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The objective of this study is to introduce a new quantitative data-driven analysis (QDA)
framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the
effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI
measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult
volunteers (N = 227, aged 18–76 years old, male/female = 99/128). With the proposed
QDA framework we derived two types of voxel-wise RFC metrics: the connectivity
strength index and connectivity density index utilizing the convolutions of the cross-
correlation histogram with different kernels. Furthermore, we assessed the negative and
positive portions of these metrics separately. With the QDA framework we found age-
related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate
cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN),
which resembles previously reported results using other types of RFC data processing
methods. Importantly, our new findings complement previously undocumented results
in the following aspects: (1) the PCC and right insula are anti-correlated and tend to
manifest simultaneously declines of both the negative and positive connectivity strength
with subjects’ age; (2) separate assessment of the negative and positive RFC metrics
provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network
depicts enhanced negative connectivity strength with the adult age. The proposed QDA
framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data.
The detected adult age effect is largely consistent with previously reported studies
using different R-fMRI analysis approaches. Moreover, the separate assessment of
the negative and positive contributions to the RFC metrics can enhance the RFC
sensitivity and clarify some of the mixed results in the literature regarding to the DMN
and sensorimotor network involvement in adult aging.

Keywords: quantitative data-driven analysis (QDA), resting-state functional magnetic resonance imaging (R-
fMRI), resting-state functional connectivity (RFC), connectivity strength index (CSI), connectivity density index
(CDI), adult age
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INTRODUCTION

Among the different analysis approaches for resting-state fMRI
(R-fMRI) data, the anatomic region-of-interest (ROI)-based, and
data-driven independent component analysis (ICA) methods are
probably the most commonly used (Tyszka et al., 2014). Resting-
state functional connectivity (RFC) results from the ROI-based
and ICA derived methods are generally similar but conceptually
different. The quantitative relationship between ROI-based and
ICA derived measures of RFC has been investigated with
computer simulation and experiment approaches (Joel et al.,
2011; Rosazza et al., 2012). In theory, the ROI-based RFC
measures can be shown to be the sum of the ICA derived RFC
both for the within and between networks (Joel et al., 2011;
Rosazza et al., 2012).

With ROI-based analysis the brain is first parcellated into pre-
defined anatomical regions, the mean time course for each ROI
is then determined. By calculating the temporal correlations in
a pairwise fashion between the defined ROIs, for each R-fMRI
dataset a correlation coefficient matrix of the ROIs can be
obtained for further statistical assessment. Therefore, specific
connectivity between specific regions is explicitly tested in a
model-driven framework by using the average time courses of
the selected ROIs as a temporal model. Since the RFC patterns
do not necessarily coincide precisely with the atlas-based ROI
definition, all voxels within predefined ROIs are not necessarily
a part of the network-of-interest and functionally connected.
This can potentially affect the accuracy and sensitivity of the
ROI-based analysis (Song et al., 2016). On the other hand, ICA
can reveal dynamics and spatially distributed brain networks in
a data-driven fashion without the need of a temporal model.
Beside motor and sensory networks, ICA studies have identified
the brain networks involved in attentional control (Lawrence
et al., 2003), including the task-dependent (Vossel et al., 2014)
dorsal and ventral lateral attention networks (DAN and VAN),
the task-independent (Raichle et al., 2001; Buckner et al., 2008)
default mode network (DMN), and the salience network (SN),
which was postulated to be the switching control network for the
up-regulation of attention networks and the downregulation of
the DMN (Menon and Uddin, 2010). The dynamic interactions
between the DAN, VAN, DMN, and SN networks are believed
to be the key for understanding the function and dysfunction
efficient attention allocation for task performance.

Despite the growing consensus regarding the ICA-derived
intrinsic RFC networks in the healthy brain with stable spatial
components reproduced across studies (Damoiseaux et al., 2006;
Smith et al., 2009; Allen et al., 2011), the precise number
of independent components (NIC), as a prerequisite input
parameter for ICA, is not known a priori. NIC can substantially
influence the ICA outcomes (Wang and Li, 2015). Moreover,
there is lack of gold standard for the selection of meaningful
components to exclude non-interesting noise resources, such as
ventricular, vascular, susceptibility, or motion-related artifacts
(Wang and Li, 2013).

In this study we refined further of our quantitative data-driven
analysis (QDA) framework based on the time course of individual
voxel inside the brain. The QDA approach is data-driven as

ICA and can generate two types of quantitative RFC metrics for
each voxel inside the brain without the need for specifying a
particular threshold, model or mode. Since it uses the time course
of each voxel within the brain as the reference seed in turn to
compute voxel-wise whole-brain correlational coefficient matrix,
the size of the correlation matrix is equal to the number of voxels
inside the brain. It is typical N > 104 for whole-brain R-fMRI
datasets with 4 mm voxel size. To facilitate further statistical
assessment of the whole-brain correlation matrix, we derive two
types of voxel-wise RFC metrics from the correlation matrix,
namely the connectivity strength index (CSI) and connectivity
density index (CDI). CSI and CDI provide general connectivity
metrics of strength and density for the local voxel with the rest of
brain, respectively. These metrics can be used for straightforward
statistical comparison to assess differences between groups and
longitudinal changes of individuals. This is a basic requirement
for radiological diagnosis in clinical practice.

Several voxel-based RFC metrics have been proposed in the
literature. Among other things, the regional homogeneity (Zang
et al., 2004; Meier et al., 2017; Reynolds et al., 2017), measures
of low frequency oscillation including the amplitude of low
frequency fluctuations (ALFF) and the fractional ALFF (Yang
et al., 2007; Zang et al., 2007; Zou et al., 2008; Sun et al., 2016;
Zhang X.D. et al., 2016; Pan et al., 2017), measurements of
complexity, such as the Hurst exponent (Hayasaka and Laurienti,
2010; He, 2011; Ciuciu et al., 2014), and brain entropy (de Araujo
et al., 2003; Zhao et al., 2010; Jia et al., 2017; Viol et al., 2017) have
been used for studying the RFC in normal and diseased brains.
These methods have yielded interesting results. However, there
remains still some methodological issues to be addressed, such
as the arbitrariness in the selection of cut-off frequency (Yang
et al., 2007; Zang et al., 2007; Zou et al., 2008; Sun et al., 2016;
Zhang X.D. et al., 2016; Pan et al., 2017), loss of information
(Hayasaka and Laurienti, 2010; He, 2011; Ciuciu et al., 2014), and
computation difficulty (de Araujo et al., 2003; Zhao et al., 2010;
Jia et al., 2017; Viol et al., 2017). These technical difficulties may
have contributed to the inconsistent findings in the published
literature. Moreover, the different RFC metrics portray different
aspects of R-fMRI signal and may have different sensitivities
to the physiological activities and pathological abnormality
(Golestani et al., 2017; Reynolds et al., 2017).

