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Abstract: Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value
chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic

biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with

engineering, The workflow of the development of novel cell factories with synthetic biology 1s ideally linear which will be

attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts.
Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites,

are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic

biology will be discussed with a review of current status of compatible methods and models for the in sifico design and quantitative

evaluation of a cell factory.

MINI REVIEW ARTICLE

Introduction

Cell factories, central to a bioeconomy, are commonly microbial
organisms harnessed for bioconversion of renewable sources to bulk
or high value chemicals or alternatively for carbon capture to oppose
climate change. Introduction of novel, non-native pathways producing
a target compound in optimized chassis strains is the core of the
development of cell factories by synthetic biology. Synthetic biology
aims to create novel biological functions and systems not found in
nature by combining biology with engineering. Engineering provides
quantitative i silico design and quantitative evaluation of novel
biological functions and systems. The 1 siico design and the novel
cell factory become described with quantitative measures in contrast
to qualitative descriptions. Modelling of metabolism is involved in
both design and evaluation of the novel cell factories. Modelling of
metabolism, or its component metabolites and reactions, provides a
simplified representation of the reality. In computational applications,
a model is a quantitative, mathematical, representation of the
biological systems or components on a suitable level of simplification.
Different mathematical representations of metabolism, metabolic
pathways, or metabolic components, enzymes and metabolites, are
useful in different phases of the development of a cell factory by
synthetic biology. In this minireview, the role of metabolic modelling
in the emergence of synthetic biology will be discussed with a review
of the current status of compatible methods and models for the
design and evaluation of a cell factory. The workflow of the
development of novel cell factories with synthetic biology is ideally
linear with subsequent steps traversed in contrast to an iterative cycle
of conventional strain improvement. The ideal, linear, workflow can
be attained with the quantitative engineering approach using high-
models, and libraries of well-

quality  predictive metabolic
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characterized parts. The workflow of the development of a novel cell
factory can be divided in the design phase, the phase of the evaluation
of a novel strain, and a strain construction and experimentation steps
in between the former, Figure I. In the design phase modelling of
metabolism is required in the 7 silico design of the chassis, and the
modelling of pathway components is required for the simulation of
novel, optimally orthogonal, production pathways. Further, modelling
of the metabolic entity consisting of the designed pathway within a
chassis enables the simulation of the performance of the alternative
designs in the cell (third step in the 1 silico design phase in Figure 1).
Simulation can also be applied to optimize the process set up and the
medium composition for the novel strain before entering the
experimental strain construction phase, Figure I. Regardless of the
aim for linearity in the workflow and the availability of a high-quality
predictive models in an ideal case, the simulation steps may identify
properties of the in silico strain, which require further modifications
in the design steps (blue arrows in Figure 1). When an optimal mn
silico design is ready, the strain will be constructed in the
experimental phase. Experimentation will then be performed to collect
data on the i wivo behaviour of the novel strain. After the
experimental phase, metabolic modelling is needed again. Analysis of
intracellular fluxes in the quantitative evaluation phase requires
metabolic modelling. In addition, the quantitative omics-data
collected in the experimental phase can be interpreted and the
regulatory activities inferred in the context of metabolic models. If the
evaluation phase reveals unsatisfactory performance of the constructed
strain which considerably differs from the behaviour of the designed
1 silico strain, a return to the experimental phase is forced (purple
arrows in Figure I). The discrepancies are assumed to rise from the
gap between the in siico design and the strain construction.
Unfortunately, the in silico design is not yet performed on the level of
the actual parts used in the strain construction by molecular biology.

Each of the steps of the synthetic biology workflow that involve
metabolic modelling will be addressed in the following chapters
including the promising directions, studies, and development in the
field. In addition the different types of metabolic models applicable in
the workflow (Figure 2) will be reviewed.
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Figure 1. Workflow of the development of a cell factory with synthetic
biology. The workflow of the development of a novel cell factory with
synthetic biology is divided in three main phases: the design phase, the
experimental phase and the phase of the quantitative evaluation of the
novel strain. Metabolic modelling is involved in the design and
quantitative evaluation phases. Albeit the aim for linearity in the
workflow, simulated behaviour of the in silico strain or in vivo behaviour
of the novel strain may force return to previous steps.

