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Abstract

Aims Frailty may be found in heart failure patients especially in the elderly and is associated with a poor prognosis. However,
assessment of frailty status is time-consuming, and the electronic frailty indices developed using health records have served as
useful surrogates. We hypothesized that an electronic frailty index developed using machine learning can improve short-term
mortality prediction in patients with heart failure.
Methods and results This was a retrospective observational study that included patients admitted to nine public hospitals
for heart failure from Hong Kong between 2013 and 2017. Age, sex, variables in the modified frailty index, Deyo’s Charlson
co-morbidity index (≥2), neutrophil-to-lymphocyte ratio (NLR), and prognostic nutritional index at baseline were analysed.
Gradient boosting, which is a supervised sequential ensemble learning algorithm with weak prediction submodels (typically
decision trees), was applied to predict mortality. Variables were ranked in the order of importance with a total score of
100 and used to build the frailty models. Comparisons were made with decision tree and multivariable logistic regression.
A total of 8893 patients (median: age 81, Q1–Q3: 71–87 years old) were included, in whom 9% had 30 day mortality and
17% had 90 day mortality. Prognostic nutritional index, age, and NLR were the most important variables predicting 30 day
mortality (importance score: 37.4, 32.1, and 20.5, respectively) and 90 day mortality (importance score: 35.3, 36.3, and
14.6, respectively). Gradient boosting significantly outperformed decision tree and multivariable logistic regression. The area
under the curve from a five-fold cross validation was 0.90 for gradient boosting and 0.87 and 0.86 for decision tree and logistic
regression in predicting 30 day mortality. For the prediction of 90 day mortality, the area under the curve was 0.92, 0.89, and
0.86 for gradient boosting, decision tree, and logistic regression, respectively.
Conclusions The electronic frailty index based on co-morbidities, inflammation, and nutrition information can readily predict
mortality outcomes. Their predictive performances were significantly improved by gradient boosting techniques.
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Introduction

Frailty refers to a reduced physiological reserve leading to an
impairment in resilience fromphysical distress. Comparedwith
highly functional community-dwelling elders, frail older adults
are more likely to experience falls and disability, contributing
to frequent hospitalization and premature death.1 Conven-
tional evaluation of frailty relies on physical examination. How-
ever, this precludes its calculation using administrative data
such as electronic health records. Recently, a claims-based
frailty scoring system has been validated against Fried and col-
leges’ frailty phenotype using a claim database in the USA.2–4

These electronic frailty indices do not normally include mea-
sures of chronic inflammation or nutrition status, which are
both closely related to frailty syndrome and are strong deter-
minants of adverse outcomes such as mortality.5,6

Heart failure is a complex syndrome characterized by high
prevalence in older patients and poor prognosis.7,8 Heart fail-
ure and frailty have an overlapping phenotype, and their
co-existence is common.9 Given these associations, there
has been several studies exploring the intersections between
heart failure and frailty.9 Importantly, frailty has been recog-
nized as a major prognostic indicator of heart failure, in which
patients with concurrent frailty and heart failure have in-
creased risks of hospitalizations and mortality.10

Furthermore, inflammation and nutrition status are known
independent predictors of heart failure outcomes.11–13

Inflammation has a pivotal role in the pathogenesis of heart
failure.14 It can trigger cardiac remodelling and dysfunction
that further induce cardiomyocyte damage that underlies
heart failure.15 Moreover, it has been proposed that co-
morbidities, such as diabetes and obesity, can induce a
systemic pro-inflammatory state that drives the myocardial
structural and functional alterations in heart failure.16,17

Conversely, inflammation can also be a consequence of
established heart failure via the mechanisms of increased wall
stress on endothelial cells, cell death, and oxidative stress.18

In this regard, inflammation and heart failure are
interconnected and mutually inducing. Elevated pro-
inflammatory cytokines were found to associate with worse
clinical outcomes in patients with heart failure,19,20 and some
studies have demonstrated that neutrophil-to-lymphocyte ra-
tio (NLR) can be used as a prognostic factor for heart failure.21

Similar to inflammation, malnutrition is also an independent
risk factor and prognostic factor for heart failure.22,23 Various
nutritional metrics, including prognostic nutritional index
(PNI), associate well with the survival outcomes.24,25 Both fac-
tors possess important predictive values for clinical outcomes
in patients with heart failure.26–28 Despite the multiple asso-
ciations between frailty, heart failure, nutrition status, and in-
flammation, whether incorporating the measures of nutrition
status and inflammation into the existing frailty index can
enhance its predictive value on outcomes of heart failure re-
mains unknown.

Machine learning techniques have gained popularity in
medical research. Specifically, gradient boosting has recently
been explored as a method to predict adverse outcomes in
heart failure.29 In this study, using a large cohort of patients
with heart failure, we tested the hypothesis that incorporat-
ing NLR and PNI into an electronic frailty index using gradient
boosting, a machine learning approach will improve predic-
tion for short-term mortality risks.

Methods

Data source and study population

This study received Ethical Approval from the local Ethics
Committee. This is a retrospective cohort study nested within
the territory-wide Clinical Data Analysis and Reporting Sys-
tem, an electronic health record system managed by the
Hong Kong Hospital Authority since 1995. The database in-
cluded over seven million Hong Kong residents and has been
used for producing high-quality clinical studies.30,31

Patient information was de-identified with pseudo-identity
numbers. Clinical data available from Clinical Data Analysis
and Reporting System include demographic information,
diagnosis, procedure, prescription, laboratory test results,
admission/discharge information, and death information.

