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ABSTRACT
Surface air temperature (Ta) required for real-time environmental modelling
applications should be spatially quantified to capture the nuances of local-scale
climates. This study created near real-time air temperature maps at a high spatial
resolution across Australia. This mapping is achieved using the thin plate spline
interpolation in concert with a digital elevation model and ‘live’ recordings garnered
from 534 telemetered Australian Bureau of Meteorology automatic weather station
(AWS) sites. The interpolation was assessed using cross-validation analysis in a
1-year period using 30-min interval observation. This was then applied to a fully
automated mapping system—based in the R programming language—to produce
near real-time maps at sub-hourly intervals. The cross-validation analysis revealed
broad similarities across the seasons with mean-absolute error ranging from 1.2 �C
(autumn and summer) to 1.3 �C (winter and spring), and corresponding root-mean-
square error in the range 1.6 �C to 1.7 �C. The R2 and concordance correlation
coefficient (Pc ) values were also above 0.8 in each season indicating predictions were
strongly correlated to the validation data. On an hourly basis, errors tended to be
highest during the late afternoons in spring and summer from 3 pm to 6 pm,
particularly for the coastal areas of Western Australia. The mapping system was
trialled over a 21-day period from 1 June 2020 to 21 June 2020 with majority of maps
completed within 28-min of AWS site observations being recorded. All outputs were
displayed in a web mapping application to exemplify a real-time application of the
outputs. This study found that the methods employed would be highly suited for
similar applications requiring real-time processing and delivery of climate data at
high spatiotemporal resolutions across a considerably large land mass.

Subjects Computational Science, Spatial and Geographic Information Science
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INTRODUCTION
A timely and accurate source of air temperature (Ta) data is essential for a wide variety of
environmental modelling applications requiring real-time monitoring of environmental
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change (Lazzarini et al., 2014). This is often gleaned from a network of in situ telemetered
meteorological weather stations that are streamed over the internet (Williams et al., 2011).
However, datasets of this nature tend to be relevant for a single geographic location
that fail to accurately account for the spatial variability between sites that can vary
markedly over short distances (Webb et al., 2016). For applications that rely on
location-specific data, observations are often harvested from stations situated
kilometres away from their location of interest, resulting in that data not being truly
representative of the desired location (Jeffrey et al., 2001; Liu et al., 2018b). Thus, Ta can
vary considerably over space and time, often attributed to the effects of topographic,
coastal and latitudinal factors (Hutchinson, 1991; Jarvis & Stuart, 2001a; Wang et al.,
2011), cloud cover (Xue et al., 2019), radiative effects from aerosols (Li et al., 2017;Mitchell
et al., 1995) and diurnal variation (Liu et al., 2018a). As such, Ta for the purpose of input to
real-time modelling applications need to be spatially quantified to dynamically account
for these interactions but also at an appropriate spatial and temporal resolution to account
for the subtle nuances of local-scale climates.

There has been a plethora of research aimed at interpolating surface air temperature
at various spatiotemporal scales (Hutchinson, 1991; Jarvis & Stuart, 2001b; Jeffrey et al.,
2001; Jones, Wang & Fawcett, 2009; Xu et al., 2018). This is in addition to surface
temperature estimated from satellite data (Mao et al., 2017; Sobrino, Julien & García-
Monteiro, 2020). Or from regional reanalysis of global circulation models at high
spatiotemporal resolutions (Bollmeyer et al., 2015; Su et al., 2019). Despite this, their
application to real-time monitoring of climate have been limited, or insufficient for
local-scale monitoring purposes. For example a modelling system based on remote sensing
data coupled with in situ meteorological recordings was able to produce air temperature
maps in near real-time across the United Arab Emirates (Lazzarini et al., 2014).
However, the spatial resolution of ~3 km was limited in accounting for lapse rates in
highly variable topography, despite the system capable of delivering outputs at very high
temporal resolution (every 15-min). Similarly, a near real-time drought monitoring
tool developed for South Asia (Aadhar & Mishra, 2017), capable of producing daily
minimum and maximum temperatures at a spatial resolution of 0.05� (~5 km), would also
require further adaptation for high resolution monitoring. This is in addition to a similar
system currently used in Australia, where daily minimum (Tmin) and maximum (Tmax)
temperatures are produced from Australian Bureau of Meteorology (BoM) weather station
sites using thin plate smoothing splines (TPS) interpolation to deliver daily products
at 0.05� (~5 km) grid resolution (Jeffrey et al., 2001; Jones, Wang & Fawcett, 2009).
While both datasets are useful for broad-scale analysis requiring up-to-date daily records,
they still lacked the resolution for sub-daily real-time monitoring at the local-scale.

Recently, a near-real time mapping system was developed to produce air temperature
maps at high spatiotemporal resolutions across the state of Tasmania, Australia (Webb,
Kidd & Minasny, 2020). This used a combination of regression trees (RT) and TPS
interpolation and capable of consistently producing maps at a spatial resolution of 80 m at
1-h time steps. Evaluation of the system showed that the TPS method was highly suited to
real-time application due to the speed and relative accuracy of the outputs produced.
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For example assessment of the TPS interpolation showed root mean square errors were
consistently under 1.5 �C, in addition to only requiring 2-min processing time to produce
each map product. In this context, the application would be suited to the estimation of Ta

across a much larger geographic space at a similar spatiotemporal resolution. As such,
there is also an opportunity to apply this approach on a digital platform for real-time
access for end-users.