Metabolic models involved in the development of cell factories
using synthetic biology

Different types of metabolic models involved in the development
of novel cell factories using synthetic biology are shown in Figure 2.
The model types are presented in the order of increasing complexity.
The scale of metabolism which is feasible to describe with the
particular models increases in the opposite direction. Topological
models include either undirected or directed interactions between the
metabolites and enzymes and are being used as scaffolds for the
analysis of omics-data and in path finding by graph-theoretical
methods. Constraint-based stoichiometric models are static models
with wide application in target identification for strain modification.
These models include stoichiometric relationships between substrates
and products in the reactions and reaction direction, or flux
constraints. Reaction direction and flux constraints can be obtained
from, for example thermodynamics and maximum enzyme capacities.
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Some of these models are annotated with gene-reaction rules, which
provide a direct link to the genome and enable simulations of the
effect of modifications of single genes. Atom-mapped stoichiometric
models include mappings of atom transfers in the metabolic reactions.
For applications including "*C flux analysis, carbon atom mappings
are necessary. Kinetic models include dynamic rate equations of
metabolic reactions, either as simplified or mechanistic equations.
Simplified rate equations aim to reproduce the main features of
enzyme reaction dynamics with limited parameters and complexity.
Mechanistic rate equations describe in detail the dynamic behaviour
of a reaction as it is dependent of the enzymatic mechanism.

Design: in silico design of chassis

Central carbon metabolism, with its capacity for high pathway
fluxes, forms the core of a cell factory. The efficient pathways of the
central carbon metabolism produce the precursors for all natural
chemicals [1], and this can be exploited in a chassis. Engineering a
high flux to convert carbon sources to a specific precursor will
provide a ready platform strain for a number of different products
[2]. Usually the redirection of native pathway fluxes in central carbon
metabolism involves conventional metabolic engineering, but synthetic
biology approaches could provide novel solutions. Stoichiometric
metabolic modelling is an established means to identify targets for
metabolic engineering. Constraint-based modelling (Figure 2), using
static stoichiometric models [3], is directly extendable to genome-
scale  which enables consideration of important genome-wide
phenomena such as energy metabolism and cofactor balancing in the
in silico design of chassis (Figure 1, Design phase). In constraint-
based modelling the stoichiometric models are augmented with
absolute magnitude constraints and flux direction constraints from,
for example, thermodynamics [4]. The stoichiometry and the flux
constraints form a feasible solution space where the true flux
distribution solution lies. Flux balance analysis (FBA) uses linear
programming with a defined objective function to identify an optimal
flux distribution within the feasible space. Computational analysis
enables also an identification of such targets for metabolic engineering
which are not intuitively identifiable just by studying network maps.

Extensions of FBA and other in siico methods based on
stoichiometric models have successfully been applied to identify
metabolic engineering targets in genome-wide networks. In 2009