The inclusion criterion was patient admitted to any of the
nine local hospitals during a 4 year period between July 2013
and July 2017 with a principal diagnosis of heart failure. The
diagnosis of heart failure was defined as having a record with
the International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9 CM) codes of 428.X.

Study variables

Variables that were previously included in the modified
frailty index4 were identified from the relevant ICD-9 codes.
These include depression, Parkinson’s disease, arthritis,
paranoia, chronic skin ulcer, pneumonia, falls, skin and sub-
cutaneous tissue infection, mycoses, gouty arthropathy,
and urinary tract infection. Laboratory test results on the
measures of albumin level, neutrophil, and lymphocyte
counts were extracted to calculate inflammatory and nutri-
tional indices. NLR was given by the ratio of peripheral
neutrophil count/mm3 to peripheral lymphocyte
count/mm3. PNI was calculated by 10 × serum albumin value
(g/dL) + 0.005 × peripheral lymphocyte count/mm3. NLR and
PNI estimates nearest to the admission time of the first
heart failure related hospitalization of the patients were
used in the analysis. Baseline Deyo’s Charlson co-morbidity
index incorporating 17 major medical conditions was also in-
cluded as a single score.32 A comparison of the included
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variables used in the modified frailty index, Charlson Deyo’s
Charlson co-morbidity index, and our electronic frailty index
is shown in the Supporting Information, Table S1.

Outcomes and statistical analysis

The primary outcomes were 30 day and 90 day mortality,
from the date of the first heart failure related-hospitaliza-
tion of the patients. The outcome of 30 day mortality is bi-
nary and equal to 1 for mortality within 30 days and 0
otherwise, and the same for 90 day mortality outcome.
Continuous variables were presented as median (interquar-
tile range [IQR]), and categorical variables were presented
as count (%). The Mann–Whitney U test was used to com-
pare continuous variables. The χ2 test with Yates’ correction
was used for 2 × 2 contingency data, and Pearson’s χ2 test
was used for contingency data for variables with more than
two categories. To identify significant risk factors associated
with 30 day and 90 day mortality, univariate logistic regres-
sion was used to determine odds ratios and 95% confi-
dence intervals. Significant variables from the univariable
logistic regression (P < 0.05) were further included in mul-
tivariable logistic regression to build the frailty model.

The idea of frailty is the cumulative deficits, each of which
in isolation may not exert significant effects. To test this idea,
we conducted an additional multivariable logistic regression
analysis incorporating all risk variables, including the
non-significant variables from univariable logistic regression.
Finally, to demonstrate the utility of NLR and PNI, both vari-
ables were excluded in sensitivity analysis to examine the ef-
fects on evaluation metrics.

A two-sided α of <0.05 was considered statistically signif-
icant. All statistical analyses were performed using RStudio
software (Version: 1.1.456).

Machine learning model development

Gradient boosting is a typical type of machine learning
boosting, relying on the intuition that the best possible next
model, when sequentially combined with previous weak
models (e.g. decision trees) in a stage-wise fashion, is able
to minimize the overall prediction error measured by perfor-
mance evaluators, for example, precision, recall, and the area
under the curve (AUC). Weaker learning models are fitted
through loss gradient minimization with gradient descent op-
timization algorithm.33 This method was used for mortality
prediction in heart failure based on administrative claims
with electronic health records.29 Variable importance ranking
was generated to construct a machine learning based risk
score for mortality prediction. Partial dependence plots were
provided as low-dimensional graphical renderings of marginal
effects to assist in the interpretation of relationships

between the most important variables and the mortality out-
come. A five-fold cross validation was performed to compare
the performance in terms of precision, recall, and AUC of the
gradient boosting model with decision tree model and logistic
regression model. The R packages, gbm (Version 2.1.5) and
ggplot2 (Version 3.3.2), were used to generate the mortality
prediction results.

Results

In our heart failure cohort (n = 8893), the median age was 81
(IQR 71–87) years, and 45% (n = 4027) were men. The base-
line characteristics, individual variables included in the modi-
fied frailty index, inflammatory and nutritional indices
between the patients died within 90 days and the patients
without 90 day mortality are shown in Table 1. The median
cell counts for lymphocytes was 1.2*109/L and for neutro-
phils was 5.4*109/L, yielding an NLR of 4.4 (IQR 2.7–7.8).
Albumin took a median level of 37.8 g/L, yielding a PNI of
44.0 (IQR 39.8–48.5) (PNI, given by 10 × serum albumin value
(g/dL) + 0.005 × peripheral lymphocyte count (per mm3)).

Predictors of adverse outcomes and frailty model

Of the 8893 patients with heart failure, 758 patients died
within 30 days (9%), and 1472 died within 90 days (17%) of
admission. The findings of univariate logistic regression are
reported in the Supporting Information, Table S2. Age,
chronic skin ulcers, pneumonia, urinary tract infection, NLR,
and PNI were significant predictors of 30 day mortality
(Supporting Information, Table S2, left). For 90 day mortality,
the same variables that predicted 30 day mortality, as well as
Charlson score ≥2 were significant predictors (Supporting In-
formation, Table S2, right). Subsequently, the significant vari-
ables from the univariable analysis were included in
multivariable logistic regression. The results of multivariable
logistic regression for 30 day and 90 day mortality prediction
with all variables are reported in the Supporting Information,
Tables S3 and S4, respectively. Age, pneumonia, UTI, PNI, and
NLR remained significant predictors of both 30 day and
90 day mortality (P < 0.05).