Both ICA and ROI-based approaches have previously been
applied to study age-related changes in RFC (Bluhm et al., 2008;
Biswal et al., 2010; Weissman-Fogel et al., 2010; Zuo et al., 2010;
Dennis and Thompson, 2014; Alarcon et al., 2015; Zhang C.
et al., 2016). Numerous studies have confirmed that reduced
RFC in healthy aging in the DMN is correlated with cognitive
deficit (Damoiseaux et al., 2008; Biswal et al., 2010; Campbell
et al., 2013; Ferreira and Busatto, 2013; Scheinost et al., 2015).
There is accumulating evidence to support the notion that elderly
adults typically have reduced RFC across most parts of the
DMN, particularly in the dorsal medial prefrontal cortex (mPFC)
and the ventral and posterior cingulate cortex (PCC; Campbell
et al., 2013; Scheinost et al., 2015). However, in the reported
literature there is also considerable variability concerning age-
related RFC differences in the limbic and other DMN subsystems.
For example, some studies have found age-related RFC reduction
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in the hippocampal (Damoiseaux et al., 2008; Campbell et al.,
2013; Scheinost et al., 2015) and subcortical regions (Ystad et al.,
2010), whereas others reported either no significant decline or
elevated RFC in some of the specific hippocampal (Pasquini et al.,
2015) and DMN regions (Salami et al., 2014; Damoiseaux et al.,
2016). The discrepancies in the reported findings among the
different R-fMRI studies may reflect not only variability in the
sample characteristics, but also diversity in the data processing
methods for deriving the different RFC metrics for connectivity
of specific pathways.

The main objective of this study is to develop a QDA
framework to analyze R-fMRI data and derive quantitative,
model-free, and threshold-free RFC metrics, which are optimally
sensitive to physiological and pathological changes in the central
nervous systems. We used the proposed metrics to assess if and
how adult age in healthy subjects influences these RFC metrics.

EXPERIMENTAL AND METHODS

Participants
A total of 227 volunteers (aged 18–76 years,
male/female = 99/128) completed the study and were recruited
into the study through the local media advertisement in the
Stockholm region. All participants were right-handed, and
native Swedish speakers with normal or corrected-to-normal
vision. They all reported being free of a history of neurological,
psychiatric, and cardiovascular diseases. None of the participants
reported any use of psychotropic drugs. Each subject signed
informed consent before completing the magnetic resonance
imaging (MRI) examination protocol. They were financially
compensated for their participation. The regional ethics
committee approved the study protocol 2014/1982-31/1, which
was conducted in line with the declaration of Helsinki.

Magnetic Resonance Imaging Data
Acquisition Protocol
The MRI data acquisition was conducted on a whole-body
3T clinical MRI scanner (Magnetom Trio, Siemens Medical
Solutions, Erlangen, Germany) equipped with a 32-channel
phased-array receiving head coil. All data was acquired at
Karolinska University Hospital, Huddinge, Stockholm, between
noon and 5:00 PM. The MRI data acquisition protocol included
the following scanning sessions: (1) 3-plane localizer; (2)
Conventional clinical MRI scans including 3D T1-weighted
MPRAGE, T2 and FLAIR scans; and (3) A session of 375 s
long R-fMRI measurements. The main acquisition parameters
for the R-fMRI data included the following: TE/TR 35/2,500 ms,
flip angle = 90◦, 34 slices of 3.5 mm thick, FOV = 225 mm,
matrix size = 76 × 76, data acquisition acceleration with
GRAPPA parallel imaging method (iPAT = 2), and 150
dynamic timeframes. The T1-weighted MPRAGE images used
for co-registration with functional images were acquired with
the following parameters: TR = 1,900 ms, TE = 2.52 ms,
FA = 9 degrees, FOV = 256, voxel size 1 mm × 1 mm × 1 mm.
The acquisition parameters for the FLAIR image were the
following: TE/TR = 89/9,000 ms, flip angle = 130◦; inversion

time (TI) = 2,500 ms, slice thickness = 4.0 mm, and
FOV = 199 × 220 mm. An experienced radiologist inspected
both the FLAIR and T1-weighted images for potential signs
of neuropathology.

We used foam patting to fix each subject’s head carefully in
the head coil to reduce involuntary head motions. During the
R-fMRI data acquisition the participants were instructed to focus
their sight on a white cross in black background projected on
a screen installed in front of their eyes. The subjects were also
instructed to not think about anything particular during the
R-fMRI session.

Resting-State Functional Magnetic
Resonance Imaging Data Pre-processing
The R-fMRI datasets underwent a preprocessing procedure,
which has been described elsewhere in details (Li et al.,
2021) and was performed with AFNI (Version Debian-
16.2.07∼dfsg.1-3∼nd14.04+1, http://afni.nimh.nih.gov/afni)
and FSL1 programs with a bash wrapper shell (Wang and Li,
2013, 2015). After temporal de-spiking, six-parameter rigid
body image registration was performed for motion correction.
The average volume for each motion-corrected time series
was used to generate a brain mask to minimize the inclusion
of the extra-cerebral tissues. Spatial normalization to the
standard MNI template was performed using a 12-parameter
affine transformation and a mutual-information cost function.
During the affine transformation the imaging data were also
re-sampled to isotropic resolution using a Gaussian kernel
with 4 mm full width at half maximum (FWHM). The co-
registered average image volume for the cohort has 28,146
non-zero voxels inside the brain and was used to generate
the average brain mask for the preprocessed whole-brain
R-fMRI data with 4 mm spatial resolution. Nuisance signal
removal was performed by voxel-wise regression using 14
regressors based on the motion correction parameters, average
signal of the ventricles and their 1st order derivatives. After
baseline trend removal up to the third order polynomial,
effective band-pass filtering was performed using low-
pass filtering at 0.08 Hz. Local Gaussian smoothing up to
FWHM = 4 mm was performed using an eroded gray matter
mask (Wang and Li, 2015).