The objective of this study was to apply and extend the methods in Webb, Kidd &
Minasny (2020) for production of Ta maps across continental Australia. TPS interpolation
is used to produce Ta maps at sub-hourly intervals (every 30-min) based on recordings
garnered directly from BoM automatic weather station (AWS) sites. The resulting
maps are presented digitally at a spatial resolution of 286 m, appropriate for local-scale
monitoring purposes. The methods for prediction accuracy are evaluated using historic
hourly Ta data captured over a 1-year period, in addition to assessing the efficacy of
the system for real-time application and subsequent display of outputs in a purpose-built
web mapping application.

MATERIALS AND METHODS
Approach
The present study consisted of 2 parts. Firstly, evaluation of the TPS methodology using
cross-validation; and secondly, application of the methodology for operational real-time
mapping of Ta (Fig. 1). For the evaluation purpose of the study, a historical dataset of
30-min interval Ta recordings was garnered from BoM AWS sites for the 1-year period
1 March 2019 to 29 February 2020. This data was used in a leave-one-out cross-validation
exercise to assess the prediction performance of the TPS interpolation method. For the
application of the methodology for operational real-time mapping, this was tested over a
21-day period from 1 June 2020 to 21 June 2020. For this purpose, a fully automated
mapping system was developed using R programming language (R Development Core
Team, 2015). Processing performance of this mapping system was evaluated for
computational efficiency by analysing each subsequent spatial output (i.e. the time to taken
to produce each Ta map) and therefore assessed for real-time application. Maps produced
from the interpolation process are immediately displayed in a web map application.

Air temperature data
Air temperature data recorded by AWS from the BoM and capable of providing real-time
access at 30-min intervals were considered for primary use in this study (Fig. 2).
For evaluating the accuracy of the model, a requirement was set, where each station
used for the real-time application should have historic recordings for the previous year,
specifically from 1 March 2019 to 29 February 2020. These historical data were used for
cross-validation analysis. It should be noted that not all AWS sites had data available
for the entire evaluation period. Thus, AWS sites that had least 15 days of recordings—
consisting of 30-min interval recordings in each season—was considered for the evaluation
process. AWS sites that did not meet this criterion were discarded from the analysis (192 in
total). Thus, the screening process resulted in 534 AWS sites corresponding to a
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possible 17,567 recording observations in the evaluation period and relevant to each AWS.
It should be noted that AWS air temperature observations are recorded using a resistance
temperature detector placed within a Stevenson weather screen at 1.2 m above ground
(Bureau of Meteorology, 2018). All AWS recordings are telemetered into the BoM climate
database and publicly accessible via URL (http://www.bom.gov.au/tas/observations/).
These are typically displayed at 30-min intervals. However, due to telemetry and
processing delays, readings tend to lag the true observation time of approximately
10- to 20-min.

Interpolating Ta using thin plate smoothing splines
Air temperature values garnered from the BoM AWS sites were interpolated on a 30-min
interval basis using TPS. This was performed to form TPS predictions in the evaluation
period (1 March 2019 to 29 February 2020) as well as for application to real-time mapping.
Its application involves a trivariate approach whereby latitude, longitude, and elevation
variables are used as independent variables, as per Jeffrey et al. (2001). The independent
variables of latitude and longitude are used for the partial spline component to account
for spatial variation, whereas elevation is combined to account for the temperature
lapse rates. The spline component of the algorithm is optimised by minimising the
generalised cross validation error from the residual sum of squares (Hutchinson, 1991).

Figure 1 Workflow developed for this study. Full-size DOI: 10.7717/peerj.10106/fig-1
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In this study, the Fields statistical package (Nychka et al., 2017) was used to implement
the TPS algorithm in R software (R Development Core Team, 2015). To guide the mapping
of Ta, the 9-second Digital Elevation Model (DEM) was used (Hutchinson et al., 2008).
This was reprojected to Geocentric Datum of Australia 94, Geoscience Australia Lambert
projection; and resampled to a spatial resolution of 286 m (roughly equivalent to the spatial
resolution of original 9-second DEM). The geographical coordinates of the AWS site
locations were then spatially intersected with the newly resampled DEM. This operation
provided a consistent template to routinely form TPS models using the AWS observations
as data points to the algorithm (on a 30-min basis). Thus, Ta predictions generated by
each TPS model were spatially interpolated using the DEM as the z variable, along with the
coordinate parameters of the inherent cell properties of the DEM acting as the latitude (x)
and longitude (y) variables. This allowed the spline smoothing parameter to be applied
continuously across the geographic feature space of the DEM, resulting in a final mapped
prediction; saved as GeoTIFF rasters.