Gradient boosting learning results and frailty
score

Five-fold cross validation experiments were conducted with
gradient boosting learning. The key to gradient boosting is
to set the target outcomes to minimize the overall error in re-
lation to precision, recall, and AUC. In this way, the gradient
boosting model sequentially adds weak decision tree learning
models to the ensemble where subsequent models correct
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the prediction errors of prior models (Supporting Informa-
tion, Figure S1), from which we can see that probability of
30 day mortality and 90 day mortality increases drastically
as age grows above 80 years old. Specifically, predictions
given by the sequential models that are close to the actual
outcome should reduce the overall error, and the process
continues until minimized total prediction error is achieved.

A total of 1400 and 1500 trees for 30 day and 90 day mor-
tality prediction were assigned, respectively. The optimal tree
number was identified using sensitivity analysis by plotting
the value of the out-of-bag (OOB) error rate according to
the number of trees within the forest (Supporting Informa-
tion, Figure S2). OOB samples are those samples that are
not included in the bootstrap samples. Original training data
are randomly sampled-with-replacement generating small
subsets of data, also known as bootstrap samples. These
bootstrap samples are then fed as training data to the forest
model. The OOB approach was used for selecting the optimal
tree number of the forest model in which four-fifths (as train-
ing) of the data were used for constructing the predictive
classifier, while the remaining was used for evaluating the
performance of the forest model. Tree depth was set at 1
for both 30 day and 90 day mortality prediction according
to tree depth parameter tuning (Supporting Information,
Figure S3). The variable importance is reported in Table 2
and is used for building the frailty score.

The partial dependence relationships of the highest
variable importance values for mortality prediction were also
identified using gradient boosting learning. The probabilities
of 30 day and 90 day mortality both increase as patient
becomes older, and it increases sharply when patients are
older than 80 (Figure 1). For PNI, the likelihood of mortality
decreases sharply as PNI increases from 0 to 20 and
remains almost constant when PNI increases beyond 65

(30 day mortality) or 70 (90 day mortality) (Figure 2). There
is a non-linear relationship between NLR and 30 day and
90 day mortality (Figure 3). Patients with pneumonia has high
probability of mortality, 24% for 30 day mortality, and 14%
for 90 day mortality.

Comparative analyses of gradient boosting learning model,
decision tree model, and multivariable logistic regression
model for 30 day and 90 day mortality prediction are
reported in the Supporting Information, Table S5 with
five-fold cross validation. Gradient boosting learning shows
the best performance in prediction, recall, and AUC
evaluation metrics.

Table 1 Baseline characteristics of the heart failure cohort

90-day mortality N = 1472 No mortality N = 7421 P-value

Gender
Male (%) 639 (43.4%) 3388 (45.7%) 0.114

Age 84.4 [77.5–90.1] 80.0 [70.1–85.9] <0.001
Modified frailty index

Depression 1 (0.1%) 15 (0.2%) 0.276
Parkinson’s disease 18 (1.2%) 55 (0.7%) 0.061
Arthritis 7 (0.5%) 33 (0.4%) 0.872
Paranoia 0 (0.0%) 7 (0.1%) 0.239
Skin ulcer 35 (2.4%) 71 (1.0%) <0.001
Pneumonia 549 (37.3%) 1492 (20.1%) <0.001
Falls 36 (2.5%) 154 (2.08%) 0.369
Skin and soft tissue infection 17 (1.2%) 82 (1.1%) 0.868
Mycoses 2 (0.1%) 17 (0.2%) 0.479
Gouty arthropathy 87 (5.9%) 354 (4.8%) 0.066
UTI 209 (14.2%) 560 (7.6%) <0.001
Charlson score ≥2 775 (52.7%) 697 (47.4%) <0.001

Inflammatory and nutritional indices
PNI 41.5 [37.0–46.0] 44.5 [40.4–48.8] <0.001
NLR 5.5 [3.1–9.8] 4.2 [2.6–7.4] <0.001

NLR, neutrophil-to-lymphocyte ratio; PNI, prognostic nutritional index; UTI, urinary tract infection.
Values in bold indicate P < 0.05.