Asadollahi er al identified in silico gdhl encoding an NADPH
dependent glutamate dehydrogenase as a knock-out target for
enhanced synthesis of sesquiterpenes in Saccharomyces cerevisiae [5)].
The target identification was based on stoichiometric modelling and
was pursued by combining OptGene modelling framework with the
minimization of metabolic adjustment (MoMA) [6] as an objective
function. The in siico analysis predicted a ten-fold increase in the
production flux, whereas the 1 vivo increase was less but still
substantial. Another approach was followed by Becker er al (2011)
who simulated the optimal flux distribution for L-lysine production
in Corynebacterium glutamicum and compared it to the in vivo flux
distribution determined by “C flux analysis to determine the
differences for targets of strain improvement [7]. In general, the in
stlico methods for stoichiometric and constraint-based models allow
for the predictions of particular optimal flux distributions, and
optimizations of gene deletions, additions, and overexpression in the
aim of improving yield and flux to the target product or coupling the
target molecule production to growth. The different algorithms for
silico target identification with stoichiometric models have been
thoroughly reviewed by Park er al in 2009 [8]. Since then, the
algorithm development has further improved the speed [9, 10] and
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provided methods for improved predictions (FVSEOF with grouping
reaction constraints [I1]; CASOP [12]; Flux Design [13]). In
addition, Cobra Toolbox v.2.0 currently provides many of the
existing tools in it [14]. Another software platform for the n silico
strain engineering is OptFlux which is Matlab independent in contrast
to Cobra Toolbox [15].
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Figure 2. Metabolic models involved in the development of cell factories
with synthetic biology. The four metabolic modelling approaches involved
in the workflow of the development of a cell factory with synthetic biology
are shown in an order of increasing complexity from topological to
constraint-based, atom-mapped, and kinetic models. The phases and the
tasks of the synthetic biology workflow, where the particular models are
used, are shown below the descriptions of the types of the models.

The purely stoichiometric metabolic modelling has weaknesses. It
cannot take into account the dynamic interactions of reactions, or the
metabolite concentrations and the effects of their allosteric regulation
in the system. Mechanistic kinetic models (Figure 2) include all the
above mentioned but are hard to parameterize in large-scale. Specific
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experimental data for the estimation of parameters is either time-
consuming or impossible to produce and the in vitro data may not
correctly represent the i vivo system behaviour. In a moderate scale
the mechanistic kinetic models can be used to identify the product
flux controlling reactions by the means of metabolic control analysis
(MCA) [16, 17]. MCA framework can also manage the uncertainty in
the system parameters [18-19]. Metabolic ensemble modelling
(MEM) [20] with approximative kinetics manages the uncertainties
both in the model structure and in the parameter sets. MEM has
successfully been applied in metabolic engineering tasks [21].
Moreover, first attempts have been made to extend kinetic models to
large-scale. Smallbone er a/ (2010) implemented approximative linlog
kinetics [22] in the reactions of uncompartmentalized, genome-scale,
model of S. cerevisiae and were able to parameterize the model [23].
Different simplified mechanistic rate laws of enzyme reactions (for
example linlog [22], convenience kinetics [24], and power laws [25])
have been developed to limit the complexity and the number of
parameters required. While providing simplification, the ability to
still reproduce the main features of enzyme reactions, such as
saturability, is important for the approximative rate laws. The
simplified rate laws have also been combined with mechanistic rate
laws for part of the reactions in a model [26, 27]. Costa er al. (2010)
gained good dynamic performance of an Escherichia col model with a
combination of mechanistic and linlog rate laws [26]. Linlog kinetics
outperformed other combinations of simpliﬁed rate laws like
generalized mass action, convenience kinetics, and power-law. Far-
from-equilibrium reactions are more important for the prediction of
the system behaviour to be described exactly with mechanistic rate
laws than the reactions operating closer to equilibrium. Far-from-
equilibrium and close-to-equilibrium reactions have been identified in
vivoin S. cerevisiae by Canelas er al. (2011) [28].

Industrially widely utilized organisms are soft choices also as
chassis organisms  since their behaviour and the means for their
engineering are well known. However, organisms beyond the classical
producers of chemicals such as E. coly S. cerevisize, and C
glutamicum, offer important properties like high tolerance (L-valine
tolerant uncommon F. coli engineered to a platform strain [29];
solvent tolerant Pseudomonas putida S12 engineered to an L-tyrosine
producing platform strain [30]; Bacillus subtilis able to modify the
cell wall in response to toxicity [31]), ability to perform carbon
capture like cyanobacteria [32] and acetogens [33], or heterosynthetic
properties like a possibility for electrosynthesis [34]. Genome-wide
metabolic reconstructions are already available for modelling and
analysis of many of these potential chassis organisms (a cyanobacterial
model of Synechocystis sp. PCC 6803 [35); B subtilis model
iBsul103 [36]). In addition, methods for the reconstruction of
metabolic models from genome data exist and they are automated to

large extent [37-39].

