
 

  

 

 

 

 

 

 

 

 
 

 
Introduction 
 

Cell factories, central to a bioeconomy, are commonly microbial 
organisms harnessed for bioconversion of renewable sources to bulk 
or high value chemicals or alternatively for carbon capture to oppose 
climate change. Introduction of novel, non-native pathways producing 
a target compound in optimized chassis strains is the core of the 
development of cell factories by synthetic biology. Synthetic biology 
aims to create novel biological functions and systems not found in 
nature by combining biology with engineering. Engineering provides 
quantitative in silico design and quantitative evaluation of novel 
biological functions and systems. The in silico design and the novel 
cell factory become described with quantitative measures in contrast 
to qualitative descriptions. Modelling of metabolism is involved in 
both design and evaluation of the novel cell factories. Modelling of 
metabolism, or its component metabolites and reactions, provides a 
simplified representation of the reality. In computational applications, 
a model is a quantitative, mathematical, representation of the 
biological systems or components on a suitable level of simplification. 
Different mathematical representations of metabolism, metabolic 
pathways, or metabolic components, enzymes and metabolites, are 
useful in different phases of the development of a cell factory by 
synthetic biology. In this minireview, the role of metabolic modelling 
in the emergence of synthetic biology will be discussed with a review 
of the current status of compatible methods and models for the 
design and evaluation of a cell factory. The workflow of the 
development of novel cell factories with synthetic biology is ideally 
linear with subsequent steps traversed in contrast to an iterative cycle 
of conventional strain improvement. The ideal, linear, workflow can 
be attained with the quantitative engineering approach using high-
quality    predictive    metabolic    models,   and   libraries   of   well- 

  
 
 
 
 
 

 
 

characterized parts. The workflow of the development of a novel cell 
factory can be divided in the design phase, the phase of the evaluation 
of a novel strain, and a strain construction and experimentation steps 
in between the former, Figure 1. In the design phase modelling of 
metabolism is required in the in silico design of the chassis, and the 
modelling of pathway components is required for the simulation of 
novel, optimally orthogonal, production pathways. Further, modelling 
of the metabolic entity consisting of the designed pathway within a 
chassis enables the simulation of the performance of the alternative 
designs in the cell (third step in the in silico design phase in Figure 1). 
Simulation can also be applied to optimize the process set up and the 
medium composition for the novel strain before entering the 
experimental strain construction phase, Figure 1. Regardless of the 
aim for linearity in the workflow and the availability of a high-quality 
predictive models in an ideal case, the simulation steps may identify 
properties of the in silico strain, which require further modifications 
in the design steps (blue arrows in Figure 1). When an optimal in 
silico design is ready, the strain will be constructed in the 
experimental phase. Experimentation will then be performed to collect 
data on the in vivo behaviour of the novel strain. After the 
experimental phase, metabolic modelling is needed again. Analysis of 
intracellular fluxes in the quantitative evaluation phase requires 
metabolic modelling. In addition, the quantitative omics-data 
collected in the experimental phase can be interpreted and the 
regulatory activities inferred in the context of metabolic models. If the 
evaluation phase reveals unsatisfactory performance of the constructed 
strain which considerably differs from the behaviour of the designed 
in silico strain, a return to the experimental phase is forced (purple 
arrows in Figure 1). The discrepancies are assumed to rise from the 
gap between the in silico design and the strain construction. 
Unfortunately, the in silico design is not yet performed on the level of 
the actual parts used in the strain construction by molecular biology. 

Each of the steps of the synthetic biology workflow that involve 
metabolic modelling will be addressed in the following chapters 
including the promising directions, studies, and development in the 
field. In addition the different types of metabolic models applicable in 
the workflow (Figure 2) will be reviewed. 
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Metabolic models involved in the development of cell factories 
using synthetic biology 
 

Different types of metabolic models involved in the development 
of novel cell factories using synthetic biology are shown in Figure 2. 
The model types are presented in the order of increasing complexity. 
The scale of metabolism which is feasible to describe with the 
particular models increases in the opposite direction. Topological 
models include either undirected or directed interactions between the 
metabolites and enzymes and are being used as scaffolds for the 
analysis of omics-data and in path finding by graph-theoretical 
methods. Constraint-based stoichiometric models are static models 
with wide application in target identification for strain modification. 
These models include stoichiometric relationships between substrates 
and products in the reactions and reaction direction, or flux 
constraints. Reaction direction and flux constraints can be obtained 
from, for example thermodynamics and maximum enzyme capacities. 