Table 2 Variable importance for 30-day and 90-day mortality
prediction with gradient boosting learning

30-day mortality 90-day mortality

Variable Importance Variable Importance

PNI 37.45 Age 36.25
Age 32.11 PNI 35.28
NLR 20.46 NLR 14.59
Pneumonia 6.04 Pneumonia 7.05
Skin ulcer 1.16 UTI 2.29
UTI 1.03 Skin ulcer 1.43
Parkinson’s disease 0.49 Male sex 0.57
Male sex 0.45 Falls 0.48
Skin and soft
tissue infection

0.25 Parkinson’s disease 0.46

Gout 0.23 Charlson score ≥2 0.46
Falls 0.19 Arthritis 0.35
Charlson score ≥2 0.13 Skin and soft

tissue infection
0.34

Arthritis 0.01 Gout 0.31
Mycoses 0.01 Mycoses 0.15
Depression 0 Depression 0
Paranoia 0 Paranoia 0

NLR, neutrophil-to-lymphocyte ratio; PNI, prognostic nutritional in-
dex; UTI, urinary tract infection.
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The results from the sensitivity analysis excluding NLR and
PNI are shown in the Supporting Information, Appendix S2.
The optimum tree numbers are shown in the Supporting
Information, Figure S4. Without NLR and PNI, age became
the most important variable for predicting both 30 day and

90 day mortality (Supporting Information, Table S6; Figure
S5), and some evaluation metrics were lower, but others
were not affected (Supporting Information, Table S7). Five
cross validations indicate that the machine learning model
maintains comparable prediction performance as the case

Figure 1 Partial dependence of patient age for 30 day (left) and 90 day (right) mortality risk probability prediction.

Figure 2 Partial dependence of PNI for 30 day (left) and 90 day (right) mortality risk probability prediction.

Figure 3 Partial dependence of NLR for 30 day (left) and 90 day (right) mortality risk probability prediction.
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with NLR and PNI to predict 30 day mortality (precision = 0.90,
recall = 0.89, and AUC = 0.90) and 90 day mortality (preci-
sion = 0.91, recall = 0.91, and AUC = 0.90).

Discussion

The main findings of this study are that (i) baseline PNI, NLR,
and age at heart failure hospitalization in the modified elec-
tronic frailty index were the most predictive variables for
the short-term mortality outcomes in heart failure patients,
and (ii) non-linear partial dependence relationships between
these predictors and outcomes were observed.

We developed a modified electronic frailty model after in-
corporating the inflammatory and nutritional indices into the
conventional frailty scoring system based on the value of im-
portance of each variable generated from gradient boosting
learning model. Compared with multivariable logistic regres-
sion and decision tree, gradient boosting learning techniques
improved the predictive performance of our frailty model. To
enhance mortality prediction by capturing the non-linear
pattern within characteristics, we develop an interpretable
machine learning model based on gradient boosting
machine.34 Machine learning models can be fitted to data in-
dividually or combined in an ensemble, resulting in an effi-
cient combination of simple individual learning models that
together create a more powerful model.35

In this study, significant risk factors to predict 30 day and
90 day mortality are efficiently identified with gradient
boosting learning model. The obtained rankings of important
variables for mortality prediction can be used as an electronic
heart failure frailty scoring tool for clinical use. The efficient
identification of partial dependence for predictive variables
providesmore refined estimation of the likelihoodofmortality.
For example, effective estimations about the patient’s mortal-
ity probability based on characteristics of smaller PNI, older
age, larger NLR (below 60 or so), and pneumonia. All of these
variables were associatedwith impairedmobility. Of these fac-
tors, pneumonia is a common nosocomial condition that also
confers a significantly higher risk of 30 day post-admission
mortality.36 In addition, we extensively conduct the analysis
without PNI and NLR, and the results are provided in the
supporting information. Variable importance ranking for
30 day identifies important variables age, pneumonia, skin
ulcer, UTI, Parkinson’s, gout, and male sex to predict 30 day
mortality, while variables age, pneumonia, UTI, skin ulcer,
Parkinson’s, and Carlson score to predict 90 day mortality.

Heart failure has been recognized as predominately a syn-
drome that affects the geriatric population, with over 50% of
incidence and 60% of heart failure-associated mortality oc-
curring in the population over 75 years old.37 Age at diagnosis
is also one of the most significant prognostic factors for sub-
sequent survival.38 In our cohort, the median age was
81 years old, and the risk of the short-term mortality

increased strikingly in those aged over 80. Age was ranked
as the most important variable to predict 90 day mortality
and the second most important variable for 30 day mortality.
In 2011, it was reported that the 1 year mortality rates in-
creased sharply from 20% to over 30% in patients 75–84 years
and over 40% in patients aged over 85 years.39 The high prev-
alence of important risk factors, such as hypertension and
ischaemic heart disease, leads to the increasing incidence of
heart failure in older patients.40 Moreover, the survival out-
comes of heart failure are closely related to the unfavourable
age-associated changes in cardiovascular structure and func-
tion, which compromise cardiac reverse capacity.41 There-
fore, it is not surprising to observe the strong prognostic
value of age in our frailty model.

The frailty index was based on the concept that frailty is
caused by the accumulation of health deficits.42 The frailty
state itself is considered as an individual variable that can
predict mortality,43 even independently of age in different
settings.44 The first electronic frailty index developed by Segal
et al. was based on the same concept, in which the candidate
variables were selected based on their potential correlation
with the frailty state rather than mortality directly.4 There-
fore, the individual variables in the frailty index might not as-
sociate well with the mortality outcome, and the deficits
cumulatively lead to an increased risk of mortality.