Design: in silico design of novel pathways

Computational methods offer speed and an ability to combine
huge amounts of information to 7n siico design of novel pathways
[40] (Figure I, Design phase). Conventionally the metabolic path
finding has been applied to search short or efficient pathways from a
source metabolite to a target metabolite within the metabolic network
of a single organism. However, when designing novel, heterologous,
pathways the search space of reactions cannot be limited to a
metabolic model of a single organism but could be extended to
include all known biochemical reactions or even novel biochemical
conversions. Availability of enzyme mechanisms could be considered
to form an ultimate limit for the choice of novel biochemical
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conversions that can be engineered into cells. BNICE method
developed by Hatzimanikatis er al (2005) restricts the pathway
search on biochemical conversions enabled by generalized enzyme
reaction rules [41]. The rules are modelled, based on the EC
classification system, thereby eliminating mechanistically infeasible
reaction steps. Yet the generalization of the reaction rules leaves a
possibility to create enhanced activities by protein engineering. Brunk
et al. (2012) picked candidate enzymes for a novel pathway identified
with BNICE and continued with structural in siico 3D modelling
and simulation of the candidate enzymes to identify modification
targets to improve the catalytic properties of the enzymes [42].

The existing methods for computational path finding divide into
two general classes, steady state -based and graph theoretical
frameworks. The steady state -based methods rely on optimization, or
on the enumeration of elementary flux modes (EFMs) in
(Figure 2) [43]. Despite the

advancements [44-46] the enumeration of elementary flux modes is

stoichiometric models recent
computationally demanding in large networks. To design a novel
pathway into a chassis the enumeration of EFMs need to be
performed in a huge network containing all the endogenous reactions
of an organism and all possible heterologous reactions. Carbonell er
al (2012) suggested introduction of additional constraints for not to
waste computational power in the enumeration of EFMs having zero
fluxes through the pathway leading to the target compound [47].
They also modelled the avaﬂability of a variety of source molecules
into the EFM framework [47]. Other steady state -based methods
aim to identify an optimal pathway design instead of the enumeration
of alternative pathway designs. OptStrain method developed by
Pharkya er al (2004) identifies stoichiometrically advantageous
deletions to the chassis in addition to the identification of optimal
heterologous reactions [48]. Strength of the steady state -based
methods is that they are directly able to generate branched pathway
solutions and utilize a set of all endogenous metabolites whereas many
of the graph theoretical methods search solely for linear paths in
topological metabolic models (Figure 2). Many graph theoretical
methods also require user to distinguish cofactors from other
metabolites. On the other hand, the graph theoretical methods
outperform the steady state -based methods in speed and they scale
well into large networks. Recently, a graph theoretical method able to
enumerate branched pathways from a set of source metabolites to
target metabolites was developed where hyperpaths are searched in a
hypergraph [47]. Already earlier a graph theoretical method for
finding branched pathways was presented [49]. This method
suggested by Pitkiinen er al (2009) successfully applied atom tracing
in the path finding [49]. Atom tracing from substrate metabolites to
products avoids unrealistic connections in the identified pathway and
simultaneously obviates the need to define a set of cofactors or hub
metabolites [49, 50]. While the topological models as such do not
contain information on the reaction stoichiometry, it becomes
implemented when atom tracing is utilized. Path finding methods that
apply the tracing of atoms have relied on atom mappings stored in the
databases of known biochemical reactions such as KEGG Rpair [51].
However, Heinonen et al. (2011 have recently developed an efficient
computational method for atom mapping which is compatible even
with novel reactions lacking database information on the atom
mappings [S2]. The novel method could promote the advantages of
atom tracing in the 1n silico design of novel pathways.

