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Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent despite
plasma viral suppression by antiretroviral agents. In fact, the prevalence of
milder subtypes of cognitive impairment is increasing. Neuropsychologic
testing remains the “gold standard” of diagnosis; however, this is time
consuming and costly in a resource-poor environment. Recently developed
screening tools, such as CogState and the revised HIV dementia scale, have
very good sensitivity and specificity in the more severe stages of HAND.
However, questions remain regarding the utility of, optimal population for, and
insensitivity of tests in mild HAND.
Recognition of ongoing viral persistence and the inflammatory milieu in the
central nervous system (CNS) has advanced our understanding of the
pathogenesis of HAND and facilitated the development of biomarkers of CNS
disease. The importance of the monocyte-macrophage lineage cell and the
astrocyte as viral reservoirs, HIV viral proteins, self-perpetuating CNS
inflammation, and CCR5 chemokine receptor neurotropism has been identified.
Whilst biomarkers demonstrate monocyte activation, inflammation, and
neuronal injury, they remain limited in their clinical utility. The improved
understanding of pathogenic mechanisms has led to novel approaches to the
treatment of HAND; however, despite these advances, the optimal
management is still undefined.
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Introduction
In the era of highly active antiretroviral therapy (HAART) for 
human immunodeficiency virus (HIV), there has been a dramatic 
shift in neurologic sequelae of the disease. Opportunistic infec-
tions associated with severe immunodeficiency are now much less  
prevalent, but neurologic complications associated with chronic 
infection, treatments, immune reconstitution, and concurrent 
comorbidities are increasing. Despite HAART, HIV-associated 
neurocognitive disorders (HAND) remain a chronic issue, with 
significant effects on an individual’s ability to perform activities 
of daily living, quality of life, employment, medication adherence, 
and survival1–5.

HAND is a common disease with variable reported prevalence  
in different populations (20–69%)6–14. It is most commonly seen 
in advanced stages of HIV/AIDS; however, HAND can also  
occur in asymptomatic HIV infection12,15–18. It is critically impor-
tant, though, to recognize that HAND occurs in only some  
patients – the majority of patients who are virally suppressed 
on HAART will not develop HAND. HAND is grouped by the 
2007 Frascati criteria into three categories of increasing severity 
of cognitive impairment: asymptomatic neurocognitive impair-
ment (ANI), mild neurocognitive dementia (MND), and HIV- 
associated dementia (HAD)19. The category is assigned on the  
basis of clinical features, especially those related to daily func-
tioning, exclusion of alternative causes, and neuropsychological  
testing.

HAART has transformed HIV treatment, controlling plasma  
viremia and allowing the life expectancy of HIV-positive patients 
to approach that of age-matched controls20. While HAART has 
reduced the incidence of all categories of moderate to severe 
dementia (HAD: 7% in 1989 to 1% in 2000)21, there is a con-
tinued and increasing prevalence of milder subtypes of HAND 
– ANI and MND – despite sustained virologic control14,15,17,22. ANI 
now accounts for between 33 and 60% of all HAND12,14,17. Thus,  
HAART has significantly impacted upon only the more severe 
forms of HAND, but one would expect these potent antiretrovi-
rals (ARVs) to have a more profound effect on milder HAND. We 
have termed this curious situation the “therapeutic paradox”. The  
“natural history” of HAND in the context of viral suppression 
has also been clarified recently. Most patients who continue to be  
virally suppressed remain stable, but some improve and a small 
number deteriorate23. This is best termed as the activity of HAND.

Despite the terminology, ANI is not without consequence, with  
negative impacts on quality of life, medication adherence, and 
employment1–5, and some studies show progression to MND/
HAD14,24. As such, HAND remains an important ongoing area of 
clinical research in the context of increasing worldwide impact 
of HAND as HAART becomes more prevalent. This update sum-
marizes recent advances in central nervous system (CNS) HIV  
disease, including screening strategies for HAND, its pathogenesis, 
biomarkers for HAND, and its treatment.