The specific value of frailty in heart failure cohort has been
examined by many studies. A recent meta-analysis has con-
firmed the association between pre-frailty or frailty state
and the worse clinical outcomes in patients with heart
failure.45–47 Indeed, recent guidelines have recommended
the assessment of frailty status in heart failure patients to
aid risk stratification.48 The Identification of Senior At Risk
scale is another frailty screening tool that can predict
30 day mortality in older patients with acute heart failure.49

Among the current literature, a few studies utilized frailty in-
dices and reached similar conclusions to other studies in
which frailty was assessed as a phenotype,50,51 and there is
no consensus which method is more suitable in the cohort
of heart failure patients.45 The variables included in the
various frailty indices used for heart failure were also largely
different. A study in the UK combined the frailty index and
nutritional index and found an improved prognostic power
compared with the conventional frailty index, suggesting that
nutrition and frailty are correlated but also remained as inde-
pendent prognostic factors.51 No previous study has
attempted to incorporate inflammatory measures into frailty
indices for heart failure prognosis despite the strong patho-
physiological associations between these concepts.52

Strength and limitations

To the best of our knowledge, this is the first study incorpo-
rating both the inflammatory marker and nutritional index
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into the conventional frailty index. The indices used in this
study, NLR and PNI, can be easily calculated and incorporated
into the decision-making process in the clinical setting. We
utilized a large patient cohort that is homogeneously Chinese
from a real-world database, and the final frailty score was de-
rived from a machine learning model, which was shown to
have a better performance than the baseline multivariate lo-
gistic regression for mortality prediction.

There are some limitations to our study. Firstly, this is a
multicentre study conducted in Hong Kong, and external val-
idation of our results using data from other countries is
needed. Secondly, our study did not include information on
the treatment prescribed during the acute phase and the
postadmission period, which may affect the survival out-
comes in patients. Thirdly, we cannot distinguish between
subtypes of heart failure, such as heart failure with reduced
rejection fraction or heart failure with reduced rejection frac-
tion, as we do not have echocardiographic or relevant diag-
nostic codes available in our database.53 Moreover, there
are some challenges of machine learning in clinical setting.
Our model was developed specifically using the variables
available in the local database and may have generalizability
issue in other clinical settings if these variables were mea-
sured differently. Furthermore, the relative predictive values
of the variables in our model might be difficult to interpret
in regard to their biological associations with the mortality
due to the opaque nature of the machine-learning tech-
niques. Nevertheless, a previous systematic review and
meta-analysis found that machine learning techniques can
aid the diagnosis, management, and prediction of outcomes
in heart failure patients.54 Nevertheless, frailty alone is a
strong predictor of mortality, although it requires a thorough
assessment that may be time-consuming.55 Our study com-
plements previous findings that electronic frailty indices are
useful for risk prediction in other settings.56–58

Conclusions

In this study, we created an electronic frailty index that in-
cluded co-morbidity information, inflammatory, and
nutritional indices. This was then used for short-term
mortality prediction in heart failure. Given that these variables

can be determined or calculated automatically, their incorpo-
ration into clinical risk scores or prediction rules will facilitate
clinicians to perform risk stratification more readily. Further
prospective studies are warranted to validate the present
model by combining other more comprehensive and complex
inflammatory, nutritional, and frailty assessment tools to con-
firm its predictive power for clinical use.

Conflict of interest

All authors declare no conflict of interest.

Supporting information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

Table S1. Variables used in the modified frailty index pro-
posed by Segal et al. (2017), Deyo-Charlson comorbidity in-
dex (1992), and our electronic frailty index.
Table S2. Univariable logistic regression for 30-day and
90-day mortality.
Table S3. Multivariable logistic regression for 30-day
mortality.
Table S4. Multivariable logistic regression for 90-day
mortality.
Table S5. Five-fold cross validation model performance for
30-day and 90-day mortality prediction.
Figure S1. Sequential ensemble concept of gradient boosting
learning model.
Figure S2. Optimal iteration tree number of gradient boosting
learning model for 30-day and 90-day mortality prediction.
Figure S3. Tree in-depth parameter selection for 30-day and
90-day mortality prediction.
Table S6. Variable importance for 30-day and 90-day mortal-
ity prediction with gradient boosting learning without NLR
and PNI.
Table S7. Five-fold cross validation model performance for
30-day and 90-day mortality prediction without NLR and PNI.
Figure S5. Variable importance ranking for 30-day and 90-day
mortality prediction without NLR and PNI.

References

1. Xue QL. The frailty syndrome: definition
and natural history. Clin Geriatr Med
2011; 27: 1–15.

2. Segal JB, Huang J, Roth DL, Varadhan R.
External validation of the claims-based
frailty index in the national health and

aging trends study cohort. Am J
Epidemiol 2017; 186: 745–747.

3. Fried LP, Tangen CM, Walston J,
Newman AB, Hirsch C, Gottdiener J,
Seeman T, Tracy R, Kop WJ, Burke G,
McBurnie MA, Cardiovascular Health

Study Collaborative Research G. Frailty
in older adults: evidence for a pheno-
type. J Gerontol A Biol Sci Med Sci
2001; 56: M146–M156.

4. Segal JB, Chang HY, Du Y, Walston
JD, Carlson MC, Varadhan R.

Electronic frailty index for heart failure 2843

ESC Heart Failure 2021; 8: 2837–2845
DOI: 10.1002/ehf2.13358



Development of a claims-based frailty
indicator anchored to a well-established
frailty phenotype. Med Care 2017; 55:
716–722.

5. Lorenzo-Lopez L, Maseda A, de Labra C,
Regueiro-Folgueira L, Rodriguez-
Villamil JL, Millan-Calenti JC. Nutri-
tional determinants of frailty in older
adults: a systematic review. BMC Geriatr
2017; 17: 108.