Some of these models are annotated with gene-reaction rules, which 
provide a direct link to the genome and enable simulations of the 
effect of modifications of single genes. Atom-mapped stoichiometric 
models include mappings of atom transfers in the metabolic reactions. 
For applications including 13C flux analysis, carbon atom mappings 
are necessary. Kinetic models include dynamic rate equations of 
metabolic reactions, either as simplified or mechanistic equations. 
Simplified rate equations aim to reproduce the main features of 
enzyme reaction dynamics with limited parameters and complexity. 
Mechanistic rate equations describe in detail the dynamic behaviour 
of a reaction as it is dependent of the enzymatic mechanism.  

 
Design: in silico design of chassis 
 

Central carbon metabolism, with its capacity for high pathway 
fluxes, forms the core of a cell factory. The efficient pathways of the 
central carbon metabolism produce the precursors for all natural 
chemicals [1], and this can be exploited in a chassis. Engineering a 
high flux to convert carbon sources to a specific precursor will 
provide a ready platform strain for a number of different products 
[2]. Usually the redirection of native pathway fluxes in central carbon 
metabolism involves conventional metabolic engineering, but synthetic 
biology approaches could provide novel solutions. Stoichiometric 
metabolic modelling is an established means to identify targets for 
metabolic engineering. Constraint-based modelling (Figure 2), using 
static stoichiometric models [3], is directly extendable to genome-
scale which enables consideration of important genome-wide 
phenomena such as energy metabolism and cofactor balancing in the 
in silico design of chassis (Figure 1, Design phase). In constraint-
based modelling the stoichiometric models are augmented with 
absolute magnitude constraints and flux direction constraints from, 
for example, thermodynamics [4]. The stoichiometry and the flux 
constraints form a feasible solution space where the true flux 
distribution solution lies. Flux balance analysis (FBA) uses linear 
programming with a defined objective function to identify an optimal 
flux distribution within the feasible space. Computational analysis 
enables also an identification of such targets for metabolic engineering 
which are not intuitively identifiable just by studying network maps. 
Extensions of FBA and other in silico methods based on 
stoichiometric models have successfully been applied to identify 
metabolic engineering targets in genome-wide networks.  In 2009 
Asadollahi et al. identified in silico gdh1 encoding an NADPH 
dependent glutamate dehydrogenase as a knock-out target for 
enhanced synthesis of sesquiterpenes in Saccharomyces cerevisiae [5]. 
The target identification was based on stoichiometric modelling and 
was pursued by combining OptGene modelling framework with the 
minimization of metabolic adjustment (MoMA) [6] as an objective 
function. The in silico analysis predicted a ten-fold increase in the 
production flux, whereas the in vivo increase was less but still 
substantial. Another approach was followed by Becker et al. (2011) 
who simulated the optimal flux distribution for L-lysine production 
in Corynebacterium glutamicum and compared it to the in vivo flux 
distribution determined by 13C flux analysis to determine the 
differences for targets of strain improvement [7]. In general, the in 
silico methods for stoichiometric and constraint-based models allow 
for the predictions of particular optimal flux distributions, and 
optimizations of gene deletions, additions, and overexpression in the 
aim of improving yield and flux to the target product or coupling the 
target molecule production to growth. The different algorithms for in 
silico target identification with stoichiometric models have been 
thoroughly reviewed by Park et al. in 2009 [8]. Since then, the 
algorithm development has further improved the speed [9, 10] and 

Figure 1. Workflow of the development of a cell factory with synthetic 
biology. The workflow of the development of a novel cell factory with 
synthetic biology is divided in three main phases: the design phase, the 
experimental phase and the phase of the quantitative evaluation of the 
novel strain. Metabolic modelling is involved in the design and 
quantitative evaluation phases. Albeit the aim for linearity in the 
workflow, simulated behaviour of the in silico strain or in vivo behaviour 
of the novel strain may force return to previous steps.  
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provided methods for improved predictions (FVSEOF with grouping 
reaction constraints [11]; CASOP [12]; Flux Design [13]). In 
addition, Cobra Toolbox v.2.0 currently provides many of the 
existing tools in it [14]. Another software platform for the in silico 
strain engineering is OptFlux which is Matlab independent in contrast 
to Cobra Toolbox [15].   