Screening
The uncertainty in the natural history of HAND raises the ques-
tion of whether screening for HAND is beneficial, with some 

groups suggesting that screening could lead to unnecessary, costly,  
invasive procedures in a climate of limited clinical resources.  
For screening to be beneficial, tests with adequate sensitivity and 
specificity are required, as well as management that alters the 
course of disease, preventing progression from early stages to  
severe dementia. While progress has recently been made with 
regard to these requirements (e.g. 25–27), at the present time  
neither of these criteria are definitively met.

Multiple HIV-specific factors have been associated with cogni-
tive decline. Longer duration of HIV, nadir CD4+ T cell count,  
ongoing viremia, and replication in the CNS and periphery are all 
associated with cognitive decline9,14,28–31. In particular, the risk of 
HAND increases as CD4+ counts decline below 350 cells/µL and 
with higher plasma HIV viral loads30. These HIV-specific fac-
tors are potentially preventable or treatable with alterations to 
medication regimes, suggesting that early intervention may be 
able to reduce the risk of HAND; however, this hypothesis is yet 
to be confirmed (see the section titled “Treatment”). As a result, 
we feel that improved screening methods to identify early those  
developing HAND and, in particular, high-risk individuals  
remains important for our ability to combat HAND in the future.

Screening tests capturing mild cognitive impairments are cur-
rently being investigated. A newly designed computerized bat-
tery, CogState, assessing five relevant cognitive domains has 
recently been assessed in Australia in HIV-positive individuals 
relative to age- and education-matched controls26. Comparison with  
neuropsychological testing resulted in a sensitivity of 73% and  
specificity of 82%, with a correct classification rate of 79%26.  
In the MND/HAD subgroup, the sensitivity and specificity  
improved dramatically to 100% and 98%, respectively26. This 
screening method is suitable for application by non-specialists 
and may assist with detecting patients requiring more in-depth  
neuropsychological testing, hence guiding limited resources in  
this setting.

While this test does not improve screening for the ANI  
category of patients, these individuals could be monitored with 
longitudinal re-screening whilst controlling and treating alter-
nate risk factors for cognitive decline26. Further studies will be  
required to assess the validity of this screening test in longitudi-
nal studies. Thus far, longitudinal decline, as measured with repeat 
assessments of the HIV dementia scale (HDS), was reliable in the 
retest setting; however, similar to CogState, this technique was also 
able to robustly detect only moderate to severe cognitive decline24.

Despite the limitations defined above, the guidelines currently  
suggest that screening for cognitive impairment should be per-
formed in HIV-seropositive individuals; however, no consen-
sus has been reached regarding the time point or screening tools 
that should be used32–35. Screening has not yet been universally  
adopted by practicing clinicians. Nonetheless, at present, it would 
seem reasonable for screening to target those individuals at risk of 
HAND rather than the general HIV population. Such risk factors 
have been discussed in the second paragraph of this section. It is not 
clear yet whether some or all of these should be used as “red flags” 
for screening, but at least they serve as a starting point.
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Pathogenesis and the evolution of biomarkers
The therapeutic paradox has called into question our understand-
ing of the pathophysiology of HAND. Treatments targeting these 
mechanisms may be the key to effective treatment in the future. 
While an in-depth review of the pathophysiology of HIV in 
the CNS is beyond the scope of this review, a few key advances 
have been identified in recent years, including the importance of  
monocyte–macrophage and astrocyte viral reservoirs, chronic 
inflammation in the CNS, HIV viral proteins, and CCR5 chemok-
ine receptor neurotropism.

