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1  |  INTRODUC TION

Modern methods of statistical and computational analysis offer a power-
ful tool to mine knowledge from various sources of healthcare data. In 
this context, machine learning (ML) has increasingly provided a new per-
spective for characterizing the heterogeneity of asthma among children 
and predicting its outcomes (Figure 1). Here, we provide a brief overview 
of ML approaches recently proposed to characterize pediatric asthma.

2  |  MACHINE LE ARNING

ML can be defined as the study of computer algorithms that improve 
automatically through experience. In this sense, ML is an umbrella 

term encompassing all computational methods designed for learning 
from experience (available data) to improve performance and make 
accurate predictions. Unsupervised ML is concerned with the identi-
fication of data patterns in the absence of any pre- defined outcome. 
Supervised ML involves learning a rule for predicting an outcome 
based on input- output examples.

Regarding unsupervised ML, data- driven approaches using clus-
tering methods could help characterize heterogeneous features of 
diseases among distinct patients. By unveiling the underlying struc-
ture of the data, cluster analysis can gather a set of samples into 
different clusters. For example, the k- means algorithm is one of the 
most popular iterative descent clustering methods, aiming to min-
imize the sum of variance within clusters and maximize separation 
between clusters, thereby identifying distinct groups within the 
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Abstract
Among modern methods of statistical and computational analysis, the application of 
machine learning (ML) to healthcare data has been gaining recognition in helping us 
understand the heterogeneity of asthma and predicting its progression. In pediatric 
research, ML approaches may provide rapid advances in uncovering asthma pheno-
types with potential translational impact in clinical practice. Also, several accurate 
models to predict asthma and its progression have been developed using ML. Here, 
we provide a brief overview of ML approaches recently proposed to characterize 
pediatric asthma.
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population. Conversely, agglomerative hierarchical clustering algo-
rithms follow a tree structure where the elementary nodes repre-
sent the samples to be clustered, and the root node represents a 
supercluster containing all the samples.

Regarding supervised ML, different classifiers have been imple-
mented using regression or classification methods. The most used 
approaches remain linear regression for quantitative outcomes and 
logistic regression for categorical outcomes. However, in the era of 
big data, the mining potential of ML has increased substantially, and 
more advanced models are expanding; some of them are briefly in-
troduced below.

Regression trees are obtained by splitting the variables, 
constituting the tree's root node, into subsets that consti-
tute the child nodes. Random forests are an ensemble learn-
ing method based on a family of decision trees. Support vector 
machines build a model that predicts new observations using a 
non- probabilistic binary linear classifier. Deep learning has devel-
oped as a modern sub- field of ML based on deep neural networks 
(NN), which can reproduce the mechanisms of the human brain 
in processing complex and high- dimensional data such as images, 
video, or text. Deep learning is also linked to natural language 
processing, which is concerned with the analysis of large amounts 
of human language data to perform speech recognition and text 
classification.

3  |  PHENOT YPING OF PEDIATRIC 
A STHMA

There is increasing recognition that pediatric asthma is a heteroge-
neous disease with multiple subtypes, which may have overlapping 
observable characteristics (phenotypes), but different underlying 
pathophysiological causes. In this context, ML has been recently 
used to uncover phenotypes of pediatric asthma and derive clusters 
based on a series of characteristics derived from high- dimensional 
clinical data sets (Table 1). The most used techniques for phenotyp-
ing asthma in children include clustering methods (k- means and hier-
archical) and latent class analysis.

Different features of asthma have been identified to distinguish 
the clusters in several studies. Integrating the data derived from 613 
children with asthma with clinical expert domain knowledge, Deliu 
et al. identified four distinctive features (age of onset, allergic sensiti-
zation, severity, and exacerbations in the previous year) informative 
of five different phenotypes of pediatric asthma.1 In the Taiwanese 
Consortium of Childhood Asthma Study, Su et al. combined clinical 
and functional features with gene expression profiles of 351 asth-
matic children. They obtained five distinct phenotypes of childhood 
asthma, differing in lung function, symptom frequency, healthcare 
utilization, percentages of eosinophils and neutrophils in peripheral 
blood, and serum IgE.2 Also, five latent classes differing for demo-
graphic features, asthma control, sensitization, type 2 inflammatory 
markers, and lung function were identified from Fitzpatrick et al. 
among a large heterogeneous cohort of more than 2500 children 
with mild to moderate persistent asthma. Notably, multiple allergic 
sensitizations and partially reversible airflow limitation emerged as 
clinically valuable features of asthma in identifying children at the 
greatest risk for future exacerbation.3 Similarly, clusters with prom-
inent type 2 inflammation and features of greater asthma severity 
have also been noted in previous cluster analyses of children with 
asthma.4,5 Although valuable information has been gained, the re-
sults of these data- driven approaches require further validation to 
expand our knowledge of asthma phenotypes in children.