6. Soysal P, Stubbs B, Lucato P, Luchini C,
Solmi M, Peluso R, Sergi G, Isik AT,
Manzato E, Maggi S, Maggio M, Prina
AM, Cosco TD, Wu YT, Veronese N. In-
flammation and frailty in the elderly: a
systematic review and meta-analysis.
Ageing Res Rev 2016; 31: 1–8.

7. Gastelurrutia P, Lupon J, Altimir S, de
Antonio M, Gonzalez B, Cabanes R,
Rodriguez M, Urrutia A, Domingo M,
Zamora E, Diez C, Coll R, Bayes-Genis
A. Fragility is a key determinant of sur-
vival in heart failure patients. Int J
Cardiol 2014; 175: 62–66.

8. Sun Y, Wang N, Li X, Zhang Y, Yang J,
Tse G, Liu Y. Predictive value of H2 FPEF
score in patients with heart failure with
preserved ejection fraction. ESC Heart
Fail 2021; 8: 1244–1252.

9. Denfeld QE, Winters-Stone K, Mudd JO,
Gelow JM, Kurdi S, Lee CS. The preva-
lence of frailty in heart failure: a system-
atic review and meta-analysis. Int J
Cardiol 2017; 236: 283–289.

10. McNallan SM, Chamberlain AM, Gerber
Y, Singh M, Kane RL, Weston SA, Dunlay
SM, Jiang R, Roger VL. Measuring frailty
in heart failure: a community perspec-
tive. Am Heart J 2013; 166: 768–774.

11. Soukoulis V, Dihu JB, Sole M, Anker SD,
Cleland J, Fonarow GC, Metra M, Pasini
E, Strzelczyk T, Taegtmeyer H,
Gheorghiade M. Micronutrient deficien-
cies an unmet need in heart failure. J
Am Coll Cardiol 2009; 54: 1660–1673.

12. Shirazi LF, Bissett J, Romeo F, Mehta JL.
Role of inflammation in heart failure.
Curr Atheroscler Rep 2017; 19: 27.

13. Tse G, Zhou J, Woo SWD, Ko CH, Lai
RWC, Liu T, Liu Y, Leung KSK, Li A, Lee
S, Li KHC, Lakhani I, Zhang Q.
Multi-modality machine learning ap-
proach for risk stratification in heart
failure with left ventricular ejection frac-
tion ≤45. ESC Heart Fail 2020; 7:
3716–3725.

14. Lakhani I, Leung KSK, Tse G, Lee APW.
Novel mechanisms in heart failure with
preserved, midrange, and reduced ejec-
tion fraction. Front Physiol 2019; 10:
874.

15. Westermann D, Lindner D, Kasner M,
Zietsch C, Savvatis K, Escher F, von
Schlippenbach J, Skurk C, Steendijk P,
Riad A, Poller W, Schultheiss HP,
Tschope C. Cardiac inflammation con-
tributes to changes in the extracellular
matrix in patients with heart failure
and normal ejection fraction. Circ Heart
Fail 2011; 4: 44–52.

16. Paulus WJ, Tschope C. A novel paradigm
for heart failure with preserved ejection

fraction: comorbidities drive myocardial
dysfunction and remodeling through
coronary microvascular endothelial in-
flammation. J Am Coll Cardiol 2013;
62: 263–271.

17. Roever L, Tse G, Biondi-Zoccai G. Vari-
ability of metabolic parameters and risk
of heart failure: can it be a marker of in-
cident heart failure? Int J Cardiol 2019;
293: 183–184.

18. Van Linthout S, Tschope C. Inflamma-
tion—cause or consequence of heart
failure or both? Curr Heart Fail Rep
2017; 14: 251–265.

19. Edelmann F, Holzendorf V, Wachter R,
Nolte K, Schmidt AG, Kraigher-Krainer
E, Duvinage A, Unkelbach I, Dungen
HD, Tschope C, Herrmann-Lingen C,
Halle M, Hasenfuss G, Gelbrich G,
Stough WG, Pieske BM. Galectin-3 in pa-
tients with heart failure with preserved
ejection fraction: results from the
Aldo-DHF trial. Eur J Heart Fail 2015;
17: 214–223.

20. Vasan RS, Sullivan LM, Roubenoff R,
Dinarello CA, Harris T, Benjamin EJ,
Sawyer DB, Levy D, Wilson PW,
D’Agostino RB, Framingham Heart S. In-
flammatory markers and risk of heart
failure in elderly subjects without prior
myocardial infarction: the Framingham
Heart Study. Circulation 2003; 107:
1486–1491.

21. Yildiz A, Yuksel M, Oylumlu M, Polat N,
Akil MA, Acet H. The association be-
tween the neutrophil/lymphocyte ratio
and functional capacity in patients with
idiopathic dilated cardiomyopathy.
Anatol J Cardiol 2015; 15: 13–17.

22. Zapatero A, Barba R, Gonzalez N, Losa
JE, Plaza S, Canora J, Marco J. Influence
of obesity and malnutrition on acute
heart failure. Rev Esp Cardiol (Engl Ed)
2012; 65: 421–426.