The brain as a viral reservoir
The concept of quiescent viral reservoirs, systemically or in the 
CNS, has emerged as a barrier to HIV eradication in the post-
HAART era36. Monocytes and macrophages, in both the CNS and 
the periphery, express co-receptors necessary for HIV infection, are 
infected early in the course of disease, are long-living, do not die 
as a consequence of HIV infection or immune surveillance, and 
hence can become viral reservoirs for HIV37–41. Furthermore, ARV 
entry into the brain can be variable because of the blood–brain bar-
rier, and ARV efficacy as well as the ability of agents to reverse  
latency in brain cells such as microglia and particularly astrocytes 
is at best limited42. These factors point to the brain as a sanctuary 
site, further reinforcing the brain as a likely viral reservoir. Prob-
able latent brain infection in macrophages, astrocytes, and other 
glial cells has been demonstrated in multiple neuropathologic and 
in vitro studies43–50. The issue remains controversial, though, as 
some consider that the demonstration of such virus reflects only 
the phagocytic function of those cells. Further, as yet, the virus in 
such cells has not been demonstrated to be replication competent, 
with the exception of macrophages, though the study used animal 
models51. Nonetheless, one study found that after 10 years of sup-
pressive antiretroviral therapy (ART) in the plasma, low levels of 
HIV RNA could still be detected in the cerebrospinal fluid (CSF) 
– that is, viral escape – with associated evidence of immune activa-
tion, thereby emphasizing the brain as both a sanctuary site and a 
viral reservoir52.

Further support for the brain as a viral reservoir comes from a  
recent study of simian immunodeficiency virus (SIV)-infected 
macaques that were continuously virally suppressed with CNS- 
penetrant HAART. When latency-reversing agents were admin-
istered, there was reactivation of virus in the macaque brain53. 
This resulted in increases in CSF viral load, 10 times higher than  
plasma, and increased CNS immune activation and neuronal 
damage markers, likely contributing to a harmful CNS inflam-
matory response53. The most prevalent SIV genotype in the CSF 
was novel compared with peripheral genotypes, suggesting that 
distinct genomes that persisted in the CNS compartment were  
amplified despite long-term peripheral viral suppression53.  
Similarly, in humans, it is relatively common to find different  
genotypes of HIV in the CNS and periphery, again demonstrating 
compartmentalization in the CNS and its role as a reservoir54,55.

Monocyte populations and biomarkers
Direct evidence of infected monocytes entering the brain has  
not been demonstrated in humans; however, animal models have 

demonstrated peripheral monocyte trafficking to the CNS in SIV 
infection56. HIV viral load and proviral HIV DNA in plasma 
mononuclear cells have been linked to disease progression,  
AIDS development, and HAND in HAART-naïve advanced  
infection and proviral DNA in virally suppressed individuals57–59. 
Interestingly, a recent study identified that levels of HIV DNA in 
peripheral mononuclear cells were not associated with HAND 
in virally suppressed HIV-positive individuals on stable HAART 
regimens. Instead, an increase in monocyte HIV-positive reser-
voir size was associated with progression of HAND, in particu-
lar in the HAD subgroup60. These papers raise a crucial issue in 
HAND pathogenesis: at what point do systemic factors become less 
important compared to brain-related factors? In other words, when 
does systemic HIV disease “metastasize” to the brain, at that point  
making it a truly brain-autonomous problem no longer driven by 
systemic disease?

In HIV, the phenotypic subpopulations of monocytes are altered, 
resulting in increased circulating CD16+ monocytes instead of  
the usually prevalent CD14+CD16– populations found in normal 
controls61,62. CD16+ cells can be infected by HIV, in part due to  
differences in host restriction factor expression (APOBEC  
isoforms and SAMDH1) allowing HIV replication63–68. The  
proportion of CD16+ monocytes in the total population is associ-
ated with uncontrolled viremia (>400 copies/mL), reduced by  
adherence to ART, and linked to disease progression61,62,69,70. 
Increased proportions and absolute numbers of CD16+ mono-
cytes are more strongly associated with HAND than with the CSF 
viral load or proportion of HIV-infected cells in the CNS; hence,  
measurement of CD16+ populations, CD14+/CD16+ ratio, and  
high HIV DNA levels in CD16+ cells may be used as biomarkers  
of disease and correlate with neurocognitive dysfunction71–75.