4  |  PREDIC TION OF A STHMA AND ITS 
PROGRESSION

Advanced predictive analytic techniques such as ML have been very 
recently used to achieve the prediction of asthma and its progres-
sion. Recently, a segmented logit regression model was used to 

Key Message

Machine Learning (ML) is a modern comprehensive ap-
proach to characterize pediatric asthma phenotypes effec-
tively and may be a promising tool to predict asthma and 
its progression.

F I G U R E  1  Word cloud analysis using the title of articles 
published in the last five years. The list of publications was 
obtained using the following search strategy (PUBMED): 
machine learning AND asthma AND children. The pre- processing 
procedures applied were as follows: (1) removing words in the 
search strategy, non- English words, or common words that do not 
provide information; (2) changing words into lower case, and (3) 
removing punctuation and white spaces. The size of the words is 
proportional to the observed frequency
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compute the probability of having asthma in children In particular, 
7.9% and 14.7% resulted in the estimated bronchodilator response 
cutoff values at which the probability of predicting asthma was 
found to change significantly.6

ML models have also been trained on electronic health record 
data to distinguish between persistent and transient asthma cases 
in childhood. All the five models tested (naïve Bayes, logistic re-
gression, k- nearest neighbors, random forest, and gradient boosted 
trees) in the study were found to be able to predict childhood asthma 
persistence.7

ML has the potential to overcome the poor sensitivity and 
specificity of current prediction models for asthma exacerbations, 
including several associated factors such as epidemiologic, envi-
ronmental, and physiologic factors.8 By means of an automatic ML 
model, Luo et al developed a predictive model for severe asthma 
exacerbation. The model achieved an area under the curve of 0.86 
(95% CI, 0.846– 0.871) and showed a negative predictive value of 
97.8%, demonstrating an ability to identify children who are not 
at risk for exacerbation.9 In line with these findings, Sills et al. 
proved that advanced automatic ML techniques are superior to 
conventional ML approaches, such as random forest and logistic 
regression, in terms of the predictive power of the need for hospi-
talization of pediatric asthma patients in emergency departments 
(ED), suggesting that ML models could be successfully implemented 
to improve the ED workflow as well as to spare resources.10

Notwithstanding the aforementioned studies, further research 
is warranted to test and validate the model's generalizability on 

external datasets; moreover, ML models would benefit from achiev-
ing better predictive accuracy.

5  |  CONCLUSION

ML has recently become an increasingly used analytic tool to phe-
notyping for many disease processes. In asthma research, ML ap-
proaches have provided rapid advances in addressing pediatric 
asthma heterogeneity and uncover different disease phenotypes 
with potential translational impact in clinical practice. The ability 
of ML to include several data from multiple sources yields the ad-
vantage of improving predictive accuracy over conventional sta-
tistical methods. However, the number of variables required for 
ML models could also be a limitation since it may be challenging 
to choose variables that contribute most to the model. In addition, 
some variables may not always be available, which can limit repli-
cation of the models in external populations and their potential for 
application in clinical practice. Therefore, we can conclude that, 
in the field of pediatric asthma, ML is promising but still a work in 
progress.
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TA B L E  1  ML approaches used in phenotyping asthma in children

ML approach Study design and participants
Distinctive features of 
asthma clusters Clusters identified Ref.

Hierarchical 
clustering

Cross- sectional, 613 
asthmatic children

Age of onset, allergic 
sensitization, severity, 
and exacerbations in the 
previous year

–  Early- onset mild atopic asthma
–  Early- onset mild non- atopic asthma
–  Late- onset asthma
–  Difficult asthma
–  Exacerbation- prone asthma

Deliu et al.1

k- means 
clustering

Cross- sectional, 351 
asthmatic children 
from the Taiwanese 
Consortium of Childhood 
Asthma Study

Lung function, symptom 
frequency, healthcare 
utilization, percentages 
of eosinophils and 
neutrophils in peripheral 
blood, and serum IgE

–  Asthma with elevated RBC and wheeze 
episodes

–  Neutrophil- predominant asthma
–  Allergic asthma with preserved 

pulmonary function
–  Eosinophil- predominant asthma with 

poor pulmonary function
–  Asthma with low wheeze episodes

Su et al.2

LCA Cross- sectional, 2593 
children with mild to 
moderate persistent 
asthma

Demographic features, 
asthma control, 
sensitization, type 2 
inflammatory markers, 
and lung function

–  Multiple sensitization with partially 
reversible airflow limitation

–  Multiple sensitization with reversible 
airflow limitation

–  Lesser sensitization with reversible 
airflow limitation

–  Multiple sensitization with normal lung 
function

–  Lesser sensitization with normal lung 
function

Fitzpatrick 
et al.3

Abbreviations: LCA, latent class analysis; ML, machine learning; RBC, red blood cells.
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