Utilization of enumerative methods in the m siico pathway
design tend to result in huge numbers of routes in contrast to a single
design provided by the optimization based methods. The benefit is
that the alternative designs could include solutions having superior
properties not taken into account in the optimization. Yet it is
valuable to embed some selection for feasibility into the enumeration
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phase, and post-ranking is required to choose the pathways to be
introduced into the chassis. Ranking criteria is somewhat context-
dependent but the feasibility in terms of pathway thermodynamics is
generally essential for successful function in the chassis. Henry er al
(2010) applied thermodynamic metabolic flux analysis (TMFA) [53]
to novel pathways within the stoichiometric metabolic model of the
chassis [54]. TMFA utilizes a group contribution method [55] in the
estimation of the free energy changes of reactions. Group contribution
method estimates the free energy change of the formation of a
molecule based on the structural groups it contains. Recent extension
to the group contribution method by Noor er a/ (2012) includes the
consideration of the pseudoisomers of the molecule’s structural
groups, which gains accuracy in the estimation [56]. Feasibility of
novel pathways is affected also by other factors than thermodynamics.
The novel pathways can be further ranked according to the
stoichiometric yields, and maximum activities of the target molecule.
Both are directly obtained from TMFA and are of primary interest in
the development of bioprocess strains. In the recent method
developed by Chatsurachai er al (2012) the yields of target molecules
are evaluated at maximum growth rate [S7]. Thus, the method
assumes that the novel pathway is not orthogonal but dependent on
the energy generation and cofactor balancing in the chassis and,
therefore also on the native regulatory system. In many microbes the
regulatory system is thought to manage the utilization of resources in
the aim of maximizing the growth rate. However, the engineered
strains may not behave like the wild type strains evolved to grow
optimally and perhaps using the minimization of metabolic
adjustment (MoMA) [6] as an objective function would provide more
realistic predictions [S]. Further properties which affect the feasibility
of engineering a pathway are, for example, the number of reactions,
the number of heterologous enzymes, and the number of enzymes not
directly available for expression. In general the number of
heterologous enzymes counts since introduction of additional
enzymes may cause a metabolic burden. In their recent review, Bar-
Even er al (2011) pointed out the additional importance of the
characteristics of pathway intermediates such as toxicity, reactivity,
and permeability [58]. In many cases the unwanted characteristics
could be counteracted with spatial organisation, namely co-
localization, of the pathway. To co-localize the reactions, the enzymes
can be physically attached to each other with a specific linker [59].
Alternatively the reactions can be co-expressed in compartments
separated from cytosol, like in peroxisomes, or in synthetic
compartments, like carboxysomes [59]. Even if the metabolic model is
not spatial, designed spatial organisation of the novel pathway need to
be taken into account in the modelling. For example the channelling
phenomenon, which may occur in a co-localized pathway, affects the
distribution of flux to alternative pathways.

Lack of compatible regulatory mechanisms in the host may
further hamper the production of target molecules with pathways
encoded by multiple heterologous genes [60]. Design of the
regulatory systems should occur in parallel with the design of the non-
native pathways. If the novel pathway is composed according to the
principles of orthogonality, ie. independence of the host’s native
regulation, a designer made regulatory circuit could be used to
optimize the function of the pathway. Designer made metabolic
regulators could also be introduced to enhance viability when
producing toxic compounds [61]. Orthogonal and truly constitutive
promoters suitable for fine-tuned expression are desired for the cell
factory applications.  Diversification of natural, well-characterized,
promoters could provide a source of orthogonal eukaryotic regulators
[62]. In addition, orthogonal eukaryotic transcription factors have
recently been designed using diversified zinc finger DNA binding
domains [63].
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Design: metabolic and process simulations of the designed
strain