 

 
 
 
 
 
 
 
 
 

 
The purely stoichiometric metabolic modelling has weaknesses. It 

cannot take into account the dynamic interactions of reactions, or the 
metabolite concentrations and the effects of their allosteric regulation 
in the system. Mechanistic kinetic models (Figure 2) include all the 
above mentioned but are hard to parameterize in large-scale. Specific 

experimental data for the estimation of parameters is either time-
consuming or impossible to produce and the in vitro data may not 
correctly represent the in vivo system behaviour. In a moderate scale 
the mechanistic kinetic models can be used to identify the product 
flux controlling reactions by the means of metabolic control analysis 
(MCA) [16, 17]. MCA framework can also manage the uncertainty in 
the system parameters [18-19]. Metabolic ensemble modelling 
(MEM) [20] with approximative kinetics manages the uncertainties 
both in the model structure and in the parameter sets. MEM has 
successfully been applied in metabolic engineering tasks [21]. 
Moreover, first attempts have been made to extend kinetic models to 
large-scale. Smallbone et al. (2010) implemented approximative linlog 
kinetics [22] in the reactions of uncompartmentalized, genome-scale, 
model of S. cerevisiae and were able to parameterize the model [23]. 
Different simplified mechanistic rate laws of enzyme reactions (for 
example linlog [22], convenience kinetics [24], and power laws [25]) 
have been developed to limit the complexity and the number of 
parameters required. While providing simplification, the ability to 
still reproduce the main features of enzyme reactions, such as 
saturability, is important for the approximative rate laws. The 
simplified rate laws have also been combined with mechanistic rate 
laws for part of the reactions in a model [26, 27]. Costa et al. (2010) 
gained good dynamic performance of an Escherichia coli model with a 
combination of mechanistic and linlog rate laws [26]. Linlog kinetics 
outperformed other combinations of simplified rate laws like 
generalized mass action, convenience kinetics, and power-law. Far-
from-equilibrium reactions are more important for the prediction of 
the system behaviour to be described exactly with mechanistic rate 
laws than the reactions operating closer to equilibrium. Far-from-
equilibrium and close-to-equilibrium reactions have been identified in 
vivo in S. cerevisiae by Canelas et al. (2011) [28]. 

Industrially widely utilized organisms are soft choices also as 
chassis organisms since their behaviour and the means for their 
engineering are well known. However, organisms beyond the classical 
producers of chemicals such as E. coli, S. cerevisiae, and C. 
glutamicum, offer important properties like high tolerance (L-valine 
tolerant uncommon E. coli engineered to a platform strain [29]; 
solvent tolerant Pseudomonas putida S12 engineered to an L-tyrosine 
producing platform strain [30]; Bacillus subtilis able to modify the 
cell wall in response to toxicity [31]), ability to perform carbon 
capture like cyanobacteria [32] and acetogens [33], or heterosynthetic 
properties like a possibility for electrosynthesis [34].  Genome-wide 
metabolic reconstructions are already available for modelling and 
analysis of many of these potential chassis organisms (a cyanobacterial 
model of Synechocystis sp. PCC 6803 [35]; B. subtilis model 
iBsu1103 [36]). In addition, methods for the reconstruction of 
metabolic models from genome data exist and they are automated to 
large extent [37-39]. 