Figure 2 Elevation map of Australia with locations of major towns/cities and Bureau of Meteorology
(BoM) automatic weather stations (AWS). Purple dots illustrate AWS locations. Red dots denote
locations of notable AWS sites (refer to “Results” section). Full-size DOI: 10.7717/peerj.10106/fig-2
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Evaluating TPS interpolation
The performance of the TPS algorithm was evaluated in the period from 1 March 2019 to
29 February 2020. A leave-one-out cross-validation procedure was employed for each
AWS site, similar to the method employed in Webb, Kidd & Minasny (2020). Specifically,
the training dataset was split into i parts such that i is equal to the number of AWS
sites, that is 534. For each AWS in i, the ith AWS site was kept for validation (i.e. using
actual recordings from the evaluation period), while the remaining dataset, comprising of
the remaining BoM recordings was used for TPS modelling to predict Ta at the ith
AWS site. This was performed for each 30-min interval (h) in the evaluation period
to produce a set of modelled TPS estimates vs. actual AWS recordings at each site.
This equated to 17,567 modelled TPS predictions where observed Ta—recorded from each
corresponding AWS site—could then be compared. Validation metrics used to assess the
modelling accuracy against the Ta recordings, as per Webb, Kidd & Minasny (2020),
included the mean absolute error (MAE), root-mean-square error (RMSE), coefficient
of determination (R2) and the concordance coefficient. The concordance coefficient (Pc)
was used to assess agreement between TPS predictions x; and actual recordings y; that fall
on the 45� line through the origin, as defined by Lin (1989):

pc ¼ 2psxsy

s2
x þ s2

y þ ðmx � mxÞ2

where for mx and mx represent the means for x and y, respectively, s2
x and s2

y represent
the corresponding variances, and p is the correlation coefficient between x and y.
A concordance rating close to one indicates strong agreement between predicted and
actual Ta pairings that fall on the 45� line through the origin.

Application to real-time monitoring of Ta
The proposed methodology, as advocated by Webb, Kidd & Minasny (2020), was adopted
in this study for operational real-time monitoring of Ta across continental Australia.
However, since the formation of BoM grids and calibration equations were not required in
this study, the methodology was retrofitted to consist of two major components. Firstly,
the import of ‘live’ Ta data via the internet from the BoM website, and secondly, the
mapping of the observations using TPS interpolation. This was trialled over a 21-day
period from 1 June 2020 to 21 June 2020, using real-time BoM observations to drive the
system which was fully automated using software R (R Development Core Team, 2015).
Because new BoM observations are typically available every 30-min, individual AWS site
observations were downloaded at this frequency from the BoM observations portal as
comma delimited text files (e.g. http://www.bom.gov.au/fwo/IDT60801/IDT60801.
<stationIDnumber>.axf). Thus, the mapping system was programmed to query and
import recordings every 30-min (bi-hourly) that corresponded to the nearest half-hour at
0- and 30 min (past the hour). Because of telemetry and associated processing delays
(observation updates varied from station to station), the system was programmed to make
queries at 5, 10, 15, 20, 25 and 30 min within their 30-min processing window. In addition,
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a threshold was set where at least 480 out of the 534 BoM stations (i.e. 90% of total
available AWS sites that were used in the evaluation analysis) have available observations
before the mapping was allowed to commence in their respective processing window.
This served to limit the number of missing observations that could otherwise produce
significant inaccuracies in the subsequent mapped product. However, if this threshold
was not met during the allocated query times, the mapping was still permitted to
commence at the 30-min mark regardless of the number of observations available (this was
subsequently recorded). To provide context of the proposed system, the same procedure
by Webb, Kidd & Minasny (2020) found that most observations tended to be imported
at the 15-min mark (from the nearest observation hour) with corresponding TPS maps
completed thereafter at the 17-min mark. The rationale for this study assumes a similar
time frame, albeit at bi-hourly intervals, where observations are imported every 30-min
(with an import time lag of ~15-min from the nearest half-hour), followed by Ta mapping
thereafter. Note that all AWS recording times in this study were standardised to Australian
Eastern Standard Time (AEST).

To interpolate the TPS predictions, the processing schema described in Webb, Kidd &
Minasny (2020) was used. This consisted the Raster package (Hijmans & Van Etten, 2012)
in combination with the Fields statistical package (Nychka et al., 2017) using software
R (R Development Core Team, 2015), to map and subsequently visualise the predictions
in a continuous manner across Australia. To improve processing speed, the clusterR
function within the Raster package was parameterised to host the TPS algorithm, thereby
enabling mapping to occur using multi-core processors. In this manner, the mapping
system was hosted on a high-end cloud computing Linux platform (Ubuntu 18.04 LTS
(Bionic)) constituting 16 virtual CPU cores and 64 GB RAM; made available courtesy of
the Australian National eResearch Collaboration Tools and Resources project (NeCTAR).
Spatial outputs were saved as individual GeoTIFF raster format at a grid cell resolution of
286 m, that is equivalent to the spatial resolution of the resampled DEM.

RESULTS
Assessment of the TPS interpolation procedure
Each of the AWS sites underwent the leave-one-out cross-validation analysis to assess
TPS prediction accuracy for Ta in the evaluation period: 1 March 2019 to 29 February
2020. This analysis revealed broad similarities across the seasons with MAE values ranging
from 1.2 �C (autumn and summer) to 1.3 �C (winter and spring), and similarly RMSE
ranging from 1.6 �C to 1.7 �C (Table 1). The R2 and Pc values were above 0.8 indicating that
the TPS predictions were strongly correlated to the validation data in addition to being
highly associated with the 45� line through the origin (Lin, 1989). This assessment also
implied that predictions were relatively consistent across the evaluation period and did
not vary substantially on a seasonal basis. Moreover, it implied that the TPS interpolation
was more suited to predicting Ta in autumn which tended to exhibit superior statistics
across all validation measures when compared to the other seasons. This was particularly
evident regarding R2 and Pc, which registered the highest values of 0.91 and 0.94,
respectively. However, TPS predictions tended to be least accurate in spring and winter
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which had MAE and RMSE values greater by 0.1 �C, when compared to the corresponding
MAE and RMSE values in autumn. Interestingly, although spring exhibited comparatively
inferior MAE and RMSE values, the R2 statistics were similar, both registering 0.91.
This suggests that while errors were comparatively larger in spring, they were still very
highly correlated to the validation data. However, it should be noted that the coefficient of
determination may have been unrealistically overestimated for spring since the seasonal
data signal was not removed prior to analysis, as advocated in Jeffrey et al. (2001).