Pearson’s correlation coefficients (CC) were computed
between the time courses of all pairs of voxels inside the
brain, leading to a whole-brain functional connectivity matrix
for each subject. This computation was performed for all
voxels located within the brain mask, which was generated
by overlapping the registered brains of all participants. This
brain mask contained 28,146 voxels and each voxel inside
the brain was used as the seed voxel in turn. Therefore, the
size of the CC matrix size is 28,146 × 28,146. Each row
or column of the CC matrix corresponds to the CC image
volume for the seed voxel with the rest of the brain. That
is the connectivity map for the seed voxel. As schematically
illustrated in Figure 1, based on the CC histogram for each
row of the matrix we derived the following two types of

1http://www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | A schematic overview to illustrate the QDA framework. With QDA the time course of each voxel is used in turn to compute the whole-brain CC matrix.
For each row of the CC matrix, we compute a CC histogram with 200 evenly binned intervals within [−1, 1]. The histogram shown in the graph is the cohort’s
average CC histogram for a voxel within the PCC as marked with the cross. Two types of RFC images are derived from the CC matrix: (1) CSIP and CSIN whose
voxel values are the averages of the positives and negatives in each row of the CC matrix, respectively. (2) CDIP and CDIN whose voxel values are the positive and
negative parts of the convolution between the CC histogram and the kernel, respectively.

threshold-free voxel-wise RFC metrics: the CSI and CDI. As
we are interested in systematically investigating all relevant
synchronized activities in the whole brain, we quantify the
negative and positive portions of the CC histogram separately
to avoid information cancelation, sensitivity reduction, and
statistical interference. From here on, the subscripts “N” and
“P” are used to indicate the negative and positive portions of the
RFC metrics, respectively. The metrics without subscripts refer
to the mixed measures without distinction of the negative and
position correlations.

As shown in Figure 1, the voxel value for the CSIP and CSIN
are defined as the averages of the positives and negatives in each
row of the CC matrix, respectively. That is

CSIP =

(∑
CC>0

CCrow

)
/np (1)

CSIN =

(∑
CC<0

CCrow

)
/nn (2)

Where CCrow refers to a row in the CC matrix. np and nn refer
to the number of positive and negative correlation coefficients in
a row of the CC matrix, respectively. The voxel values for CDI

are defined as the convolution between the CC histogram and a
kernel function. That is

CDI = Hist (CCrow)⊗ kernel (3)

The CDIP and CDIN correspond to the positive and negative
portions of the convolution defined in Eq. (3), respectively. To
facilitate statistical comparison it is useful to transform the raw
RFC metrics into standard Z-score using the following formula:

Z = (RFC− u) /σ (4)

Where µ and σ are the mean and standard deviation of the
corresponding RFC metrics, respectively. For optimization of
the CDI sensitivity, we investigated 6 different kernel functions
including

ki=1,2,...,4 =
∣∣xi∣∣ , (5)

k5 =
∣∣sin2 (π/2x)

∣∣ , (6)

k6 = step(|x| − 0.3), (7)

where x⊂ [−1,1] corresponds to the interval of the correlation
coefficients. The kernels are also graphically depicted in Figure 2.
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FIGURE 2 | The six different kernel functions investigated in the study to derive the CDIP and CDIN metrics. The widely used threshold method can be considered as
the case for the square-well kernel function (k6).

The kernel should weight the higher correlation coefficients more
than the lower ones. The widely used threshold approach can
be considered as the case of the square-well kernel function k6.
For illustration, an arbitrary threshold of 0.3 was used here. The
CSI metrics can also be considered as a special case of CDI
corresponding to a kernel of the sign function.

Statistical Analyses
To investigate if and how the RFC metrics are influenced by
heathy aging for the studied cohort we performed voxel-wise
linear regression analyses of the CSI and CDI metrics versus
the subject’s age, while gender was treated as a covariate by
using the AFNI program 3dRegAna to extract the regression
parameter β and linear coefficient r. The statistical significance
was assessed by using a two-step approach. Firstly, we imposed
a voxel-wise threshold p < 0.001 (uncorrected corresponding
t-score ≥ 3.34) to form the initial cluster candidates. Secondly,
we performed permutation simulations without assuming a
particular form of probability distribution for the voxel values in
the statistic images to identify the brain ROI out of the initially
detected clusters at family-wise error rate p ≤ 0.05. Using the
detected ROIs as masks, the mean values of the RFC metrics
for each ROI were evaluated and plotted against the subjects’
age. Besides linear regression analysis with age, we performed
also verification using two-sample t-test between the young and
elderly subgroups. For this, we selected all subjects aged 18–
30 years as the young subgroup (n = 124, males/females = 51/73),

and all subjects aged 64–76 years as the elderly subgroup (n = 76,
males/females = 35/41). To keep sufficient age gap between the
young and elderly subgroups the remaining 27 subjects in the age
range of 31–63 years old were excluded from the t-test. In the
selection of subgroups we attempted to minimize the number of
excluded subjects with intermediate ages, maximize the age gap
between the subgroups, and keep similar number of subjects and
age ranges. It should be emphasized that all 227 subjects were
included in the regression analysis.