 
Design: in silico design of novel pathways 
 

Computational methods offer speed and an ability to combine 
huge amounts of information to in silico design of novel pathways 
[40] (Figure 1, Design phase). Conventionally the metabolic path 
finding has been applied to search short or efficient pathways from a 
source metabolite to a target metabolite within the metabolic network 
of a single organism. However, when designing novel, heterologous, 
pathways the search space of reactions cannot be limited to a 
metabolic model of a single organism but could be extended to 
include all known biochemical reactions or even novel biochemical 
conversions. Availability of enzyme mechanisms could be considered 
to form an ultimate limit for the choice of novel biochemical 

Figure 2. Metabolic models involved in the development of cell factories 
with synthetic biology. The four metabolic modelling approaches involved 
in the workflow of the development of a cell factory with synthetic biology 
are shown in an order of increasing complexity from topological to 
constraint-based, atom-mapped, and kinetic models. The phases and the 
tasks of the synthetic biology workflow, where the particular models are 
used, are shown below the descriptions of the types of the models. 
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conversions that can be engineered into cells. BNICE method 
developed by Hatzimanikatis et al. (2005) restricts the pathway 
search on biochemical conversions enabled by generalized enzyme 
reaction rules [41]. The rules are modelled, based on the EC 
classification system, thereby eliminating mechanistically infeasible 
reaction steps. Yet the generalization of the reaction rules leaves a 
possibility to create enhanced activities by protein engineering. Brunk 
et al. (2012) picked candidate enzymes for a novel pathway identified 
with BNICE and continued with structural in silico 3D modelling 
and simulation of the candidate enzymes to identify modification 
targets to improve the catalytic properties of the enzymes [42].  

The existing methods for computational path finding divide into 
two general classes, steady state -based and graph theoretical 
frameworks. The steady state -based methods rely on optimization, or 
on the enumeration of elementary flux modes (EFMs) in 
stoichiometric models (Figure 2) [43]. Despite the recent 
advancements [44-46] the enumeration of elementary flux modes is 
computationally demanding in large networks. To design a novel 
pathway into a chassis the enumeration of EFMs need to be 
performed in a huge network containing all the endogenous reactions 
of an organism and all possible heterologous reactions. Carbonell et 
al. (2012) suggested introduction of additional constraints for not to 
waste computational power in the enumeration of EFMs having zero 
fluxes through the pathway leading to the target compound [47]. 
They also modelled the availability of a variety of source molecules 
into the EFM framework [47]. Other steady state -based methods 
aim to identify an optimal pathway design instead of the enumeration 
of alternative pathway designs. OptStrain method developed by 
Pharkya et al. (2004) identifies stoichiometrically advantageous 
deletions to the chassis in addition to the identification of optimal 
heterologous reactions [48]. Strength of the steady state -based 
methods is that they are directly able to generate branched pathway 
solutions and utilize a set of all endogenous metabolites whereas many 
of the graph theoretical methods search solely for linear paths in 
topological metabolic models (Figure 2). Many graph theoretical 
methods also require user to distinguish cofactors from other 
metabolites. On the other hand, the graph theoretical methods 
outperform the steady state -based methods in speed and they scale 
well into large networks. Recently, a graph theoretical method able to 
enumerate branched pathways from a set of source metabolites to 
target metabolites was developed where hyperpaths are searched in a 
hypergraph [47]. Already earlier a graph theoretical method for 
finding branched pathways was presented [49]. This method 
suggested by Pitkänen et al. (2009) successfully applied atom tracing 
in the path finding [49]. Atom tracing from substrate metabolites to 
products avoids unrealistic connections in the identified pathway and 
simultaneously obviates the need to define a set of cofactors or hub 
metabolites [49, 50]. While the topological models as such do not 
contain information on the reaction stoichiometry, it becomes 
implemented when atom tracing is utilized. Path finding methods that 
apply the tracing of atoms have relied on atom mappings stored in the 
databases of known biochemical reactions such as KEGG Rpair [51]. 
However, Heinonen et al. (2011) have recently developed an efficient 
computational method for atom mapping which is compatible even 
with novel reactions lacking database information on the atom 
mappings [52]. The novel method could promote the advantages of 
atom tracing in the in silico design of novel pathways. 