When looking at the histogram distribution of the MAE and RMSE it was apparent
that spring and winter had a notable proportion of AWS sites that exhibited values above
2 �C (Fig. 3). This contributed to the inflated error values shown in Table 1. Specifically,
spring and winter both had a total of 42 and 46 AWS sites that registered MAE above
2 �C, compared to 22 and 16 AWS sites for summer and autumn, respectively. Similarly,
spring and winter also had a large proportion of RMSE values above 2 �C with 147
and 134 AWS sites, respectively, compared to 95 and 91 AWS sites for summer and
autumn, respectively. In regard to R2 and Pc, winter had a greater proportion of AWS sites
that exhibited moderate to weak correlation (≤0.7) with 45 and 32 sites, respectively;
compared to 37 and 17 in summer, 11 and 10 in spring, and 13 and 8 in autumn. The high

Table 1 Validation statistics for the TPS interpolation procedure showing R2, Pc, MAE (�C) and
RMSE (�C) values—averaged for each AWS site according to the season.

Summer Autumn Winter Spring

R2

mean 0.89 0.91 0.86 0.91

min 0.05 0.02 0.01 0.01

max 0.99 0.99 0.97 0.99

sd 0.11 0.09 0.11 0.09

Pc

mean 0.92 0.94 0.92 0.93

min 0.18 0.14 0.18 0.09

max 0.99 0.99 0.99 0.99

sd 0.09 0.08 0.09 0.08

MAE

mean 1.2 1.2 1.3 1.3

min 0.5 0.5 0.5 0.6

max 3.2 2.8 3.3 3.6

sd 0.4 0.4 0.5 0.5

RMSE

mean 1.6 1.6 1.7 1.7

min 0.6 0.7 0.7 0.8

max 4.3 3.5 4.3 4.3

sd 0.5 0.5 0.6 0.6

Note:
sd, standard deviation; min, minimum; max, maximum.
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proportion of low R2 values in winter contributed to the lowest R2 value of 0.86, compared
to 0.89, 0.91 and 0.91 for summer, autumn and spring, respectively (Table 1).

When viewing the errors spatially, it was clear that most of the larger interpolation
errors transpired in regions where there was a lack of neighbouring AWS sites (Fig. 4).
Specifically, the central and western interior parts of Australia tended to exhibit MAE
and RMSE values above 2 �C, compared to the eastern half where temperatures were
consistently predicted within 2 �C of the actual Ta. Of note was the predominately high
errors encountered for the coastal areas of Western Australia (between Geraldton and Port
Hedland) during summer and spring where the MAE and RMSE prediction errors
regularly exceeded 2.5 �C. For example the Learmonth Airport AWS site (Fig. 2) in spring
had MAE and RMSE of 3.4 �C and 4.3 �C, respectively, in addition to summer with
corresponding MAE and RMSE of 3.2 �C and 4.2 �C, respectively. Outside of this
cluster, there were also high MAE and RMSE values for individual AWS sites located at
Pirlangimpi Airport (Tiwi Islands, Northern Territory) in spring with 3.6 �C and 4.3 �C,

Figure 3 Histogram plots of validation metrics for MAE, RMSE, R2 and Pc according to each season. (A) MAE in autumn. (B) MAE in winter.
(C) MAE in spring. (D) MAE in summer. (E) RMSE in autumn. (F) RMSE in winter. (G) RMSE in spring. (H) RMSE in summer. (I) R2 in autumn.
(J) R2 in winter. (K) R2 in spring. (L) R2 in summer. (M) Pc in autumn. (N) Pc in winter. (O) Pc in spring. (P) Pc in summer.

Full-size DOI: 10.7717/peerj.10106/fig-3
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respectively; Forrest in Western Australia during summer with corresponding MAE and
RMSE of 2.9 �C and 3.8 �C, respectively; and Yampi Sound in the Northern Territory
during winter with MAE and RMSE of 3.3 �C and 4.3 �C, respectively. Furthermore, in
winter there was a notable cluster of high MAE values emanating from central Australia
through to the coastal fringes of Northern Territory and Western Australia (i.e. Darwin
through to Broome) with MAE and RMSE consistently above 2 �C.

