-
tion, exaggerating particular features. Noticeably, some of the seemingly bimodal distributions
do not pass the quantitative metrics used in Figs 2 and 3 and S3 and S7 Figs (S1-S24 Data).
(TIF)

S3 Fig. Bimodality analysis for the open-loop system. Nine isolconal populations of the
open-loop circuits described in Fig 2 were exposed to 48 different doxycycline or Shield-1 con-
centrations. The populations were assessed for the number of modes as described in the Mate-
rials and methods section. Briefly, fluorescence intensity data were smoothed using the bkde
function in the KernSmooth package in R to a binned kernel density. The number of modality
peaks was calculated by taking the second-order derivative of the kernel density. Gray squares
are unimodal, and black squares are bimodal (522 and 523 Data).

(TIF)

$4 Fig. Tat activation of the long terminal repeat (LTR) controls expression pulses. Single-
cell time-lapse fluorescence microscopy of the open-loop circuit without doxycycline (black
lines) or with 25 ng/mL (red lines), 100 ng/mL (cyan lines), or 500 ng/mL (green lines) of
doxycycline. Both Dendra (i.e., transactivator of transcription (Tat) levels) and mCherry (i.e.,
LTR activity) fluorescence levels were tracked over time. Variable Tat inputs as measured by
Dendra fluorescence lead to variable expression pulses from the LTR as measured by Cherry
expression (524 Data).

(TIF)

S5 Fig. Full-length HIV decision-making can be controlled in the absence of feedback or
cooperativity. Schematic of the full-length HIV open-loop circuit (top). Doxycycline addition
induces transactivator of transcription (Tat) expression, which can activate expression of the
full-length HIV virus with a fluorescent mCherry reporter. Cells were initially infected in the
absence (red histogram) or presence (blue histogram) of doxycycline, and a time point was
taken 24 hours post infection (left side, “Initial Infection”). Doxycycline was then added to a
split of the “No Dox” at the Initial Infection for 24 hours to look for HIV reaction (right side,
“Latent Reactivation”).

(TIF)

S6 Fig. The fluctuations in mCherry depend on the mechanism of transactivator of tran-
scrtiption (Tat) transactivation. (A) Each parameter set was allowed to run for 1,000 stochas-
tic simulations, where Tat would work through koy (green), kogr (pink), or alpha (black
lined) alone. The average protein count is equivalent for all the simulations. (B) The time
course of the mCherry count over time, showing the extent of stochastic fluctuations when Tat
affects kon, kogg, or alpha. Three representative traces are shown for each (S1 Data).

(TIF)

S7 Fig. Bimodality analysis for the closed-loop feedback system. Nine isoclonal populations
were exposed to various concentrations of Shield-1 as described in Fig 3. The number of
modes was determined as described in the Materials and methods section. Briefly, fluorescence
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intensity data were smoothed using the bkde function in the KernSmooth package in R to a
binned kernel density. The number of modality peaks was calculated by taking the second-
order derivative of the kernel density. Gray squares are unimodal, and black squares are
bimodal (S30 Data).

(TTF)

S8 Fig. Positive-feedback strength sets the steady-state activity and percentage of cells in
an active state. A polyclonal population of LA2GITF (positive feedback loop expressing GFP)
cells were exposed to tumor necrosis factor alpha (TNFa.) for 24 hours (-24 to 0 hours), and
then the cells were washed and split into 1 cultures, 1 with Shield-1 (1 uM, blue) and 1 in the
absence of Shield-1 (0 uM, gray). Green fluorescent protein (GFP) measurements were taken
every 24 hours, and the mean fluorescence intensity (right axis) or the percentage of cells in
the ON state (left axis) was quantified. In the absence of Shield-1 after 72 hours, the cells
returned to the unperturbed state in both percent ON and mean fluorescence intensity. In the
presence of Shield-1, positive-feedback strength is increased, and the system remains activated
for a longer duration of time. Importantly, both populations return to the state of no TNFo.
addition, i.e., no bistability (531 Data).

(TIF)

S9 Fig. Simulations of Tat modulating 2 parameters of transcriptional bursting. We con-
sider 3 different phenotypes: unimodality of latency (blue areas), unimodality of activation
(red areas), and bimodality (yellow areas). The phase diagrams of phenotypes for 3 different
modulations based on the steady-state probability landscapes—kon-korr (left graphs), kon-
alpha (middle graphs), and kogg-alpha (right graphs)—are shown in part A, and the phenotype
phase diagrams based on the day 3 probability landscapes are shown in part B. Details about
the models and parameter sweeping can be found in the Materials and methods section. In the
modulations of kon-Kogr (left graphs) and kon-alpha (middle graphs), some parameter pairs
are bimodal at day 3 (yellow area in part B) but become unimodality of activation at the steady
state (red area in part A). This is due to the slow evolution of the probability landscape in these
parameter pairs. The phenotypes of all parameter pairs in the kogpg-alpha (right graphs) modu-
lation at steady state are consistent with those at day 3. All simulations were started with initial
toggling kinetics of kon = 0.001/min, kopr = 0.01/min, and the rest of the parameters can be
found in S1-S3 Tables.

(TIF)

$10 Fig. The fluorescent enhanced green fluorescent protein (eGFP) signal linearly
increases with GFP concentration. (A) Enhanced GFP (eGFP) calibration curve; dilutions of
soluble recombinant eGFP protein were imaged by confocal microscopy. (B) Confocal micros-
copy (using the same microscope settings as in panel A) and flow cytometry showing the mean
fluorescence intensity for 2 isoclonal populations (Iso 1 and Iso 3) of Jurkat Ld2GITF (positive
feedback loop expressing GFP) cells—containing a single integration of the Ld2GITF (LTR-
d2GFP-IRES-Tat-FKBP) construct—incubated in the presence (+) and absence (—) of Shield-1
(active or inactive feedback, respectively). The GFP levels fall well within the linear regime
found in panel A. (C) Mean flow cytometry GFP intensity compared to mean cellular GFP
number (calculated via approximate cellular volume) showing a linear relationship (R* = 0.99)
(S33 and S34 Data).