Alternate monocyte biomarkers have also been identified.  
CD163 is a hemoglobin–haptoglobin scavenger receptor found 
exclusively on monocytes and macrophages76–80. When mono-
cytes are activated by lipopolysaccharide, Fcγ receptors crosslink 
or oxidative stress occurs, CD163 is shed as soluble CD163 
(sCD163) to reduce inflammatory cell activation and cytokine 
release77,78,81–83. Expression of CD163 is higher on CD16+ mono-
cytes84. Plasma sCD163 is elevated in individuals with HIV  
duration greater than one year, and HAART therapy reduces 
sCD163 commensurate with HIV RNA levels; however, sCD163 
levels remain significantly higher than in controls, suggesting 
ongoing low-level monocyte activation83. Follow-up clinical studies  
demonstrate that higher levels of sCD163 occur in HAND popula-
tions, in particular the MND/HAD groups, compared with those 
who were cognitively unimpaired85. These results suggest that 
sCD163 is a novel marker of macrophage-mediated disease activ-
ity in HIV, systemically and in the CNS. However, it is not specific 
for HIV, nor does it distinguish the duration of infection or HAND 
subtype.

Another marker of monocyte activation, sCD14, a soluble mono-
cyte lipopolysaccharide receptor, is similar to sCD163 in that  
levels are higher in early and chronic HIV infection than in HIV-
negative controls83. However, sCD14 levels were not reduced by 
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treatment with HAART and were significantly increased after 
treatment with HAART in early HIV83. Plasma and CSF sCD163 
correlates with sCD1483,85. However, despite this, sCD14 has had 
variable associations with HAND severity85,86. Alternate monocyte 
biomarkers, such as CSF CCL2, correlate with HAND severity and 
risk of progression as well as markers of inflammation87,88. The com-
parative clinical utility of these biomarkers requires further study.

Chronic inflammation and HIV proteins
The inflammatory milieu, as a potential contributor to HAND,  
has become an interesting area of research. It is increasingly  
recognized that low-level latent infection in HIV and its comor-
bidities (e.g. metabolic syndrome, drug use, and hepatitis C) as  
well as aging can lead to chronic low-grade immune activation 
and inflammation89,90. Sustained CNS inflammation occurring  
during HAART may be due to latent and low-level infection in the 
CSF meningeal compartment and possibly brain (viral escape), 
priming of microglia and macrophages due to circulating products 
translocated from the gut, altered neuronal and synaptic function, 
contributions from the metabolic syndrome, and possible ART-
related toxicity.

The macrophage and microglia biomarker of immune activation, 
neopterin, is elevated in most HIV seropositive individuals, with 
levels declining after commencement of HAART. Low viral persist-
ence in the CNS, as measured by CSF HIV RNA, is significantly 
correlated with CSF neopterin elevation91. Neopterin correlates 
with HAND severity in ART-naïve individuals and predicts the 
development of HAND; however, its utility in the HAART era is 
not clear92–94.

Inflammatory cytokine secretion by infected monocytes causes a 
cascade, with compounding effects due to positive feedback on 
gene transcription95. This chronic inflammation is probably exac-
erbated by HIV component proteins expressed in infected cells  
(especially monocytes), such as Vpr, Tat, Nef, and gp120, which 
further activate inflammatory pathways, leading directly to neural 
toxicity96–99. However, chronic inflammation in latent HIV infec-
tion with suppressed HIV RNA may be caused by deregulation 
of inflammatory cascades by transcriptional regulators, such as 
BCL11B, with resultant silencing of integrated virus43. Conversely, 
in HIV-encephalitis (HIVE), reduced transcriptional regulation 
leads to re-emergence of HIV RNA in CSF and brain43. This sug-
gests that HAND with viral suppression may be driven by viral 
components, such as Tat and Nef, whereas HAND without viral 
suppression may be fuelled by whole virus, in particular envelope 
proteins. This is an attractive potential explanation for HAND  
in the context of viral suppression, as current HAART does not  
target the immediate post-integration transcription stage of the  
HIV replication cycle, allowing the continued production of Tat, 
Nef, and Vpr.