Figure 4 Interpolated validation metrics (using a two-dimensional smoothing spline) for MAE, RMSE, R2 and Pc according to each season.
(A) MAE in autumn. (B) MAE in winter. (C) MAE in spring. (D) MAE in summer. (E) RMSE in autumn. (F) RMSE in winter. (G) RMSE in spring.
(H) RMSE in summer. (I) R2 in autumn. (J) R2 in winter. (K) R2 in spring. (L) R2 in summer. (M) Pc in autumn. (N) Pc in winter. (O) Pc in spring.
(P) Pc in summer. Black dots within each panel denote AWS sites where values are above the 95th percentile (labelled with their corresponding
value). Full-size DOI: 10.7717/peerj.10106/fig-4
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In terms of the R2 and Pc, low values tended to emanate along the coastal regions,
particularly for Western Australia, Northern Territory and North Queensland coastal
regions and neighbouring islands (Fig. 4). For example the lowest values were encountered
for sites Pirlangimpi Airport, Browse Island and Coconut Island in spring with R2 of
0.01, 0.1 and 0.1, respectively, and Pc of 0.09, 0.25 and 0.23, respectively. Summer also
encountered low R2 of 0.05, 0.05 and 0.31, respectively, with corresponding Pc of 0.18, 0.2
and 0.52. The same sites in winter also had the lowest R2 of 0.41, 0.01 and 0.14,
respectively, along with corresponding Pc of 0.48, 0.08 and 0.27.

When observing MAE (Fig. 5) and RMSE (Fig. 6) over a 24-h period, it was clear
that the high values encountered for the coastal areas of Western Australia in summer
and spring tended to occur during afternoons. Specifically, these had MAE and RMSE
ranging between 4 �C and 6 �C for times 3 pm to 6 pm, that is 1 pm to 4 pm, Australian
Western Standard Time (AWST). Of note was the Learmonth Airport AWS site
registering MAE of 6.9 �C and RMSE of 7.6 �C, peaking at 5 pm (3 pm, AWST) in summer
(Fig. 7). Similarly, very high error values were encountered for the south-eastern area
of Western Australia in spring, notably for the Forrest AWS site at 6 pm, which registered
6.1 �C and 6.3 �C for MAE and RMSE, respectively. This was in addition to 5.3 �C
and 7 �C, respectively, for the same site in summer, along with the Ceduna AWS site
(South Australia) at 6 pm, registering high MAE and RMSE values of 5.4 �C and 6 �C,
respectively. During winter the trend for high MAE and RMSE emanating from central

Figure 5 Interpolated MAE values (using a two-dimensional smoothing spline) according to each season and time of day. (A) Autumn, 12 am.
(B) Autumn, 3 am. (C) Autumn, 6 am. (D) Autumn, 9 am. (E) Autumn, 12 pm. (F) Autumn, 3 pm. (G) Autumn, 6 pm. (H) Autumn, 9 pm. (I) Winter,
12 am. (J) Winter, 3 am. (K) Winter, 6 am. (L) Winter, 9 am. (M) Winter, 12 pm. (N) Winter, 3 pm. (O) Winter, 6 pm. (P) Winter, 9 pm.
(Q) Spring, 12 am. (R) Spring, 3 am. (S) Spring, 6 am. (T) Spring, 9 am. (U) Spring, 12 pm. (V) Spring, 3 pm. (W) Spring, 6 pm. (X) Spring, 9 pm.
(Y) Summer, 12 am. (Z) Summer, 3 am. (AA) Summer, 6 am. (BB) Summer, 9 am. (CC) Summer, 12 pm. (DD) Summer, 3 pm. (EE) Summer,
6 pm. (FF) Summer, 9 pm. Full-size DOI: 10.7717/peerj.10106/fig-5
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Australia and the coastal fringes of Northern Territory and Western Australia tended to
occur during early mornings from 3 am to 9 am (1 am to 7 am, AWST), with MAE
and RMSE ranging 3–5 �C. The AWS sites with the greatest error in these parts were
Adele Island and Yampi Sound which both registered a MAE of 6.4 �C and RMSE of 6.4 �C
and 6.7 �C, respectively (Figs. 5 and 6). Both sites are located in the northern coastal
region of Western Australia (NB: the locations of all aforementioned AWS sites are
depicted in Fig. 2).

Regarding R2 and Pc, it was revealed that low values <0.5 were mostly evident during late
nights and early mornings, particularly during winter and summer (Figs. 8 and 9).
This tended to be prevalent throughout the central western interior and the coastal fringes
of Western Australia, Northern Territory and North Queensland. Specifically, R2 and
Pc <0.5 tended to occur from midnight through to 6 am, suggesting that the TPS
predictions were not highly correlated with the validation data during these times.
This occurred despite the RMSE and MAE registering values below 2 �C for some sites.
For example the AWS site at Browse Island during summer at 12 am registered R2 and Pc
values of 0.04 and 0.2, respectively, while MAE and RMSE was 0.9 �C and 1.1 �C,
respectively (Fig. 7). This was also encountered for the Coconut Island AWS during winter
mornings, for example at 9 am where the R2 and Pc values registered 0.0 and 0.1,
respectively, while the MAE and RMSE was 1.4 �C and 1.7 �C, respectively. This suggested
that while predictions were reasonably accurate, there was little to no correlation with the
validation data.