Since microorganisms tend to strive for steady state growth,
dynamic flux balance analysis (dFBA) is powerful in the simulation of
the behaviour of microbial cell culture under dynamic cultivation
conditions [64, 65]. DFBA assumes that the intracellular metabolism
reaches pseudo-steady state while the extracellular conditions vary in a
slower pace. Uptake fluxes are commonly described with dynamic
equations and the derivatives of extracellular product concentrations
are obtained from the metabolite balancing of a stoichiometric model.
Furthermore, dFBA is applicable in genome-scale as was shown in the
recent publications by Vargas er a/ (2011), Ghosh er al (2011), and
Jouhten er al. (2012) [66-68]. Therefore dFBA is also suitable for the
simulation of the designed strain in the n sifico design phase of the
workflow in Figure 1. Whole system wide cofactor and energy
requirements  become  simultaneously  considered  enabling
optimization of the culture setup and the growth medium (Figure I,
fourth step of the in sifico design phase). Different dynamic set ups
from batches to fed-batches with variable feed programs can be
simulated and optimized for high productivity or titre [69]. If, during
the cultivation process, drastic changes occur in the extracellular
conditions, which are known to trigger extensive remodelling of the
hierarchical regulation of the chassis’ metabolism, this regulation must
be included in the model. For example, changes in the concentration
of glucose and/or uptake trigger reorganization of the metabolism of
S. cerevisiae, which was recently modelled by Moisset er al (2012)
[70]. They introduced glucose-dependent hierarchical regulation into
a dynamic model of & cerevisiae. A glucose batch culture with a
diauxic shift from glucose utilization to ethanol oxidation was
successfully simulated with the model. Although the signalling and
transcriptional regulation in S, cerevisiae in response to glucose is well
known, the regulation of the metabolic fluxes including all the post-
transcriptional and metabolic regulation has not been completely
solved. Metabolic regulation also by a flux sensor which mediates the
regulation of the distribution of flux to fermentative and respirative
pathways in response to the flux in the upper glycolytic pathway has
been suggested by Kotte er a/ (2010) [71].

DEFBA offers also means to model and simulate a consolidated
bioprocess where the breakdown of polymeric resource into
metabolizable molecules and the fermentation occur in a single
process. The breakdown of raw material, the uptake of the
metabolizable carbon source, the biosynthesis of the product by the
novel strain, and the process set up can be included into a single
model which enables in silico evaluation of different designs in
complete process simulations. DFBA has been applied to a
consolidated bioprocess by Salimi er al (2010) who simulated the
consolidated process of a co-culture of Clostridia species with native
cellulolytic activity [72]. An example of fine strain engineering for
consolidated bioprocesses was the recently performed study by
Bokinsky er al (2011) [73]. They engineered E. colf strains to secrete
cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes for the
breakdown of raw material outside the cells and to produce biofuel
components and precursors via heterologous metabolic pathways
within the cells. In a similar case the optimal compatibility of the
conditions could be

strain modifications and the

computationally designed by dFBA.

pI‘OCQSS

Quantitative evaluation: metabolic flux analysis

After the novel strain has been constructed by molecular biology
the in vivo performance of the strain need to be quantitatively
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evaluated to validate if the in siico designed and simulated
performance has been reached (Figure I, quantitative evaluation
phase). Evaluation of the performance of a cell factory in terms of
extracellular fluxes can be made by a direct measurement of an
accumulation of extracellular compounds in the medium. On the
contrary, the intracellular fluxes cannot be directly measured. Isotopic
tracer experiments together with metabolic modelling are required to
obtain information on the m vivo pathway fluxes (Figure I, metabolic
flux analysis —step). A stoichiometric metabolic model need to be
augmented with at least carbon atom mappings of substrate atoms to
product atoms for the reactions to enable i vivo flux estimation via
isotopic tracer experiments (Figure 2). Atom mappings for known
reactions are stored in a few databases (ARM database
(www.metabolome.jp) [74]; KEGG ligand and rpair database [S2]),
and alternatively the mappings can be determined by solving the