Tat and Nef have been found to affect endothelial activation and 
dysfunction, leading to cardiovascular disease100. Tat transcrip-
tionally deregulates genes and induces cytokine activation of 
IL-17 pathways, leading to a proinflammatory state with direct  
neurotoxicity101. In addition, it is soluble, able to exit the infected 
cell, and can affect neighboring cells101. Thus, measurement of Tat 

is a plausible biomarker for neural damage in HAND. However, 
CSF Tat does not correlate directly with HAND severity, pos-
sibly because it is only intermittently produced, or there may be  
difficulties with the lower limit of detection in current assays102. In 
the future, antisense oligonucleotides and monoclonal antibodies 
could be utilized to enhance the efficacy of HAART103.

CCR5 chemokine receptor neurotropism
Viral envelope glycoproteins can fuse with only those cells  
expressing both CD4 and an HIV co-receptor, of which CCR5 
has been identified as the most important for microglia and CNS 
macrophages104,105. CCR5 receptors are upregulated on activated  
CD4+ and CD8+ T cells, enhancing antigen-presenting cell inter-
action, T cell trafficking into tissues, and cytokine production106. 
In response to infection or inflammation, monocytes, microglia, 
astrocytes, and neurons express CCR5 ligands, which increase 
the migration of CCR5+ T cells into the CNS106. Locally, these 
effector T cells secrete CCR5 ligands, which amplify the immune 
response106. A subset of CCR5-tropic viruses have been found  
to be highly fusogenic, requiring lower expression levels of  
CCR5 and CD4 to infect cells, leading to greater apoptosis107. There 
is now good evidence that the vast majority of HIV strains in the 
brain are CCR5 tropic108. Given the intrinsic role of CCR5 in CNS 
disease, it is suggested that CCR5 antagonists, such as maraviroc, 
may be able to reduce the migration and then activation of effec-
tor CD8+ T cells in the CNS and hence reduce the neurocognitive 
sequelae of HIV106. This is now being assessed (see the section 
titled “Treatment”).

Biomarkers of HIV replication
While quantification of CSF HIV DNA as a biomarker of  
HAND is both impracticable and insensitive109, measurement of 
HIV RNA expression in CSF is more robust. In the pre-HAART 
era and ARV-naïve population, HIV RNA in blood is independ-
ently associated with cognitive impairment110, high levels have 
been associated with HAD in individuals with advanced immuno-
suppression, and a decrease in HIV RNA levels has been corre-
lated with improvements in cognitive measures111–115. While these 
factors suggest that HIV RNA level can be a useful biomarker in  
HAND, it is by no means a perfect marker; its utility in the  
HAART era is less well established. CSF HIV RNA levels may 
not accurately reflect HIV replication in brain parenchyma, though 
single copy assay techniques hold some promise.

Biomarkers of neural injury
Biomarkers of neural damage would be expected to correlate  
most closely with HAND. CSF neurofilament light chain (NFL), 
a component of myelinated axons, has recently been identified as 
a sensitive biomarker of neuronal injury in multiple neurodegen-
erative diseases116–118. In HIV, CSF NFL is increased in patients 
with and without HAND, with levels higher in HAND and increas-
ing as HIV disease advances, suggesting early neuronal injury116.  
CSF NFL concentrations appear to predict the development of 
HAD, with levels increasing 1–2 years before symptoms develop119. 
However, NFL levels are not sensitive in the detection of mild  
disease, in particular when virally suppressed118. Newer ultrasensi-
tive plasma assays for NFL are highly correlated with CSF NFL 
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concentrations117. NFL levels in plasma and CSF increase with 
reducing CD4 counts and increasing plasma RNA viral loads in 
asymptomatic individuals, correlate with HAND severity, reaching 
the highest values in HAD, and are reduced by HAART117,118,120. 
NFL is significantly correlated with sCD163 and sCD14, suggest-
ing that CNS monocyte activation is directly linked with neuronal 
injury in HAND118. Plasma NFL, although not specific, may be an 
emerging sensitive, non-invasive assay for HAND, especially as the 
sensitivity of assays increases.