Utilization of enumerative methods in the in silico pathway 
design tend to result in huge numbers of routes in contrast to a single 
design provided by the optimization based methods. The benefit is 
that the alternative designs could include solutions having superior 
properties not taken into account in the optimization. Yet it is 
valuable to embed some selection for feasibility into the enumeration 

phase, and post-ranking is required to choose the pathways to be 
introduced into the chassis. Ranking criteria is somewhat context-
dependent but the feasibility in terms of pathway thermodynamics is 
generally essential for successful function in the chassis. Henry et al. 
(2010) applied thermodynamic metabolic flux analysis (TMFA) [53] 
to novel pathways within the stoichiometric metabolic model of the 
chassis [54]. TMFA utilizes a group contribution method [55] in the 
estimation of the free energy changes of reactions. Group contribution 
method estimates the free energy change of the formation of a 
molecule based on the structural groups it contains. Recent extension 
to the group contribution method by Noor et al. (2012) includes the 
consideration of the pseudoisomers of the molecule’s structural 
groups, which gains accuracy in the estimation [56]. Feasibility of 
novel pathways is affected also by other factors than thermodynamics. 
The novel pathways can be further ranked according to the 
stoichiometric yields, and maximum activities of the target molecule. 
Both are directly obtained from TMFA and are of primary interest in 
the development of bioprocess strains. In the recent method 
developed by Chatsurachai et al. (2012) the yields of target molecules 
are evaluated at maximum growth rate [57]. Thus, the method 
assumes that the novel pathway is not orthogonal but dependent on 
the energy generation and cofactor balancing in the chassis and, 
therefore also on the native regulatory system. In many microbes the 
regulatory system is thought to manage the utilization of resources in 
the aim of maximizing the growth rate. However, the engineered 
strains may not behave like the wild type strains evolved to grow 
optimally and perhaps using the minimization of metabolic 
adjustment (MoMA) [6] as an objective function would provide more 
realistic predictions [5]. Further properties which affect the feasibility 
of engineering a pathway are, for example, the number of reactions, 
the number of heterologous enzymes, and the number of enzymes not 
directly available for expression. In general the number of 
heterologous enzymes counts since introduction of additional 
enzymes may cause a metabolic burden. In their recent review, Bar-
Even et al. (2011) pointed out the additional importance of the 
characteristics of pathway intermediates such as toxicity, reactivity, 
and permeability [58]. In many cases the unwanted characteristics 
could be counteracted with spatial organisation, namely co-
localization, of the pathway. To co-localize the reactions, the enzymes 
can be physically attached to each other with a specific linker [59]. 
Alternatively the reactions can be co-expressed in compartments 
separated from cytosol, like in peroxisomes, or in synthetic 
compartments, like carboxysomes [59]. Even if the metabolic model is 
not spatial, designed spatial organisation of the novel pathway need to 
be taken into account in the modelling. For example the channelling 
phenomenon, which may occur in a co-localized pathway, affects the 
distribution of flux to alternative pathways.  

Lack of compatible regulatory mechanisms in the host may 
further hamper the production of target molecules with pathways 
encoded by multiple heterologous genes [60]. Design of the 
regulatory systems should occur in parallel with the design of the non-
native pathways. If the novel pathway is composed according to the 
principles of orthogonality, i.e. independence of the host’s native 
regulation, a designer made regulatory circuit could be used to 
optimize the function of the pathway. Designer made metabolic 
regulators could also be introduced to enhance viability when 
producing toxic compounds [61]. Orthogonal and truly constitutive 
promoters suitable for fine-tuned expression are desired for the cell 
factory applications.  Diversification of natural, well-characterized, 
promoters could provide a source of orthogonal eukaryotic regulators 
[62]. In addition, orthogonal eukaryotic transcription factors have 
recently been designed using diversified zinc finger DNA binding 
domains [63].  
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Design: metabolic and process simulations of the designed 
strain 
 