RESULTS

The Quantitative Data-Driven Analysis
Framework
The CC histogram for each seed voxel in the brain is dependent
on its location in the brain (see Supplementary Materials).
Figure 3 shows the average CC histogram of the cohort for a
seed voxel in the PCC as illustrated by the cross in Figure 1.
The histogram is somewhat asymmetric and shifted toward the
positive side. This is quite typical at least for voxels within gray
matter. Selecting different threshold values along the histogram
allows us to examine the RFC networks of different connection
strengths associated with the selected seed voxel. As shown
in Figure 3, at high negative threshold (Figures 3A,B) we
observe the DMN. At low negative threshold, we observe its
association with cerebral spinal fluid (CSF) space and white
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FIGURE 3 | The average CC histogram of the cohort for a seed voxel in the posterior cingulate cortex (PCC) as indicated by the green cross. Selecting different
threshold values along the histogram allows us to examine the functional connection networks of different strengths (A–F) associated with the seed voxel in the PCC.

matter (Figure 3D). At moderately high positive threshold, the
PCC voxel is not only a part of the DMN, but also connected to
most of the cortical gray matter (Figures 3E,F). At high positive
threshold, the PCC voxel is associated with the posterior portion
of the DMN and the visual cortex (Figure 3C). The visual cortex
looks relatively bright at high threshold indicating a relatively
high number of voxels are associated with the visual network or
voxels within the visual cortex are associated with each other at
high threshold criterion. The idea of the QDA framework is to
avoid the arbitrary threshold and optimize the contribution of
meaningful informatics to the quantitative RFC metrics.

Figure 4 shows an axial slice of CDIP and CDIN images
for a typical R-fMRI dataset (from a 36 year old male subject).
Multiple brain regions depict high CDIP including the bilateral
mPFC, superior and middle temporal gyri (MTG), inferior and
superior parietal lobule, precuneus and PCC. These regions have
been described as RFC hubs implying their important role in
neural signaling and communication across the brain (Buckner
et al., 2009; Tomasi and Volkow, 2011). On the other hand,
the PCC, insula cortex. White matter and CSF regions have
high CDIN metric. The contrast and intensity variations across
each row in Figure 4 demonstrate that selection of the kernel
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FIGURE 4 | An axial slice of the CDIP (upper row) and CDIN (lower row) metrics derived from a typical R-fMRI dataset (a male subject of 36 year’s age). The images
from left to right depict the results for the following 6 kernel functions | x|, | x2 |, | x3 |, | x4 |, sin2(π/2x), and step(| x| −0.3), respectively.

function can optimize the contrast and signal-to-noise ratio of
the CDI metrics.

Resting-State Functional Connectivity
Changes Associated With the Adult Age
The linear regression results for the CSI, CSIN, and CSIP data
versus subjects’ age are summarized in Figure 5 and Table 1. The
corresponding results for the CDI, CDIN, and CDIP are shown
in Figure 6 and Table 2. The CSI metric without separation

FIGURE 5 | Brain regions with significant correlation (p < 0.05, corrected)
between the connectivity strength metrics and the subject’s age. The results
for the CSI (A), CSIN (B), and CSIP (C) are depicted separately. The Color bar
shows the t-score level.

of the negative and positive correlations shows decline of the
functional connectivity strength with age in the superior and
middle prefrontal gyrus (MFG) and increase of connectivity
strength in the precuneus and right inferior parietal lobule (r-
IPL). The more specifically defined CSIN and CSIP metrics are
more sensitive to the adult age effect and the detected brain
volumes with significant aging effect are nearly tripled compared
with that for the CSI metric. With CSIN and CSIP we also observe
a more intricate pattern of change with the adult age, which are
summarized as follows:

(1) The CSIP shows mainly decline trend with adult age
(negative β and r) in the extended DMN including
superior and MFG, PCC, bilateral insula cortex and left
middle temporal gyrus (l-MTG) except for putamen where
upregulation of CSIP was observed.

(2) The CSIN depicts a more complicated pattern of
dependence on adult age. The negative connectivity
strength was reduced (positive β and r) with adult age in
the PCC, right insula cortex and IPL, while enhancement
(negative β and r) was detected in the sensorimotor
network (paracentral lobule, bilateral postcentral gyri),
bilateral parahippocampal cortices (PHC), and right
superior temporal gyrus.

(3) There are two brain regions where both the CSIN and
CSIP demonstrated significant reduction trend with adult
age, which were detected by applying the logical “AND”
operation to the regression results for the CSIP and
CSIN. As shown in Table 2 and Figure 7, the two
overlapping ROIs in the PCC and r-insula cortex depict
significant down-regulation of CSIP and CSIN metrics with
the subjects’ age.

To study the specific connectivity associated with the two
ROIs defined by the overlap between the CSIN and CSIP metrics,
we computed Pearson’s correlation maps for the time courses
of the seeds as defined by the overlapping ROIs depicted
in Figure 7A. As expected, the associated RFC network for
the PCC ROI is obviously the well-known DMN and include
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TABLE 1 | The brain regions where the connectivity strength metrics are significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p Annotation

CSI 239 +2.1 +63.0 +47.9 9.50 0.459 <0.01 Precuneus

152 +3.4 −47.3 +30.1 −9.72 −0.389 <0.01 Superior and MFG

62 −38.5 +55.3 −35.5 9.57 0.354 <0.01 R-IPL

CSIN 237 +0.0 +53.1 +27.3 12.29 0.413 <0.01 PCC

171 −42.6 −10.4 +11.0 12.36 0.411 <0.01 R-insula cortex

161 −2.3 +28.2 +59.4 −11.05 −0.371 <0.01 Paracentral lobule

153 −49.1 +47.6 +41.2 11.62 0.441 <0.01 R-IPL

133 −39.8 +25.7 +55.5 −10.99 −0.325 <0.01 R-postcentral gyrus

75 −27.3 −3.8 −34.0 −9.99 −0.450 <0.01 R-PHC

67 −56.8 +14.6 +5.9 −9.28 −0.400 <0.01 R-STG

58 +18.4 +0.4 −18.9 −9.36 −0.441 <0.01 L-PHC

56 +42.0 +25.9 +57.1 −10.38 −0.309 <0.01 L-postcentral gyrus

713 +2.0 −45.4 +23.6 −10.37 −0.487 <0.01 Superior and MFG

CSIP 157 −1.1 +14.7 −17.8 7.96 0.506 <0.01 Putamen

110 +55.7 +13.1 −19.5 −9.49 −0.433 <0.01 L-MTG

75 +2.7 +48.5 +31.1 −9.01 −0.336 <0.01 PCC

53 −40.0 −8.7 +0.8 −8.48 −0.361 <0.01 R-insula cortex

52 +45.1 −10.5 −8.9 −8.36 −0.376 <0.01 L-insula cortex

CSIN CSIP 70 +2.8 +49.0 +31.0 14.15 0.374 <0.01 PCC (CSIN)

13.37 0.362 <0.01 PCC (CSIP)

34 −40.8 −10.0 +0.0 −9.04 −0.334 <0.01 R-Insula cortex (CSIN)

−8.63 −0.336 <0.01 R-Insula cortex (CSIP)

The volume, center of mass coordinates in MNI space, regression parameter (β), linear correlation coefficient (r), statistical significance (p), and anatomic annotations
are specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CSINP indicates the overlapping results
between CSIN and CSIP.