(TIF)

S11 Fig. Transactivator of transcription (Tat) positive feedback is nonlatching. (A) A sche-
matic showing the input-output relationship for a positive-feedback loop under the control of
a constitutive promoter. Unimodal signal inputs of varying strengths reach a constitutive
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promoter encoding for a transcription factor (TF), which initiates positive feedback. The level
of amplification due to positive feedback is quantified by the small-signal loop gain. For loop
gains < 1 across all protein concentrations, the system displays nonlatching feedback and the
results in a unimodal output over the abundance regime. However, if small-signal loop gain
increases with protein abundance to approximately 1, small input fluctuations are drastically
amplified and can generate a bimodal distribution in the output (bottom right). The error bars
around the circles in A (right-hand graphs) represent, for a population of cells that receive the
same inputs, the fluctuations that would lead some cells to display higher or lower small-signal
loop gains. (B) Quantification of the small-signal loop gain of the closed-loop circuit for the 2
isoclonal Ld2GITF populations used in S10 Fig—to verify that Tat feedback is nonlatching in
the linear fluorescence-to-protein regime. (C) Quantification of the small-signal loop gain for
the closed-loop circuits of the 9 isoclonal LChITF populations used in Fig 3 showing that Tat
feedback is nonlatching (S1-S25 Data).

(TIF)

$12 Fig. Quantification of the open-loop small-signal loop gain shows nonlatching feed-
back. (A) Plot of the fold change in transactivator of transcription (Tat)-Dendra abundance
versus the fold change in mCherry ON population expression for 9 isoclonal populations. (B)
Quantification of the small-signal open-loop gain of the 9 isoclonal populations. These values
are representative of the expected small-signal loop gain for an intact circuit with feedback.
Importantly, all 9 isoclonal populations indicate that Tat feedback is nonlatching (532 Data).
(TIF)

S13 Fig. The response of the long terminal repeat (LTR) to transactivator of transcription
(Tat) is biphasic; the LTR is sensitive to low levels of Tat but insensitive to higher levels of
Tat. Plot of normalized LTR-mCherry output to normalized Tat-Dendra fluorescence for the
11 clonal populations (Fig 2). The data are best fit with a logarithmic function but can also be
represented with 2 linear fits (R* = 0.98): 1 fit for the sensitive region (between 0 and 0.2, Nor-
malized Tat-Dendra Fluorescence) and 1 fit for the insensitive region (between 0.2 and 1, Nor-
malized Tat-Dendra Fluorescence) (S1-S22 Data).

(TIF)

$14 Fig. Nonmonotonic relation between the percent of toggling kinetics that yield bimo-
dality versus feedback strength. To simulate various feedback strengths, the binding affinity,
ky, was tuned from 5 x 1077 to 10, on a parameter scan across koy and kopr values ranging
from 0.001 to 10/minute. Next, of those parameter scans, a bimodality test was performed
(Materials and methods). The percentage of parameters that yielded bimodality was then
quantified. Various thresholds were set to determine whether a population was bimodal by
requiring that each mode had to have 107°%, 0.1%, 1%, 5%, or 10% of the total population
(S35 Data).

(TIF)

S1 Table. Chemical reaction scheme (with parameters) for stochastic simulations of cir-
cuits where Tat only modulates kogg. For the open-loop circuit with no positive feedback,
the ** reaction is present, but the * reaction is not. The variable input in the ** parameter rep-
resents the different transactivator of transcription (Tat) inputs, which experimentally are var-
ied by adding different amounts of doxycycline to the culture (Fig 2). The * reaction closes the
loop and is used to model the circuit that has positive feedback. The ** reaction is not used for
the models with positive feedback. The fifth reaction defines Tat’s modulation of promoter
toggling. For Tat affecting korg, Tat binds to the LTRoy state and creates a third state, LTR,.
ton- From the LTRr,on state, the LTR must move through LTRoy first before switching back

PLOS Biology | https://doi.org/10.1371/journal.pbio.2000841 October 18, 2017 22/26


http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000841.s047
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000841.s048
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000841.s049
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000841.s050
https://doi.org/10.1371/journal.pbio.2000841

@'PLOS | BIOLOGY

Robust bimodality in the HIV fate-specification circuit

OFF.
(PDF)

$2 Table. Chemical reaction scheme (with parameters) for stochastic simulations of cir-
cuits where transactivator of transcription (Tat) only modulates koy. See the S1 Table
description for further information. The fifth reaction represents Tat’s ability to modulate
burst frequency through koy. Tat binds to the LTRogr state and flips the promoter to the
LTRpy state.

(PDF)

$3 Table. Chemical reaction scheme (with parameters) for stochastic simulations of cir-
cuits where transactivator of transcription (Tat) only modulates alpha. See the S1 Table
description for further information. The fifth reaction defines Tat’s modulation of burst size
by modulating alpha. Tat binds to the LTRoy state and promotes transcription, thereby affect-
ing transcriptional efficiency when the promoter is already in an active state.

(PDF)

S1 Text. The effect of feedback on bimodality robustness. The supplementary text provides
the derivation and assumptions behind Eq 1 and Eq 2 and Fig 5 of the main text.
(DOCX)
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