Figure 6 Interpolated RMSE values (using a two-dimensional smoothing spline) according to each season and time of day. (A) Autumn, 12 am.
(B) Autumn, 3 am. (C) Autumn, 6 am. (D) Autumn, 9 am. (E) Autumn, 12 pm. (F) Autumn, 3 pm. (G) Autumn, 6 pm. (H) Autumn, 9 pm. (I) Winter,
12 am. (J) Winter, 3 am. (K) Winter, 6 am. (L) Winter, 9 am. (M) Winter, 12 pm. (N) Winter, 3 pm. (O) Winter, 6 pm. (P) Winter, 9 pm.
(Q) Spring, 12 am. (R) Spring, 3 am. (S) Spring, 6 am. (T) Spring, 9 am. (U) Spring, 12 pm. (V) Spring, 3 pm. (W) Spring, 6 pm. (X) Spring, 9 pm.
(Y) Summer, 12 am. (Z) Summer, 3 am. (AA) Summer, 6 am. (BB) Summer, 9 am. (CC) Summer, 12 pm. (DD) Summer, 3 pm. (EE) Summer,
6 pm. (FF) Summer, 9 pm. Full-size DOI: 10.7717/peerj.10106/fig-6

Webb and Minasny (2020), PeerJ, DOI 10.7717/peerj.10106 12/23

http://dx.doi.org/10.7717/peerj.10106/fig-6
http://dx.doi.org/10.7717/peerj.10106
https://peerj.com/


Assessment of mapping Ta in near real-time
The TPS methodology was applied to mapping Ta in real-time at 30-min intervals over a
21-day period from 1 June 2020 to 21 June 2020. This exercise resulted in 1007 maps being
produced which aligned to the total number of 30-min processing intervals in the trial
period; confirming all possible maps were successfully processed. On analysing the map
completion times, the majority of the maps were completed at 28-min (Fig. 10).
Specifically, 410 and 414 maps were produced for their respective 0- and 30-min
processing intervals. This corresponded directly to the AWS import times (Fig. 11), with
the same proportion of AWS observations reaching the 480-observation threshold import
limit at the 15-min mark; thereby permitting Ta mapping to commence. Thus, import

Figure 7 Line plots for selected AWS sites over a 24-h period in each season for validation metrics concerning MAE, RMSE, R2 and Pc.
(A) MAE in autumn. (B) MAE in winter. (C) MAE in spring. (D) MAE in summer. (E) RMSE in autumn. (F) RMSE in winter. (G) RMSE in
spring. (H) RMSE in summer. (I) R2 in autumn. (J) R2 in winter. (K) R2 in spring. (L) R2 in summer. (M) Pc in autumn. (N) Pc in winter. (O) Pc in
spring. (P) Pc in summer. Full-size DOI: 10.7717/peerj.10106/fig-7
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Figure 8 Interpolated R2 values (using a two-dimensional smoothing spline) according to each season and time of day. (A) Autumn, 12 am.
(B) Autumn, 3 am. (C) Autumn, 6 am. (D) Autumn, 9 am. (E) Autumn, 12 pm. (F) Autumn, 3 pm. (G) Autumn, 6 pm. (H) Autumn, 9 pm. (I) Winter,
12 am. (J) Winter, 3 am. (K) Winter, 6 am. (L) Winter, 9 am. (M) Winter, 12 pm. (N) Winter, 3 pm. (O) Winter, 6 pm. (P) Winter, 9 pm.
(Q) Spring, 12 am. (R) Spring, 3 am. (S) Spring, 6 am. (T) Spring, 9 am. (U) Spring, 12 pm. (V) Spring, 3 pm. (W) Spring, 6 pm. (X) Spring, 9 pm.
(Y) Summer, 12 am. (Z) Summer, 3 am. (AA) Summer, 6 am. (BB) Summer, 9 am. (CC) Summer, 12 pm. (DD) Summer, 3 pm. (EE) Summer,
6 pm. (FF) Summer, 9 pm. Full-size DOI: 10.7717/peerj.10106/fig-8

Figure 9 Interpolated Pc values (using a two-dimensional smoothing spline) according to each season and time of day. (A) Autumn, 12 am.
(B) Autumn, 3 am. (C) Autumn, 6 am. (D) Autumn, 9 am. (E) Autumn, 12 pm. (F) Autumn, 3 pm. (G) Autumn, 6 pm. (H) Autumn, 9 pm. (I) Winter,
12 am. (J) Winter, 3 am. (K) Winter, 6 am. (L) Winter, 9 am. (M) Winter, 12 pm. (N) Winter, 3 pm. (O) Winter, 6 pm. (P) Winter, 9 pm.
(Q) Spring, 12 am. (R) Spring, 3 am. (S) Spring, 6 am. (T) Spring, 9 am. (U) Spring, 12 pm. (V) Spring, 3 pm. (W) Spring, 6 pm. (X) Spring, 9 pm.
(Y) Summer, 12 am. (Z) Summer, 3 am. (AA) Summer, 6 am. (BB) Summer, 9 am. (CC) Summer, 12 pm. (DD) Summer, 3 pm. (EE) Summer,
6 pm. (FF) Summer, 9 pm. Full-size DOI: 10.7717/peerj.10106/fig-9
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times that occurred at 15-min, equated to resulting maps being completed at 28-min from
the AWS observation time. From this, it can be deduced that on all occasions the map
processing time was 13-min, regardless of the interval being processed. It should be noted
that on 35 occasions the 480-observation threshold limit was not reached, resulting in

Figure 10 Frequency of map completion times (minutes from AWS observation time, T) in
accordance to their bi-hourly processing intervals. (A) 0 min. (B) 30 min.

Full-size DOI: 10.7717/peerj.10106/fig-10

Figure 11 Box and whisker plots for AWS import times (minutes from AWS observation time, T) in
accordance to their bi-hourly processing intervals. (A) 0 min. (B) 30 min. Numbers in bold denote
frequencies when the 480-observation threshold limit was reached.