“atom mapping problem” for which Heinonen er a/ (2011) have
provided a novel computational solution [53]. For £ colr a fully atom
mapped (all except hydrogen atoms mapped) genome-scale metabolic
model for flux analysis by the global iterative fitting approach was
published by Ravikirthi er a/ (2011) [75]. Stable isotopic C
labelling is commonly applied for a quantitative analysis of in vivo
fluxes. 3C labelled substrate is feed to the cells after which the cells
are harvested for the detection of *C labelling patterns in either the
metabolic intermediates or in the biomass components. The
resolution of the quantitative information on the iz vivo fluxes is
strongly dependent on the choice of the C labelling strategy. The
substrate molecules may be fractionally uniformly labelled, labelled in
particular carbon positions of the molecule, or the labelling strategy
may combine both of the previous approaches. An optimal labelling
strategy for resolving a particular flux or fluxes is dependent on the
metabolic network and can be addressed
computationally [76]. In the method  development
Schellenberger er al. (2012) applied Monte-Carlo sampling of feasible

flux spaces in constraint-based models [77], and Crown and

structure of the
recent

Antoniewicz (2012) formulated a solution to the problem in the
elementary metabolite unit’s (EMU’s) framework [78, 79] to select an
optimal labelling strategy. The EMU formulation is the most recent
and computationally efficient formulation of *C labelling patterns.
BC labelling patterns are detected either by nuclear magnetic
resonance (NMR) spectroscopy or by mass spectrometry (MS). Even
though the recent hardware development of NMR spectroscopy in
terms of the minimisation of thermal noise in the electronics has
substantially increased the sensitivity, MS is intrinsically more
sensitive method than NMR spectroscopy. The detection method
options differ also in NMR spectroscopy being capable of providing
direct positional information on the "*C label whereas MS can directly
detect mass differences between molecules or molecule fragments.
Fragmentation in the MS measurement enables generation of partially
positional information. Identification of fragments in MS spectra is
alleviated not only by database information but also by computational
methods suitable for novel fragments lacking the database information
(non-commercial methods [80, 81]). Fragment identification involves
modelling of molecule and fragment structures and favourability of
bond cleavages dependent on the structure. After the *C labelling
data on either the metabolic intermediates or biomass components has
been acquired, the analysis of fluxes may proceed in two alternative
ways: via direct local determination of relative i yrvo fluxes through
alternative pathways [82] or via global iterative fitting [83]. The
relative m vivo fluxes through alternative pathways can also be
introduced as additional constraints into a metabolic flux analysis
problem to render the absolute fluxes solvable [84, 85]. Because of
the local nature of the relative n vivo flux constraints, the obtained
solution of the metabolic flux analysis problem is less prone to
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inaccuracies in the model structure and few *C data [86, 87]. In
contrast, global iterative fitting is a non-linear optimization problem
where candidate inn vivo flux distributions are iteratively generated and
the corresponding *C labelling patterns simulated and compared to
the experimental data until the fit is satisfactory. This approach has
been applied to different cell types from bacteria even to mammalian
cells [7, 88-90]. There are few specific software available for the
global iterative fitting approach (I3C-FLUX [83]; I3C-FLUX2:
www.I3cflux.net;  OpenFLUX  [91]) which apply different
formulations of the C labelling patterns. Drawbacks of the global
iterative fitting approach are that the size of a metabolic system which
is feasible to analyse is limited and that it is difficult to ensure that the
resulting flux distribution solution is globally optimal and unique
[86]. However, currently the extent of which *C labelling data covers
the genome-scale metabolic systems is not broad. *C labelling data
acquisition usually covers tens of compounds which is only a limited
fraction of all the metabolites present in cells. Without this limitation
the approach of using local relative fluxes as additional constraints in
a metabolic flux analysis system would be extendable in genome-scale
whereas global iterative fitting would become computationally heavy.
Blank er al. (2005) approached the extension of the metabolic flux
analysis into genome-scale by constraining the fluxes in a genome
scale stoichiometric metabolic model with the flux solution from a
smaller, central carbon metabolism scale problem [92]. More recently,
Suthers er al. (2010) were able to decrease the computational burden
of BC constrained flux analysis with the implementation of the
elementary metabolite unit (EMU) formulation and flux coupling
into a global iterative fitting approach [93].