4 negatively correlated brain regions, which are the bilateral
IPL and insula cortices (see Figure 7B). On the other hand,
the associated RFC network for the insula ROI includes the
PCC and bilateral precuneus as the negatively correlated brain
regions (Figure 7C) Figure 8. Shows the anti-correlated brain
regions between the above 2 RFC networks as obtained by
multiplying the two correlation maps with each other and
applying negative threshold at CC ≤ (−0.5). The mutually
inclusive anti-correlation between the PCC and the right insular
cortex explains why both CSIP and CSIN metrics in these regions
depict declines with the adult age.

Figure 9 shows the ROI average of the CSIN and CSIP metrics
in the PCC and right insula cortex as a function of the subject’s
age. With normal aging, both the CSIP and CSIN are reduced
in these brain regions (overlap shown in Figure 7A). Therefore,
the PCC and right insula are particularly sensitive to the adult
age effect. However, the aging effect is barely detectable by the
unseparated CSI metric (see Table 1).

As expected, the CDIP and CDIN metrics derived by using
the different kernels differ in their sensitivity in detecting
the adult age effect. Figure 10A shows the detected brain
volumes where the CDIP and CDIN metrics are significantly
associated with the adult age. The sensitivity difference of
the kernels is also manifested in the regression parameter β

which are detailed in Table 3 and Figure 10B. To compare
the similarity of the detected aging effects among the CDI
metrics of different kernels, we assessed the joint overlapping
brain regions detected by the different CDIN and CDIP metrics
of different kernels. The observed overall trends of RFC

enhancement or decline with age are quite similar. The joint
overlapping volumes for the CDIP and CDIN metrics of different
kernels are 733 and 671 voxels, respectively. Moreover, there
is also a reasonable anatomic consistency between the results
of the connectivity strength metrics and connectivity density
metrics. As detailed in Tables 2, 3, the anatomical locations
of the joint overlapping regions for the different CDIP metrics
match those for the 3 largest ROIs identified by the CSIP
results (see Table 1). Similarly, the brain regions of the joint
overlapping for the different CDIN metrics are largely the same
as those identified by the CSIN data (see Table 1). However,
it should be noted that the β parameters for the CDIN and
CSIN have opposite signs even through the trend of change
with the adult age is the same. This is because the negative
connectivity strength (CSIN) is negative in nature, while the
connectivity density corresponding to the negative correlation
(CDIN) is always positive. Therefore, the enhancement of the
negative connectivity strength (CSIN) with age (for example
in the sensorimotor network) corresponds to a negative β,
while the connectivity density result corresponds to a positive
β value.

DISCUSSION

Effects of Adult Age on Resting-State
Functional Connectivity
Age is an important risk factor for declines of neural cognitive
functions and pathology of neurodegenerative diseases. It is also
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FIGURE 6 | Brain regions with significant correlation (p < 0.05, corrected)
between the connectivity strength metrics and the subject’s age. The results
for the CDI (A), CDIN (B), and CDIP (C) are depicted separately. The Color bar
shows the t-score level.

a complex metric difficult to precisely interpret the involved
physiology. Healthy individuals of similar age may have quite
different vascular and brain-health status. It follows that age
is not a single strongest predictor for the RFC in the brain.
This is likely to be the reason why the linear regressions
of the RFC metrics with the adult age depict substantial
scatters and relative low correlation coefficients. The impact
of the potential confounds and pre-processing strategies that
can mitigate them have been extensively investigated in the
published literature (Bluhm et al., 2008; Biswal et al., 2010;
Weissman-Fogel et al., 2010; Zuo et al., 2010; Dennis and
Thompson, 2014; Alarcon et al., 2015; Zhang C. et al., 2016;
Geerligs et al., 2017; Hussein et al., 2020). Here we focus
on comparing our findings in the context of documented
literature results, particularly the adult age effect in the DMN,
dorsal attention network (DAN), sensorimotor network, and
subcortical brain regions.

With QDA, we found support for RFC decline with advancing
adult age in multiple brain regions of the DMN and DAN,
including superior and MFG, PCC, MTG, and IPL. Age-related
RFC decrements in the DMN and DAN have previously been
reported in numerous R-fMRI studies using ROI and ICA
based analysis (Buckner et al., 2008; Damoiseaux et al., 2008;
Dennis and Thompson, 2014; Scheinost et al., 2015; Luo et al.,
2020). Our findings regarding to the RFC changes in the
DMN are overall in agreement with previous reported results

(Damoiseaux et al., 2008, 2016; Koch et al., 2010; Ystad et al.,
2010; Williams, 2013; Lu et al., 2014; Persson et al., 2014, 2015;
Salami et al., 2014). Besides the DMN and DAN, normal aging
was associated with RFC increase in the sensorimotor, subcortical
network, and para-hippocampal cortex. This has also been
reported previously (Persson et al., 2015, 2016; Damoiseaux et al.,
2016; Geerligs et al., 2017; Hussein et al., 2020; Luo et al., 2020).
We didn’t find significant age-related RFC declines in precuneus
and specific sub-regions of the hippocampal cortex as reported
in previous studies (Salami et al., 2014; Damoiseaux et al.,
2016). Since we assessed the negative and positive correlation
separately, this may allow us to detect more intricate age-
related RFC changes in the brain. To illustrate this point, we
analyzed further the 3 ROIs with significant correlation between
the CSI and the subject’s age. As shown in Tables 1, 4 and
Figure 11, the detected ROI in the precuneus depicted significant
positive linear correlation between CSI and the subject’s age
(β = 9.50 × 10−3, r = 0.459), even though the CSIP and
CSIN in the same ROI showed only a slight (not significant)
increment and decrement with age, respectively, i.e., contribution
from a low-significant CSIP increment and a non-significant
CSIN decrement resulted in a highly significant increment trend
in the CSI metric. With the same line of reasoning, we can
explain why the MFG ROI detected by the CSI metric is much
smaller than that detected by the CSIP metric, because the
decremental trend in the CSIP metric was partially canceled
by the CSIN contribution. This can also explain why we didn’t
detect significant CSI decrement with the adult age in the PCC
and R-insula, because both the CSIP and CSIN metrics exhibited
significant decremental trends with age and their contributions
annulled each other. Therefore, it is important to pay attention to
the precise definition of the RFC when comparing the results of
different studies.