Full-size DOI: 10.7717/peerj.10106/fig-11
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maps—that did not meet this criterion—being produced at the 30-min mark. This equated
to 14 and 21 maps produced at the 0- and 30-min processing intervals, respectively.

DISCUSSION
Appraisal of the TPS interpolation procedure
On the whole, the TPS interpolation method was a reliable predictor of Ta across Australia
with an RMSE of 1.65 �C, that is when averaged across the seasons (Table 1). When
compared to previous studies, this error was similar to Jeffrey et al. (2001) with RMSE of
1.5 �C and 1.9 �C for daily maximum and minimum temperatures, respectively; and
Jones, Wang & Fawcett (2009) with corresponding RMSE of 1.2 �C and 1.7 �C. On a
seasonal basis the TPS predictions tended to be least accurate in spring and winter
which had MAE and RMSE values larger by 0.1 �C compared to the same measures in
autumn. When viewing these errors spatially, it was clear that the majority of the larger
interpolation errors transpired in the central and western interior parts of Australia. This is
unsurprising given the station density in these parts are relatively sparse in addition to
large temperature variances which tend to produce inflated errors (Jeffrey et al., 2001; Jones
& Trewin, 2000). Of note was the predominately high errors encountered for the coastal
areas of Western Australia (between Geraldton and Port Hedland) during summer and
spring afternoons where prediction errors were regularly above 2.5 �C. This was in
addition to high MAE values for individual AWS sites located at Forrest in Western
Australia and Ceduna in South Australia. Collectively, these regions tend to experience
very strong temperature gradients, particularly concerning maximum temperatures,
since their proximity between the coast and inland deserts result in local climate regimes
being invariably affected by the relatively cool ocean to the west and hot desert interior
to the east (Jones, Wang & Fawcett, 2009). These are increasingly difficult to model
with a sparse network of observation sites since these errors tended to be amplified during
mid to late afternoons in late spring and summer when the temperature gradients were
at their peak. Also, temperatures in these areas vary considerably over short periods
leading to a tendency for larger errors (Jones & Trewin, 2000).

Concerning winter, the trend for high MAE and RMSE in central Australia and coastal
fringes of Northern Territory and Western Australia tended to occur during early
mornings from 3 am to 9 am (1 am to 7 am, AWST). As acknowledged previously, the
accuracy of the mapping was limited in these regions due to an insufficient network of
AWS sites. Also, AWS sites in the coastal fringes tend to have tight climate gradients as a
result of local maritime effects (Jones, Wang & Fawcett, 2009). This possibly contributed to
the low R2 and Pc values encountered in Figs. 4, 8 and 9—despite some AWS sites
exhibiting relatively small MAE and RMSE values, for example Browse Island and Coconut
Island AWS sites (Fig. 7). Thus, the predictions tended to be highly variable over a
narrower prediction range due to the tighter temperature gradient in these climates.
Combined with a sparse network of AWS sites, the TPS method was unable to account
for this on a sub-hourly timescale. Moreover, the spread of AWS sites in remote coastal
locations—for example Adele Island, Yampi Sound and Pirlangimpi Airport AWS sites—
tend to have considerably larger errors as a result of unique and often complex
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microclimates, thereby compounding the variability (Jones, Wang & Fawcett, 2009).
It should also be noted that the larger errors for the central interior parts of Australia may
also be due to the weaker link between altitude and temperature – for which the TPS
algorithm is reliant (Hutchinson, 1991). This is because minimum temperatures have a
highly variable and complex relationship with topography for which elevation and its
association with lapse rates are only one part (Rolland, 2003; Trewin, 2005). Considering
minimum temperatures tend to transpire during early mornings—as encountered for
AWS sites in winter (Figs. 5 and 6)—a multivariate approach to modelling might be more
appropriate along with a denser network of AWS sites. This approach was conducted
by Webb, Kidd & Minasny (2020), and showed errors improved during winter when
using regression tree interpolation (along with multiple terrain and satellite covariate
datasets). However, the substantially longer processing times may not be appropriate for
real-time application, negating its ability to produce outputs in a timely manner as
required for this study. Similar experiments contrasting TPS, ordinary kriging and inverse
distance weighting interpolation found that TPS was more accurate and required few
guiding covariates (Jarvis & Stuart, 2001b). This justified the selection of the TPS method
in the current study, even though kriging can be an equally effective method (Hutchinson,
1991). However, kriging requires considerable computational overhead (Jarvis & Stuart,
2001b) and therefore, in the context of this study, not ideal for real-time application.

It should be commented that the cross-validation analysis adopted in this study
would likely overestimate the error since predictions were made at locations that have
actual data observations. This would be less of a concern for regions where the number of
observation points is numerous, such as for the majority of land areas in south-east
Australia—which tended to have more accurate Ta predictions compared to the western
interior. Nevertheless, this exemplifies that the sparse network of AWS sites in central
and western coastal areas of Australia was a notable factor contributing to larger
interpolation errors. It should be further commented that while the cross-validation
analysis was valid using a static dataset, in reality and as exemplified during real-time
application, interpolation could only commence when the predefined threshold of 480
AWS observations was met. Thus, on most occasions’ predictions were based on the
minimum allowable number of AWS sites and therefore prone to produce less accurate
predictions compared to using an entire dataset. To evaluate this scenario, a K-fold cross
validation was implemented (Hastie, Tibshirani & Friedman, 2009). Specifically, the
training dataset—represented by AWS observations in each 30-min interval (h) within the
evaluation period—was split into K equal parts using random sampling. Where the Kth
part was kept for validation and the remaining K-1 part were combined for TPS modelling
in each fold. In this manner, the predictions produced by the modelling were assessed
against the held back validation subset and was repeated K times, such that each K
validation subset was used once to assess the K-1 model. In this study, K = 10 was specified,
representing 90% of the dataset for TPS modelling and 10% for validation in each fold, that
is equivalent to 480 and 54 AWS sites, respectively.