Other biomarkers of neural damage such as tau and CSF/plasma 
albumin ratios, reflecting blood–brain barrier integrity, corre-
late with HAD and in some studies CSF neopterin121–123. These, 
however, are significantly reduced in the setting of HAART and 
hence are less useful in the clinical setting of HAND with viral  
suppression121. In addition, non-invasive quantitative MRI tech-
niques can reflect neuroinflammation and neuronal injury. A 
recent study demonstrated early reductions in parenchymal vol-
ume, enlargement of the brainstem and third ventricle, diffusion  
alterations in the caudate, altered white matter integrity in the 
corpus callosum, and brain metabolite changes reflecting neural  
injury within 100 days of seroconversion124.

An additional emerging area of interest is microRNAs, the non-
coding RNA molecules which regulate gene expression. Specific 
subtypes miR125b and 146a have a role in microglial infection and 
cell death125. In a small study of 10 patients, nine with HAND, these 
microRNAs correlated with HIVE; however, the interaction with 
ART and viral suppression has yet to be elucidated125.

Treatment
Recent studies in HIV treatment have attempted to answer three 
main questions: firstly, is there a role for neuroHAART to improve 
CNS penetration and concentrations of ARVs? Secondly, is there 
a role for HAART intensification for HAND in the context of 
viral suppression? And, thirdly, can HAND be reduced by earlier 
HAART initiation?

CNS penetration by HAART
The CNS penetration effectiveness (CPE) score was proposed  
in order to rank drug penetration and efficacy in the CNS126. The 
CPE score has been supported in most studies, where treatment  
regimens with a higher CPE score generally have lower rates of 
HIV RNA detectible in CSF127,128. However, the issue of the utility 
of the CPE score remains controversial. Indeed, the CPE score is 
limited by its categorical scoring, unclear weighting of each cri-
terion (pharmacokinetic, chemical properties, etc.), and lack of 
consideration of toxic effects or drug interactions. Furthermore, 
the CPE score relies on CSF drug concentrations, which may not  
reflect the brain parenchymal pharmacokinetics, and efficacy 
in glial cells is not considered, primarily due to limited data  
availability.

To assess this latter point, recent studies assessing the efficacy 
of current CNS-penetrating ARVs in astrocytes and macrophage 
-lineage cells have been performed using in vitro models of  
infection42,129. All of the agents tested could inhibit HIV infection 
in macrophages with concentrations typically found in CSF42.  

Similar results were found in astrocytes, except for lamivudine, 
stavudine, and zidovudine, which required between 12- and  
187-fold greater concentrations than are achievable in the CSF42. 
These results indicate that these drugs may not adequately treat 
astrocyte reservoirs and suggest that these agents should not be  
utilized in CNS-penetrating (NeuroHAART) regimens.

The interaction between improved NeuroHAART, commonly 
defined by CPE score, and clinical efficacy has not been clearly 
elucidated. A recent systematic review found only six methodo-
logically sound and two sufficiently powered studies that attempted 
to answer this question130. Utilizing these more rigorous studies, 
it was concluded that a regimen with higher CNS penetration  
probably improved both neurocognitive function and HIV CSF 
RNA concentrations130. Subsequently, a multisite randomized 
controlled trial has been performed which showed no benefit for 
a NeuroHAART regimen131. However, there was an imbalance 
at entry for CD4 nadir and hepatitis C status, factors which are 
known to influence neurocognition. Also, it is known that HAND  
patients may continue to improve on a stable HAART regimen 
for approximately 1 year from regimen commencement; the trial 
requirement for stability for only 8 weeks may have been a fur-
ther confounding factor. As a result, there remain no definitive  
HAART guidelines for HAND. Further investigations with ran-
domized controlled trials addressing the latter shortcomings are 
needed130.