Both CSIP (r = 0.506, see Table 1) and CDIP (r = 0.577, see
Table 2) showed age-related enhancement Caudate/putamen
and the association are quite strong. This finding based on
QDA approach are consistent with previous reports (Manza
et al., 2015; Rieckmann et al., 2018) from ROI-based studies
aimed to investigate the aging effect on specific functional
connectivity of in the striatum-cortical system. It is well
known that the striatum-somatomotor connection is primarily
associated with motor performance, especially the “automatic”
performance of already learned movements. It has been
reported that posterior putamen and pallidum decreases in
connectivity to left somatomotor cortex with age (Manza
et al., 2015). This provides a reasonable explanation for the
commonly observed motor deficits as in elderly subjects.
There is also growing evidence support the notion that
striatum-cortical connectivity is potentially important for
memory function at older age. Intriguingly, this is related to
the enhanced RFC with age in the putamen/caudate. Several
studies have reported that increased striatum functional
connectivity in older adults typically reflects less negative
connectivity between two regions belonging to different
networks, and the increased connectivity is often negatively
associated with cognitive performance (Rieckmann et al.,
2018). Therefore, better understanding the RFC change with
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TABLE 2 | The brain regions where the connectivity strength metrics are significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p(10−3) Annotation

CDI 736 +0.7 −45.4 +24.2 6.511 0.603 <0.01 Superior amd MFG

663 −6.0 +5.6 −19.3 −13.43 −0.469 <0.01 Caudate/putamen

100 +0.7 +48.4 +30.8 −14.14 −0.325 <0.01 Precuneus

99 +56.3 +16.8 −16.2 −11.04 −0.412 <0.01 L-ITG

86 −45.9 −10.2 +6.6 −10.81 −0.387 <0.01 R-insular cortex

63 −2.7 +33.0 +66.3 11.48 0.306 <0.01 r-postcentral gyrus

49 −58.3 +15.3 −16.8 −10.83 −0.408 <0.01 R-ITG

CDIN 243 −0.0 +52.4 +29.9 −14.78 −0.381 <0.01 PCC

124 −2.3 +28.5 +58.3 11.49 0.354 <0.01 Primary motor cortex

98 −48.4 +47.3 +42.1 −14.41 −0.426 <0.01 R-IPL

96 −40.1 +25.2 +55.8 12.09 0.327 <0.01 R-postcentral gyrus

85 +20.5 −2.2 −20.7 10.52 0.423 <0.01 L-piriform cortex

83 −44.3 −13.1 +3.1 −16.74 −0.375 <0.01 R-insular cortex

56 −27.3 −6.6 −31.4 10.12 0.403 <0.01 R-fusiform gyrus

54 +40.8 +25.1 +57.6 10.00 0.302 <0.01 L-postcentral gyrus

39 +38.1 −12.3 +4.2 −13.85 −0.381 <0.01 L-insular cortex

37 +57.0 +9.2 +30.8 10.72 0.315 <0.01 L-postcentral gyrus

36 +47.6 +19.1 +6.2 8.68 0.376 <0.01 L-STG

36 −7.6 −14.3 +40.1 −11.73 −0.349 <0.01 ACC

31 −47.2 +21.0 +8.2 8.32 0.382 <0.01 R-STG

804 +2.0 −45.3 +24.8 −13.14 −0.476 <0.01 Superior and MFG

485 +1.1 +8.r05 −5.0 5.69 0.577 <0.01 Caudate/putamen

CDIP 92 +55.9 +14.2 −18.2 −10.23 −0.400 <0.01 L-ITG

50 −30.2 −9.1 −33.3 7.53 0.388 <0.01 R-ITG

30 +0.6 +46.2 +33.2 −12.87 −0.303 <0.01 PCC

CDINCDI 23 −28.7 −8.5 −32.1 10.81 0.372 <0.01 R-parahippocampal (CDIN)

7.186 0.376 <0.01 R-parahippocampal (CDIP)

23 +0.2 +47.2 +33.3 −17.27 −0.330 <0.01 PCC (CDIN)

−12.96 −0.303 <0.01 PCC (CDIP)

The volume, center of mass coordinates in MNI space, regression parameter (β), linear correlation coefficient (r), statistical significance (p), and anatomic annotations are
specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CDINP indicates the overlapping results between CDIN
and CDIP.

adult age in the striatum-cortical system can be potentially
useful for assessing motor as well cognitive functions in
elderly subjects.