23. Anker SD, Ponikowski P, Varney S, Chua
TP, Clark AL, Webb-Peploe KM, Harring-
ton D, Kox WJ, Poole-Wilson PA, Coats
AJ. Wasting as independent risk factor
for mortality in chronic heart failure.
Lancet 1997; 349: 1050–1053.

24. Chien SC, Lo CI, Lin CF, Sung KT, Tsai
JP, Huang WH, Yun CH, Hung TC, Lin
JL, Liu CY, Hou CJ, Tsai IH, Su CH, Yeh
HI, Hung CL. Malnutrition in acute
heart failure with preserved ejection
fraction: clinical correlates and prognos-
tic implications. ESC Heart Fail 2019; 6:
953–964.

25. Cheng YL, Sung SH, Cheng HM, Hsu PF,
Guo CY, Yu WC, Chen CH. Prognostic
nutritional index and the risk of mortal-
ity in patients with acute heart failure. J
Am Heart Assoc 2017; 6: e004876.

26. Ueland T, Gullestad L, Nymo SH,
Yndestad A, Aukrust P, Askevold ET. In-
flammatory cytokines as biomarkers in
heart failure. Clin Chim Acta 2015;
443: 71–77.

27. Anker SD, Negassa A, Coats AJ, Afzal R,
Poole-Wilson PA, Cohn JN, Yusuf S.
Prognostic importance of weight loss in
chronic heart failure and the effect of

treatment with angiotensin-converting-
enzyme inhibitors: an observational
study. Lancet 2003; 361: 1077–1083.

28. Mano A, Fujita K, Uenomachi K, Kazama
K, Katabuchi M, Wada K, Terakawa N,
Arai K, Hori Y, Hashimoto S, Nakatani
T, Kitamura S. Body mass index is a use-
ful predictor of prognosis after left ven-
tricular assist system implantation. J
Heart Lung Transplant 2009; 28:
428–433.

29. Desai RJ, Wang SV, Vaduganathan M,
Evers T, Schneeweiss S. Comparison of
machine learning methods with tradi-
tional models for use of administrative
claims with electronic medical records
to predict heart failure outcomes. JAMA
Netw Open 2020; 3: e1918962.

30. Ju C, Lai RWC, Li KHC, Hung JKF, Lai
JCL, Ho J, Liu Y, Tsoi MF, Liu T, Cheung
BMY, Wong ICK, Tam LS, Tse G.
Comparative cardiovascular risk in users
versus non-users of xanthine oxidase in-
hibitors and febuxostat versus allopuri-
nol users. Rheumatology (Oxford) 2019;
59: 2340–2349.

31. Lau WC, Chan EW, Cheung CL, Sing CW,
Man KK, Lip GY, Siu CW, Lam JK, Lee
AC, Wong IC. Association between
dabigatran vs warfarin and risk of osteo-
porotic fractures among patients with
nonvalvular atrial fibrillation. JAMA
2017; 317: 1151–1158.

32. Deyo RA, Cherkin DC, Ciol MA.
Adapting a clinical comorbidity index
for use with ICD-9-CM administrative
databases. J Clin Epidemiol 1992; 45:
613–619.

33. Mason L, Baxter J, Bartlett P, Frean M.
Boosting algorithms as gradient de-
scent. In Advances in Neural Information
Processing Systems. Cambridge, MA,
United States: MIT Press; 2000:
512–518.

34. Friedman JH. Greedy function approxi-
mation: a gradient boosting machine.
Ann Stat 2001; 29: 1189–1232.

35. Peter Bühlmann TH. Boosting algo-
rithms: regularization, prediction and
model fitting. Stat Sci 2007; 22:
477–505.

36. Kundi H, Wadhera RK, Strom JB,
Valsdottir LR, Shen C, Kazi DS, Yeh
RW. Association of frailty with 30-day
outcomes for acute myocardial infarc-
tion, heart failure, and pneumonia
among elderly adults. JAMA Cardiol
2019; 4: 1084–1091.

37. Rich MW. Heart failure in the 21st cen-
tury: a cardiogeriatric syndrome. J
Gerontol A Biol Sci Med Sci 2001; 56:
M88–M96.

38. Taylor CJ, Ordonez-Mena JM, Roalfe
AK, Lay-Flurrie S, Jones NR, Marshall
T, Hobbs FDR. Trends in survival after
a diagnosis of heart failure in the
United Kingdom 2000-2017: population
based cohort study. BMJ 2019; 364:
l223.

39. Chen J, Normand SL, Wang Y, Krumholz
HM. National and regional trends in
heart failure hospitalization and

2844 C. Ju et al.

ESC Heart Failure 2021; 8: 2837–2845
DOI: 10.1002/ehf2.13358



mortality rates for Medicare beneficia-
ries, 1998-2008. JAMA 2011; 306:
1669–1678.

40. Lakatta EG, Levy D. Arterial and cardiac
aging: major shareholders in cardiovas-
cular disease enterprises: part I: aging
arteries: a “set up” for vascular disease.
Circulation 2003; 107: 139–146.

41. Lakatta EG, Levy D. Arterial and cardiac
aging: major shareholders in cardiovas-
cular disease enterprises: part II: the ag-
ing heart in health: links to heart
disease. Circulation 2003; 107: 346–354.