Since microorganisms tend to strive for steady state growth, 
dynamic flux balance analysis (dFBA) is powerful in the simulation of 
the behaviour of microbial cell culture under dynamic cultivation 
conditions [64, 65]. DFBA assumes that the intracellular metabolism 
reaches pseudo-steady state while the extracellular conditions vary in a 
slower pace. Uptake fluxes are commonly described with dynamic 
equations and the derivatives of extracellular product concentrations 
are obtained from the metabolite balancing of a stoichiometric model. 
Furthermore, dFBA is applicable in genome-scale as was shown in the 
recent publications by Vargas et al. (2011), Ghosh et al. (2011), and 
Jouhten et al. (2012) [66-68]. Therefore dFBA is also suitable for the 
simulation of the designed strain in the in silico design phase of the 
workflow in Figure 1. Whole system wide cofactor and energy 
requirements become simultaneously considered enabling 
optimization of the culture setup and the growth medium (Figure 1, 
fourth step of the in silico design phase). Different dynamic set ups 
from batches to fed-batches with variable feed programs can be 
simulated and optimized for high productivity or titre [69]. If, during 
the cultivation process, drastic changes occur in the extracellular 
conditions, which are known to trigger extensive remodelling of the 
hierarchical regulation of the chassis’ metabolism, this regulation must 
be included in the model. For example, changes in the concentration 
of glucose and/or uptake trigger reorganization of the metabolism of 
S. cerevisiae, which was recently modelled by Moisset et al. (2012) 
[70]. They introduced glucose-dependent hierarchical regulation into 
a dynamic model of S. cerevisiae. A glucose batch culture with a 
diauxic shift from glucose utilization to ethanol oxidation was 
successfully simulated with the model. Although the signalling and 
transcriptional regulation in S. cerevisiae in response to glucose is well 
known, the regulation of the metabolic fluxes including all the post-
transcriptional and metabolic regulation has not been completely 
solved. Metabolic regulation also by a flux sensor which mediates the 
regulation of the distribution of flux to fermentative and respirative 
pathways in response to the flux in the upper glycolytic pathway has 
been suggested by Kotte et al. (2010) [71]. 

DFBA offers also means to model and simulate a consolidated 
bioprocess where the breakdown of polymeric resource into 
metabolizable molecules and the fermentation occur in a single 
process. The breakdown of raw material, the uptake of the 
metabolizable carbon source, the biosynthesis of the product by the 
novel strain, and the process set up can be included into a single 
model which enables in silico evaluation of different designs in 
complete process simulations. DFBA has been applied to a 
consolidated bioprocess by Salimi et al. (2010) who simulated the 
consolidated process of a co-culture of Clostridia species with native 
cellulolytic activity [72]. An example of fine strain engineering for 
consolidated bioprocesses was the recently performed study by 
Bokinsky et al. (2011) [73]. They engineered E. coli strains to secrete 
cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes for the 
breakdown of raw material outside the cells and to produce biofuel 
components and precursors via heterologous metabolic pathways 
within the cells. In a similar case the optimal compatibility of the 
strain modifications and the process conditions could be 
computationally designed by dFBA. 

 

Quantitative evaluation: metabolic flux analysis 
 

After the novel strain has been constructed by molecular biology 
the in vivo performance of the strain need to be quantitatively 

evaluated to validate if the in silico designed and simulated 
performance has been reached (Figure 1, quantitative evaluation 
phase). Evaluation of the performance of a cell factory in terms of 
extracellular fluxes can be made by a direct measurement of an 
accumulation of extracellular compounds in the medium. On the 
contrary, the intracellular fluxes cannot be directly measured. Isotopic 
tracer experiments together with metabolic modelling are required to 
obtain information on the in vivo pathway fluxes (Figure 1, metabolic 
flux analysis –step). A stoichiometric metabolic model need to be 
augmented with at least carbon atom mappings of substrate atoms to 
product atoms for the reactions to enable in vivo flux estimation via 
isotopic tracer experiments (Figure 2). Atom mappings for known 
reactions are stored in a few databases (ARM database 
(www.metabolome.jp) [74]; KEGG ligand and rpair database [52]), 
and alternatively the mappings can be determined by solving the 
“atom mapping problem” for which Heinonen et al. (2011) have 
provided a novel computational solution [53]. For E. coli a fully atom 
mapped (all except hydrogen atoms mapped) genome-scale metabolic 
model for flux analysis by the global iterative fitting approach was 
published by Ravikirthi et al. (2011) [75]. Stable isotopic 13C 
labelling is commonly applied for a quantitative analysis of in vivo 
fluxes. 13C labelled substrate is feed to the cells after which the cells 
are harvested for the detection of 13C labelling patterns in either the 
metabolic intermediates or in the biomass components. The 
resolution of the quantitative information on the in vivo fluxes is 
strongly dependent on the choice of the 13C labelling strategy. The 
substrate molecules may be fractionally uniformly labelled, labelled in 
particular carbon positions of the molecule, or the labelling strategy 
may combine both of the previous approaches. An optimal labelling 
strategy for resolving a particular flux or fluxes is dependent on the 
structure of the metabolic network and can be addressed 
computationally [76]. In the recent method development 
Schellenberger et al. (2012) applied Monte-Carlo sampling of feasible 
flux spaces in constraint-based models [77], and Crown and 
Antoniewicz (2012) formulated a solution to the problem in the 
elementary metabolite unit’s (EMU’s) framework [78, 79] to select an 
optimal labelling strategy. The EMU formulation is the most recent 
and computationally efficient formulation of 13C labelling patterns.  