Methodological Issues
The QDA framework proposed in the study is a voxel-wise and
data-driven approach. It has the following two unique features:
(1) It can avoid confounding caused by the cancelation of
the negative and positive correlations by assessing the negative
and positive portions of the CC histogram separately; (2)
It derives different RFC metrics based on the connectivity
strength and density by utilizing the concept of convolutions
with different kernels. The metrics weight all the correlations
of a given voxel with the rest of the brain according to the
amplitudes of the correlation coefficients and disregard the
anatomical distance between the correlation pairs. This permits
a comprehensive characterization of the intrinsic activities of
each voxel without the use of an arbitrary threshold. The QDA
approach can encapsulate the widely used threshold approach as
a special case of the square-well kernel function. The widely used
degree centrality corresponds precisely this square-well kernel

situation which adopts a somewhat arbitrary threshold and every
connection above the threshold are weighted equally. Even the
CSI metrics can be encapsulated under the convolution concept
for a special kernel of the sign function. This provides a unified
view for RFC and can facilitate its further optimization. The
QDA framework uses the time course of each voxel within the
brain as the seed reference to compute voxel-wise whole-brain
correlational coefficient matrix. For whole-brain R-fMRI data
acquired at 4 mm spatial resolution, the correlational coefficient
matrix is in the order of 105 and is currently not practical for
direct visualization and statistic assessment. Particularly, when
data are acquired with higher spatial resolution, e.g., 2 mm,
the matrix size is increased by 8 × 8 times. Therefore, for
data reduction, we derived two types of voxel-wise RFC metrics
from the correlational coefficient matrix without the need for
specifying a particular seed, threshold, model, or mode. As their
names indicated, CSI and CDI are aimed to capture the local
(voxel) connectivity strength and density with rest of brain,
respectively. The QDA metrics can assess the general connectivity
with the rest of the brain without specifying a specific path
or network. The QDA method does not highlight the specific
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FIGURE 7 | The overlapping ROIs in the PCC and right insula cortex where both the CSIP and CSIN metrics depict significant decline with the adult age (A). The one
sample t-test maps for the Pearson’s correlation maps associated the seeds defined as the overlapping ROI in the PCC (B) and insula cortex (C).

connectivity changes between selected brain regions. The precise
neural correlate of R-fMRI signal is currently not well understood
(Hyder and Rothman, 2010). However, it is reasonable to assume
that the R-fMRI signal fluctuations indirectly reflect the slow
modulations of neuronal activities at rest. Furthermore, the
sigmoid function has been widely accepted as the logistic function
of neuronal activation instead of a square-well. With current

FIGURE 8 | Cross-sectional display of the anti-correlation network associated
with the PCC (A) and insula (B) seeds as derived by multiplying the correlation
maps shown in Figures 7B,C and applying a negative threshold at CC ≤ (−0.
5). The crossing points of green lines depict the center of mass for PCC and
insula ROIs.

status of knowledge, we cannot identify a convolution kernel to
reveal a particular feature of the neurophysiology. However, we
can attempt to optimize the kernel to reduce bias and improve
sensitivity of the RFC metrics to pathophysiological changes.

The current results based on the QDA framework should
be interpreted in the context of some technical and biological
limitations. Firstly, at a TR of 2,500 ms, the cardiac and
respiratory fluctuation effects might be aliased into the low
frequency R-fMR signal fluctuations. The regression up-to the
1st order derivative of the head motions and lowpass filtering
could not eliminate the effects of these physiological noises
(Muschelli et al., 2014; Pruim et al., 2015; Bright et al., 2017;
Parkes et al., 2018). Thus, these aliasing effects could reduce the
specificity of the RFC metrics, or even might further confound
the detected RFC differences between the young and elderly sub-
groups. With the more up-to-date acquisition techniques, such
as multi-band simultaneous acquisition of multiple slices and
compress-sensing with high under-sampling factor, it is possible
to use a shorter TR (e.g., 500 ms) and higher spatial resolution for
the data acquisition. Therefore, these physiological effects may be
further mitigated.

Secondly, the resting state is associated with spontaneous
thoughts and cognitive processing, we cannot exclude the
possibility that differences in spontaneous thoughts may exist
between the young and elderly subjects (Wu et al., 2007).
However, considering the overall consistency of our results with
the previous studies, particularly the results from the longitudinal
studies (Fjell et al., 2014; Ng et al., 2016; Staffaroni et al., 2018;
Li Q. et al., 2020), it is unlikely that these differences have major
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FIGURE 9 | Scattered plots of the regression against age for the overlapping results between the CSIN and the CSIP metrics (see the bottom rows of Table 1). The
ROI average of the CSIN metric against the subject’s age for the overlapping ROI in the PCC (A). The ROI average for the CSIN metric against the subject’s age for
the overlapping ROI in the right insula cortex (B). The ROI average for the CSIP metric against the subject’s age for the overlapping ROI in the PCC (C). The ROI
average for the CSIP metric against the subject’s age for the overlapping ROI in the insula cortex (D). The lines show the linear regression results of the RFC metrics
against the subject’s ages.

influence on our findings. These initial findings encourage the
future use of QDA as a tool to analyze longitudinal R-fMRI
data aimed to develop a comprehensive understanding of age- or
pathology-related brain functional changes.

Thirdly, the generalizability, or external validity issue should
be considered. This is due to the non-random recruitment
procedures and relying on a sample of convenience. The sample
size used in this study (N = 227) is moderate, includes unbalanced
young and elderly subgroups reflecting the difficulties to recruit
elderly healthy subjects. The ages of the participants range from
young to old adulthood (reflecting the age of participants in most
neuroimaging studies). The age-related RFC differences observed
in this study were relatively small but quite robust. However,
the results from this cross-sectional study of the cohort cannot
distinguish whether the RFC changes in the brain regions are due
to gradual changes throughout the adulthood or a more sudden
change at later stage in life.

Fourthly, the R-fMRI data were acquired under open-eye
condition. Recent studies indicate that opening versus closing

eyes at resting-state results in RFC difference between V1 with
DMN and SNs (Costumero et al., 2020). This may explain
why we did not detect significant RFC change with age in
the visual cortex.

Negative Cross Correlation in White
Matter and Cerebral Spinal Fluid
As discussed above negative correlation is an important fraction
of the CC histogram irrespective of the tissue type and anatomical
location of the voxel in question. In the published literature,
there is also a rapid growing interest in studying the negative
correlations between the voxels (Fox et al., 2009; Weissenbacher
et al., 2009; Bianciardi et al., 2011; Schwarz and McGonigle,
2011; Gonzalez-Castillo et al., 2012; Gopinath et al., 2015;
Liu et al., 2015; Spreng et al., 2016; Chen et al., 2020). It
is clear that the negative portion of the CC histogram is
more dominant for voxels in CSF (Gruszecki et al., 2018)
and white matter (McColgan et al., 2017; Gore et al., 2019;
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FIGURE 10 | The total volumes of the detected brain regions with significant correlation (p < 0.05, corrected) between the connectivity density index (CDIP and
CDIN) and the subject’s age as a function of the kernels (A). The average regression parameter β for the detected brain regions as a function of the kernels (B). The
negative and positive correlations were assessed separately.