HAART intensification for HAND in the context of viral 
suppression
Recent advances suggest that CCR5 receptor interactions with 
CNS reservoir cells are intrinsically linked with CNS HIV and  
HAND. Maraviroc, a CCR5 receptor antagonist, is a target for 
HAART intensification, as it has adequate CSF penetration, has 
low rates of resistance, inhibits CNS viral replication, including 
in monocyte/macrophage cells, and has anti-inflammatory proper-
ties in the CNS132–137. Maraviroc acts by blocking HIV entry into 
cells, hence restricting virion replication and indirectly inhibit-
ing immediate post-integration viral protein production, which 
probably drives the CNS inflammatory milieu96–99,138. A recent  
prospective, open-label pilot randomized controlled trial in indi-
viduals with viral suppression and stable ART for 12 months 
found maraviroc-intensified HAART improved global neurocogni-
tive performance at both 6 and 12 months without significant side  
effects27. In the future, large randomized controlled studies will 
be necessary to confirm these findings; however, this suggests that 
maraviroc intensification of HAART could be an option for the 
clinical management of HAND occurring in the context of viral 
suppression.

Early initiation of HAART
Lower HIV DNA levels in monocytes are associated with  
HAART initiation within the first year of infection, suggesting 
that the early commencement of HAART may improve outcomes 
in HAND52,139. However, the impact of immediate versus deterred 
HAART on neurocognitive performance in ARV-naïve patients 
without profound immunosuppression is unclear. The recent 
INSIGHT START neurology substudy aimed to assess this140,141. 
Individuals were randomized to commence HAART either at  
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baseline (CD4 >500 cells/µL) or when CD4+ cells were below 
350 cells/µL140. While serious AIDS and non-AIDS events were  
reduced in the immediate treatment arm, without increased 
adverse events, the neurocognitive substudy did not demonstrate 
similar improvements on neuropsychological tests140,141. However, 
less than 50% of the study population reached 4 years of follow-
up, the potentially neurotoxic ARV, efavirenz, was commonly 
used142, and low rates of HAND were found owing to short disease  
duration and high CD4+ counts. As a result, further studies with 
longer duration of follow-up and adequate power are required to 
assess the feasibility of CNS protection with early ART initiation.

Future treatment directions
Current studies are investigating intranasal insulin, IL-1 antago-
nists, paroxetine, and complement inhibitors as well as limiting the 
replication of viral transcripts by Tat monoclonal antibodies and 
antisense oligonucleotides.

Conclusion
Recently, significant advances have been made in our under-
standing of HAND, facilitating further development of disease  
biomarkers and new treatments. Three key principles have become 
evident: selectivity (only some patients develop HAND), activity 
(HAND may fluctuate over months with some patients improving, 
a minority deteriorating, and a majority remaining stable), and a 
dynamic systemic–brain interface (some HAND patients appear 
to have the disease driven by systemic factors, while brain-related  
factors are important in others). Recognition of each of these will  
be needed to address the following questions:

1.   In the context of earlier ART institution, adherence, and 
longstanding viral suppression, will the incidence of HAND 
remain as high? If so, does this reflect the effect of the viral 
reservoir and sanctuary, the self-perpetuating inflammatory 
cascade, or both?

2.   Can screening tests and biomarkers be optimized to assess 
for early stages of HAND and can treatments prevent the 
progression to more severe subtypes?

3.   Can early sensitive plasma, CSF, and imaging biomarkers 
of CNS impairment be used to improve therapeutic clinical 
trials? Can a combination of methods provide a more holis-
tic concept of HAND pathogenesis? Can these methods be 
applied to patient care in the clinic?

4.   Can the early institution of ARVs limit the development of 
the CNS reservoirs and prevent the inflammatory milieu 
from developing?

5.   Can improved CNS penetration and efficacy, in particular 
with the use of maraviroc-enriched regimes, whilst main-
taining systemic viral suppression, reduce the incidence  
of HAND?

6.   Can novel cellular and molecular therapies, targeting recently 
understood pathogenic pathways, improve therapeutic  
efficacy?

Despite the inherent difficulties, large-scale, prospective, rand-
omized trials with longitudinal follow-up, strict and consistent  
definitions of HAND, and adequate evaluation of comorbid  
conditions remain the best way to further our knowledge of  
HAND. This will allow us to evaluate biomarkers in screening 
and monitoring roles and adequately examine the effect of novel  
treatment regimens on cognitive function.
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