The result of the K-fold analysis (Table 2) revealed broad similarities with Table 1.
For example, the MAE of 1.2 �C, 1.2 �C, 1.3 �C and 1.3 �C, respectively for summer,
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autumn, winter and spring, and corresponding RMSE of 1.7 �C, 1.6 �C, 1.7 �C and 1.8 �C,
respectively, deviated by no more than 0.1 �C when compared to the equivalent measures
in Table 1. This indicated that overall the prediction accuracy did not deteriorate
greatly when interpolation was based on the minimum allowable number of AWS sites.
It also justified that the 480 AWS threshold adopted in this study was an acceptable limit
for the real-time application.

Appraisal of mapping Ta in near real-time and application to digital
mapping
The TPS interpolation applied in real-time was capable of producing sub-hourly Ta maps
typically within 28-min of the observation being recorded by the available AWS sites
(Fig. 10). Specifically, import times were generally reached for the predefined threshold of
480 observations at the 15-min mark (Fig. 11) which was followed by a 13-min processing
lag. In this regard, maps were consistently available within their 30-min processing
window and had a high degree of temporal reliability—with all possible maps produced in
the 21-day trial period. The resulting maps were presented on a digital web mapping
platform to allow real-time access and interrogation ability of each output. An example
of this application can be accessed at URL http://austemperature.live/ (Fig. 12).

Table 2 K-fold cross-validation statistics for the TPS interpolation procedure showing R2, Pc, MAE
(�C) and RMSE (�C) values—averaged for each season.

Summer Autumn Winter Spring

R2

mean 0.93 0.92 0.9 0.92

min 0.4 0.43 0.04 0.41

max 0.99 0.99 0.99 0.99

sd 0.04 0.05 0.07 0.06

Pc

mean 0.96 0.96 0.95 0.96

min 0.62 0.62 0.19 0.63

max 1 1 1 1

sd 0.02 0.03 0.04 0.03

MAE

mean 1.2 1.2 1.3 1.3

min 0.5 0.5 0.4 0.5

max 2.7 2.5 3 3.1

sd 0.3 0.3 0.4 0.4

RMSE

mean 1.7 1.6 1.7 1.8

min 0.7 0.6 0.5 0.7

max 6.4 7.6 10 7.4

sd 0.4 0.4 0.6 0.5

Note:
sd, standard deviation; min, minimum; max, maximum.
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A GeoServer backend was used to host current outputs to allow geospatial representation
and sharing of outputs via a Wep Map Service (Open Source Geospatial Foundation, 2019).
The maps can be spatially queried to reveal temperatures for the current hour and for
the previous 3-h (at 30-min intervals). This is enabled via web application packages
shiny and leaflet (Chang et al., 2019; Cheng, Karambelkar & Xie, 2019) within the R
programming environment (R Development Core Team, 2015). In this fashion, maps can
be spatially interrogated via an on-the-fly ‘data drilling’ for any geographical location in
Australia (via mouse click). A facility to view the cross-validation statistics of each map
output is also provided as well as the ability to download each newly created map for
use in GIS applications. A potential new feature is to provide an error map for each
subsequent map produced (similar to Figs. 5 and 6). This would provide an approximate
error measure for regions with limited AWS sites which tended to be high, as encountered
in this study. Note that rainfall mapping outputs are also presented in the application,
although this should be used with caution due to the preliminary nature of this work.

CONCLUSIONS
The methods described in this study were successful for operational real-time spatial
mapping of Ta at high spatiotemporal across Australia. The TPS interpolation method was

Figure 12 Web map environment for displaying and spatially interrogating the near real-time Ta outputs. An example can be viewed at URL
http://austemperature.live/. © OpenStreetMap contributors, CC BY SA. Full-size DOI: 10.7717/peerj.10106/fig-12
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best suited for mapping Ta during autumn and was comparatively less accurate during
winter and spring. In particular, areas, where there was a lack of AWS sites, tended to
underperform. These areas included the central and western interior regions of Australia,
as well for the north-west coastal areas of Western Australia and parts of the Northern
Territory coastline. On a temporal basis, the errors were amplified during the afternoons,
particularly around the coastal regions of Western Australia, during spring and summer.
In winter, errors tended to be higher in central Australia and the coastal fringes of
Northern Territory and Western Australia, from 3 am to 9 am. In terms of applying
the TPS method to real-time operational mapping, the mapping system was able to
regularly provide spatial outputs within 28-min of AWS site observations being recorded.
In addition, it also had a high degree of temporal reliability with all maps produced in the
21-day trial period. Outputs were sequentially displayed on purpose-built web mapping
application to exemplify real-time application of the outputs. In this regard, the
methodology employed in this study would be highly suited for similar applications
requiring real-time processing and delivery of climate data at high spatiotemporal
resolutions across a large landmass, suitably complimented with a relatively dense network
of observation sites.
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