13C labelling patterns are detected either by nuclear magnetic 
resonance (NMR) spectroscopy or by mass spectrometry (MS). Even 
though the recent hardware development of NMR spectroscopy in 
terms of the minimisation of thermal noise in the electronics has 
substantially increased the sensitivity, MS is intrinsically more 
sensitive method than NMR spectroscopy. The detection method 
options differ also in NMR spectroscopy being capable of providing 
direct positional information on the 13C label whereas MS can directly 
detect mass differences between molecules or molecule fragments. 
Fragmentation in the MS measurement enables generation of partially 
positional information. Identification of fragments in MS spectra is 
alleviated not only by database information but also by computational 
methods suitable for novel fragments lacking the database information 
(non-commercial methods [80, 81]). Fragment identification involves 
modelling of molecule and fragment structures and favourability of 
bond cleavages dependent on the structure. After the 13C labelling 
data on either the metabolic intermediates or biomass components has 
been acquired, the analysis of fluxes may proceed in two alternative 
ways: via direct local determination of relative in vivo fluxes through 
alternative pathways [82] or via global iterative fitting [83].  The 
relative in vivo fluxes through alternative pathways can also be 
introduced as additional constraints into a metabolic flux analysis 
problem to render the absolute fluxes solvable [84, 85]. Because of 
the local nature of the relative in vivo flux constraints, the obtained 
solution of the metabolic flux analysis problem is less prone to 
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inaccuracies in the model structure and few 13C data [86, 87]. In 
contrast, global iterative fitting is a non-linear optimization problem 
where candidate in vivo flux distributions are iteratively generated and 
the corresponding 13C labelling patterns simulated and compared to 
the experimental data until the fit is satisfactory. This approach has 
been applied to different cell types from bacteria even to mammalian 
cells [7, 88-90]. There are few specific software available for the 
global iterative fitting approach (13C-FLUX [83]; 13C-FLUX2: 
www.13cflux.net; OpenFLUX [91]) which apply different 
formulations of the 13C labelling patterns. Drawbacks of the global 
iterative fitting approach are that the size of a metabolic system which 
is feasible to analyse is limited and that it is difficult to ensure that the 
resulting flux distribution solution is globally optimal and unique 
[86]. However, currently the extent of which 13C labelling data covers 
the genome-scale metabolic systems is not broad. 13C labelling data 
acquisition usually covers tens of compounds which is only a limited 
fraction of all the metabolites present in cells. Without this limitation 
the approach of using local relative fluxes as additional constraints in 
a metabolic flux analysis system would be extendable in genome-scale 
whereas global iterative fitting would become computationally heavy. 
Blank et al. (2005) approached the extension of the metabolic flux 
analysis into genome-scale by constraining the fluxes in a genome 
scale stoichiometric metabolic model with the flux solution from a 
smaller, central carbon metabolism scale problem [92]. More recently, 
Suthers et al. (2010) were able to decrease the computational burden 
of 13C constrained flux analysis with the implementation of the 
elementary metabolite unit (EMU) formulation and flux coupling 
into a global iterative fitting approach [93]. 