TABLE 3 | The joint overlapping brain regions where the connectivity density metrics of different kernels are all significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p(10−3) Notations

CDIN 216 +0.1 +51.9 +29.2 −13.81 −0.376 <0.01 PCC

103 +0.5 +28.2 +57.6 12.16 0.366 <0.01 Paracentral lobule

92 −48.2 +47.0 +42.1 −13.32 −0.431 <0.01 R-IPL

72 −38.7 +26.2 +57.2 11.91 0.326 <0.01 R-post central gyrus

44 +21.2 −4.7 −20.6 9.95 0.430 <0.01 L-PHC

38 −41.9 −12.4 +5.0 −15.16 −0.374 <0.01 R-insula cortex

29 +20.8 −4.0 −20.0 8.75 0.371 <0.01 L-STG

29 −1.5 −14.4 +39.5 −11.66 −0.355 <0.01 Anterior cingulate cortex

28 +44.0 +24.1 +57.1 10.37 0.297 <0.01 L-post central gyrus

20 −45.2 +18.4 +9.6 9.20 0.364 <0.01 R-STG

CDIP 567 +4.2 −46.9 +24.8 −12.20 −0.480 <0.01 Superior and MFG

136 −9.4 +21.2 −22.3 8.53 0.452 <0.01 Putamen

30 +57.0 +15.8 −15.8 −10.09 −0.387 <0.01 L-MTG

The volume, center of mass coordinates in MNI space, and anatomic annotations, regression parameters (β), linear correlation coefficient (r), statistical significance (p),
and anatomic annotations are specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CDIN and CDIP indicate the
joint overlaps among the CDIN and CDIP metrics of the different kernels, respectively. The β, r, and p are the average results for the 6 different kernels.

Wu et al., 2019; Li M. et al., 2020). However, the negative
portion cannot be ignored even for voxels in the gray matter
(see Supplementary Materials). To avoid confound caused by
inappropriate preprocessing pipelines, we have carefully tested
and updated our preprocessing pipeline. We did not implement
the global signal regression (GSR) which removes the mean signal
averaged over the entire brain. GSR removal via linear regression
is one of the most controversial procedures in the analysis of

R-fMRI data (Fox et al., 2009; Weissenbacher et al., 2009). On one
hand, the global mean signal contains variance associated with
respiratory, scanner-, and motion-related artifacts. Its removal by
GSR can improve various quality control metrics, which enhances
the anatomical specificity of RFC networks, and increase the
explained behavioral variance. On the other hand, GSR alters
the distribution of regional signal correlations in the brain, can
induce artefactual anti-correlation patterns, may remove real
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TABLE 4 | The linear regression results for the 3 ROIs with significant correlation between CSI and the subject’s age.

ROI CSIP CSIN CSI

β × 103 r p β × 103 r p β × 103 r p

Precuneus 4.93 0.283 < 0.01 3.17 0.175 0.07 9.50 0.459 <0.01

MFG −11.46 −0.441 < 0.01 3.77 0.136 0.11 −9.72 −0.389 <0.01

R-IPL 0.73 0.031 0.61 8.03 0.299 < 0.01 9.57 0.354 <0.01

The CSIP and CSIN results are based on the masks determined solely by the CSI results.

FIGURE 11 | The ROI average of the CSIP, CSIN, and CSI metrics against the subject’s age for the 3 ROIs with significant correlation between CSI and the subject’s
age. The details of the regression results are summarized in Table 4. The columns 1 to 3 are the results for the ROIs in the precuneus, MFG, and R-IPL, respectively.
The rows 1 to 3 are the results for the CSIP, CSIN and CSI metrics, respectively. The ROI masks are solely based on the CSI metric only.

neural signal, and can distort RFC metrics. The brain masked
“global signal” is usually misunderstood, because it is not “global”
and its variance contains dominant contributions from different
domains of the voxels with temporally coherent signal variation.

To limit the study in a reasonable scope, in the discussion of
the adult age effect on RFC we focused on gray matter and did not
discuss white matter and CSF related issues. However, it should
be pointed out that aging effects in white matter (McColgan et al.,
2017; Gore et al., 2019; Wu et al., 2019; Li M. et al., 2020) and
CSF (Sakka et al., 2011; Gruszecki et al., 2018) are also worth
exploring. There is indeed a rapid growing interest in these arenas

in published literature (Sakka et al., 2011; McColgan et al., 2017;
Gruszecki et al., 2018; Gore et al., 2019; Wu et al., 2019; Li M.
et al., 2020), particularly in the context of the age effect for the
glymphatic system.

CONCLUSION

The proposed QDA framework can provide data-driven,
threshold-free and voxel-wise analysis of R-fMRI data and offer
a unified view for RFC metrics which can facilitate further
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development and optimization of the RFC metrics by choosing
appropriate kernel functions. The QDA results for the adult age
effect are largely consistent with previously published results
based on other analysis methods. Moreover, our new findings
based on the separate assessment of the negative and positive
correlations can improve the sensitivity of the RFC metrics to
physiological changes associated with the advancing adult age
and may clarify some of the confounding reports in the literature
regarding to the DMN and sensorimotor network involvement
in normal aging.
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Supplementary Figure 1 | Anatomic locations for 4 different seed voxels of
different tissue types including white matter (WM), cerebral spinal fluid (CSF), PCC,
and motor cortex (MC). The crossing green lines depict the locations of
the cross sections.

Supplementary Figure 2 | The average CC histograms of the cohort for the 4
different seed voxels shown in Supplementary Figure 1 and
Supplementary Table 1.

Supplementary Figure 3 | The convolutions of the CC histograms shown in
Supplementary Figure 2 for the 4 different seed voxels located in WM (a), PCC
(b), CSF (c), and MC (d).

Supplementary Table 1 | The MNI coordinates for the 4 voxels of different tissue
types illustrated in Supplementary Figure 1.
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