42. Mitnitski AB, Mogilner AJ, Rockwood K.
Accumulation of deficits as a proxy mea-
sure of aging. ScientificWorldJournal
2001; 1: 323–336.

43. Clegg A, Young J, Iliffe S, Rikkert MO,
Rockwood K. Frailty in elderly people.
Lancet 2013; 381: 752–762.

44. Hewitt J, Carter B, McCarthy K, Pearce
L, Law J, Wilson FV, Tay HS, McCor-
mack C, Stechman MJ, Moug SJ, Myint
PK. Frailty predicts mortality in all emer-
gency surgical admissions regardless of
age. An observational study. Age Ageing
2019; 48: 388–394.

45. Zhang Y, Yuan M, Gong M, Tse G, Li G,
Liu T. Frailty and clinical outcomes in
heart failure: a systematic review and
meta-analysis. J Am Med Dir Assoc
2018; 19: 1003–1008 e1001.

46. Zhang Y, Yuan M, Gong M, Li G, Liu T,
Tse G. Associations between prefrailty
or frailty components and clinical out-
comes in heart failure: a follow-up
meta-analysis. J Am Med Dir Assoc
2019; 20: 509–510.

47. Zhang Y, Yuan M, Gong M, Li G, Tse G,
Liu T. Reply to the letter to editor. J Am
Med Dir Assoc 2018; 19: 1146–1148.

48. Díez-Villanueva P, Arizá-Solé A, Vidán
MT, Bonanad C, Formiga F, Sanchis J,
Martín-Sánchez FJ, Ruiz Ros V,
Sanmartín Fernández M, Bueno H,
Martínez-Sellés M. Recommendations
of the geriatric cardiology section of
the Spanish Society of Cardiology for
the assessment of frailty in elderly pa-
tients with heart disease. Rev Esp Cardiol
(English Edition) 2019; 72: 63–71.

49. Martin-Sanchez FJ, Llopis Garcia G,
Gonzalez-Colaco Harmand M,
Fernandez Perez C, Gonzalez Del
Castillo J, Llorens P, Herrero P, Jacob J,
Gil V, Dominguez-Rodriguez A, Rossello
X, Miro O, en representacion de los
investigadores del Registro OAK, Resto
de investigadores del registro OAK.
Identification of senior at risk scale pre-
dicts 30-day mortality among older pa-
tients with acute heart failure. Med
Intensiva 2020; 44: 9–17.

50. Dunlay SM, Park SJ, Joyce LD, Daly RC,
Stulak JM, McNallan SM, Roger VL,
Kushwaha SS. Frailty and outcomes
after implantation of left ventricular
assist device as destination therapy.
J Heart Lung Transplant 2014; 33:
359–365.

51. Sze S, Zhang J, Pellicori P, Morgan D,
Hoye A, Clark AL. Prognostic value of
simple frailty and malnutrition screen-
ing tools in patients with acute heart
failure due to left ventricular systolic
dysfunction. Clin Res Cardiol 2017; 106:
533–541.

52. Bellumkonda L, Tyrrell D, Hummel SL,
Goldstein DR. Pathophysiology of heart
failure and frailty: a common inflamma-
tory origin? Aging Cell 2017; 16:
444–450.

53. Pathadka S, Yan VKC, Li X, Tse G, Wan
EYF, Lau H, Lau WCY, Siu DCW, Chan
EW, Wong ICK. Hospitalization and
mortality in patients with heart failure
treated with sacubitril/valsartan vs.
enalapril: a real-world, population-
based study. Front Cardiovasc Med
2020; 7: 602363.

54. Bazoukis G, Stavrakis S, Zhou J,
Bollepalli SC, Tse G, Zhang Q, Singh
JP, Armoundas AA. Machine learning
versus conventional clinical methods in
guiding management of heart failure pa-
tients—a systematic review. Heart Fail
Rev 2021; 26: 23–34.

55. Kojima G, Iliffe S, Walters K. Frailty in-
dex as a predictor of mortality: a system-
atic review and meta-analysis. Age
Ageing 2018; 47: 193–200.

56. Li CKH, Xu Z, Ho J, Lakhani I, Liu YZ,
Bazoukis G, Liu T, Wong WT, Cheng
SH, Chan MTV, Zhang L, Gin T, Wong
MCS, Wong ICK, Wu WKK, Zhang Q,
Tse G. Association of NPAC score with
survival after acute myocardial infarc-
tion. Atherosclerosis 2020; 301: 30–36.

57. Callahan KE, Clark CJ, Edwards AF,
Harwood TN, Williamson JD, Moses
AW, Willard JJ, Cristiano JA, Meadows
K, Hurie J, High KP, Meredith JW,
Pajewski NM. Automated Frailty Screen-
ing At-Scale for Pre-Operative Risk Strat-
ification Using the Electronic Frailty
Index. J Am Geriatr Soc 2021.

58. Fan J, Yu C, Guo Y, Bian Z, Sun Z, Yang
L, Chen Y, Du H, Li Z, Lei Y, Sun D,
Clarke R, Chen J, Chen Z, Lv J, Li L.
Frailty index and all-cause and cause-
specific mortality in Chinese adults: a
prospective cohort study. Lancet Public
Health 2020; 5: e650–e660.

Electronic frailty index for heart failure 2845

ESC Heart Failure 2021; 8: 2837–2845
DOI: 10.1002/ehf2.13358