 
Quantitative evaluation:  analysis of hierarchical expression data 
in context of a metabolic model 

 
Targeted quantitative analysis of protein expression has 

empirically observed to provide important information for balancing 
the reactions of a heterologous pathway [94]. In addition to the 
targeted analyses of expression, systems biology analyses in large-scale 
are of value for understanding the active mechanisms underlying the 
metabolic performance of a cell factory. At present only 
transcriptomics data can be generated truly in genome-scale. 
Proteomics and metabolomics are progressing but the diversity and 
the low amounts of the components hinder the analyses. Omics-data 
can be integrated into the context of a metabolic network model to 
infer the in vivo regulation (Figure 1, analysis of hierarchical 
expression data in model context). Integration of transcription data 
into a constraint-based model (Figure 2) context enables for example 
an identification of reactions whose transcriptional status and flux 
status are inconsistent which leads to an identification of the reactions 
being regulated at post-transcriptional level [95]. Further, the 
Reporter metabolite -algorithm integrates transcription data into a 
topological metabolic model (Figure 2) context and identifies  “hot-
spot” metabolites around which significant transcriptional regulation 
has taken place in the network [96]. These reporter metabolites aid to 
decipher the transcriptional regulation of metabolism and to generate 
hypotheses on the participation of the Reporter metabolites in the 
systemic regulation under the conditions studied. 

 
Summary and outlook 
 

Metabolic modelling plays an essential role in the development of 
cell factory by the means of emerging synthetic biology. Modelling 
and simulation provide quantitative data on the performance of 
alternative designs. Especially large-scale modelling of metabolism is 

central when optimal designs of cell factory systems are sought. In 
particular the constraint-based modelling scales well in genome-scale 
whereas dynamic models in large-scale are only emerging. Thus, the 
constraint-based models have successfully been applied in the 
identification of engineering targets. On the other hand, the 
shortcomings are also being confessed. In constraint-based models the 
detailed dynamic features and the regulatory dependencies on the 
metabolome are not implemented. However, dynamic models require 
a lot of experimental data for parameterisation, which is both 
laborious and expensive or even impossible to generate. Therefore, the 
modelling approaches are developing to cope with the scarcity of in 
vivo data from biological systems from which examples are modelling 

under uncertainty by Mišković and Hatzimanikatis (2011) [18] and 
similar, metabolic ensemble modelling [97]. Simultaneously simplified 
kinetics for reaction rate expressions are increasingly being tested and 
analysed for suitability for even large-scale applications [23]. Both the 
constraint-based and the dynamic metabolic modelling methods can 
be utilized to design the chassis and to simulate the performance of 
heterologous pathways in the chassis. Moreover, dynamic flux balance 
analysis, in genome-scale [66-68], is readily extendable for 
quantitative optimization of process conditions together with the 
engineered cell factory, and even for simulation of consolidated 
bioprocesses. 

Many previously developed path finding methods are applicable 
to the design of novel, heterologous, production pathways and 
specific methods for synthetic biology are also already available. 
BNICE, which is capable of finding truly novel pathways, constrains 
the space of possible biochemical conversions only with general 
enzymatic reaction rules, the particular enzyme need not to be known 
or characterized [41]. Catalysts can then be designed and produced 
accordingly by protein engineering. 

The need to accumulate knowledge and to improve the models by 
systems biology studies still remains. The ideal synthetic biology 
workflow, Figure 1, is reality only when the models are good enough 
to provide quantitatively reliable predictions. However, many 
promising chassis organisms are not yet known in detail. In addition, 
the libraries of well-characterized parts are still scarce in particular for 
other organisms than E. coli. A true establishment of synthetic 
biology will require supporting efforts to develop the models and 
parts. The iterative cycle of information generation and model 
improvement, which systems biology focuses on, could roll faster to 
support the emerging synthetic biology. Knowledge on the regulation 
of the metabolism should be integrated into the metabolic models to 
reach a good level of predictability under various conditions the cells 
may be exposed to. Urgency to rationalize the engineering of the 
regulatory systems of cell factories was recently stressed also by Yadav 
et al. (2012) [60]. Modelling is definitely a centrepiece of 
rationalization. What is the perfect modelling framework for the 
integrative models, we haven’t seen yet. Adequate knowledge 
integrated into the models and the availability of experimental 
techniques and parts are prerequisites for a fast streamlined course 
from the design of a chassis to an optimal cell factory. 
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