Quantitative evaluation: analysis of hierarchical exptession data
in context of a metabolic model

Targeted quantitative analysis of protein expression has
empirically observed to provide important information for balancing
the reactions of a heterologous pathway [94]. In addition to the
targeted analyses of expression, systems biology analyses in large-scale
are of value for understanding the active mechanisms underlying the
metabolic performance of a «cell factory. At present only
transcriptomics data can be generated truly in genome-scale.
Proteomics and metabolomics are progressing but the diversity and
the low amounts of the components hinder the analyses. Omics-data
can be integrated into the context of a metabolic network model to
infer the in wivo regulation (Figure I, analysis of hierarchical
expression data in model context). Integration of transcription data
into a constraint-based model (Figure 2) context enables for example
an identification of reactions whose transcriptional status and flux
status are inconsistent which leads to an identification of the reactions
being regulated at post-transcriptional level [95]. Further, the
Reporter metabolite -algorithm integrates transcription data into a
topological metabolic model (Figure 2) context and identifies “hot-
spot” metabolites around which significant transcriptional regulation
has taken place in the network [96]. These reporter metabolites aid to
decipher the transcriptional regulation of metabolism and to generate
hypotheses on the participation of the Reporter metabolites in the
systemic regulation under the conditions studied.

Summary and outlook

Metabolic modelling plays an essential role in the development of
cell factory by the means of emerging synthetic biology. Modelling
and simulation provide quantitative data on the performance of
alternative designs. Especially large-scale modelling of metabolism is
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central when optimal designs of cell factory systems are sought. In
particular the constraint-based modelling scales well in genome-scale
whereas dynamic models in large-scale are only emerging. Thus, the
constraint-based models have successfully been applied in the
identification of engineering targets. On the other hand, the
shortcomings are also being confessed. In constraint-based models the
detailed dynamic features and the regulatory dependencies on the
metabolome are not implemented. However, dynamic models require
a lot of experimental data for parameterisation, which is both
laborious and expensive or even impossible to generate. Therefore, the
modelling approaches are developing to cope with the scarcity of in
vivo data from biological systems from which examples are modelling
under uncertainty by Miskovi¢ and Hatzimanikatis (2011) [18] and
similar, metabolic ensemble modelling [97]. Simultaneously simplified
kinetics for reaction rate expressions are increasingly being tested and
analysed for suitability for even large-scale applications [23]. Both the
constraint-based and the dynamic metabolic modelling methods can
be utilized to design the chassis and to simulate the performance of
heterologous pathways in the chassis. Moreover, dynamic flux balance
analysis, in genome-scale [66-68], is readily extendable for
quantitative optimization of process conditions together with the
engineered cell factory, and even for simulation of consolidated
bioprocesses.

Many previously developed path finding methods are applicable
to the design of novel, heterologous, production pathways and
specific methods for synthetic biology are also already available.
BNICE, which is capable of finding truly novel pathways, constrains
the space of possible biochemical conversions only with general
enzymatic reaction rules, the particular enzyme need not to be known
or characterized [41]. Catalysts can then be designed and produced
accordingly by protein engineering.

The need to accumulate knowledge and to improve the models by
systems biology studies still remains. The ideal synthetic biology
workflow, Figure 1, is reality only when the models are good enough
to provide quantitatively reliable predictions. However, many
promising chassis organisms are not yet known in detail. In addition,
the libraries of well-characterized parts are still scarce in particular for
other organisms than E. coli A true establishment of synthetic
biology will require supporting efforts to develop the models and
parts. The iterative cycle of information generation and model
improvement, which systems biology focuses on, could roll faster to
support the emerging synthetic biology. Knowledge on the regulation
of the metabolism should be integrated into the metabolic models to
reach a good level of predictability under various conditions the cells
may be exposed to. Urgency to rationalize the engineering of the
regulatory systems of cell factories was recently stressed also by Yadav
er al (2012) [60].

rationalization. What is the perfect modelling framework for the

Modelling is definitely a centrepiece of

integrative models, we haven’t seen yet. Adequate knowledge
integrated into the models and the availability of experimental
techniques and parts are prerequisites for a fast streamlined course
from the design of a chassis to an optimal cell factory.
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