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Abstract: Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum
of clinical manifestations such as neurodegeneration, premature aging, developmental impairment,
photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present
in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the
role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions
have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53
regulation. Herein, we present an overview of identified structural elements and processes that
impact on CSB activity and its post-translational modifications, known to balance the different roles
of the protein not only during normal conditions but most importantly in stress situations. Moreover,
since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is
presented and possible therapeutic targeting is discussed.

Keywords: Cockayne syndrome; Cockayne syndrome protein B; CSB; ERCC6; cancer; Cockayne
syndrome pathologies

1. Introduction

Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized by
progressive neurodegeneration, mental retardation, developmental abnormalities, retinal
degeneration, physical impairment, severe photosensitivity and premature aging [1]. The
syndrome has been mainly linked to mutations in the ERCC8 and ERCC6 genes encoding
for Cockayne syndrome protein A (CSA) and Cockayne syndrome protein B (CSB), respec-
tively [2,3]. The majority of patients carry mutations in the latter gene, and although CSB
has been the focus of intense research, important details of the underlying mechanistic and
regulatory framework are still unknown [4].
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2. Cockayne Syndrome Protein B (CSB)

The excision repair cross-complementation group 6 (ERCC6) gene has been mapped
to chromosome 10 and encodes for a 1493 amino acid protein (CSB) with a molecular
weight of 168 kDa [3]. CSB belongs to the SWI2/SNF2 family of ATP-dependent chromatin
remodelers and exhibits DNA and nucleosome-stimulated ATP hydrolytic activities [5–7].
Furthermore, it has been reported that CSB catalyzes the annealing of complementary
single-stranded DNA molecules and possesses strand exchange activity [8]. Moreover, CSB
can change the conformation of DNA by introducing negative supercoils, a process which
was proposed to be dependent on ATP binding since it occurred more frequently in the
presence of non-hydrolyzable ATP analogs [9].

A number of different cellular roles, recently reviewed in [4], have been attributed to
CSB. Firstly, CSB protein is a major player of the transcription-coupled nucleotide excision
repair (TC-NER or TCR) pathway, the subpathway of NER that removes transcription-
blocking DNA lesions from the transcribed strand of active genes. Substrates for repair
via the NER pathway mainly include photolesions produced by UV irradiation such as
cyclobutane pyrimidine dimers (CPD) and (6,4)-pyrimidine-pyrimidone photoproducts
(6-4PPs), environmental mutagens such as polycyclic aromatic hydrocarbons and bulky
DNA adducts produced by chemotherapeutic agents such as cisplatin [10]. Additional
structurally unrelated lesions, which are not repaired as expected by the base excision
repair (BER) machinery, but are substrates of NER, include tandem base modifications
such as G [8–5m]T, purine 5′,8-cyclonucleosides, interstrand cross-links and DNA–protein
crosslinks [11,12]. The clinical importance of NER is evident in patients with congenital
diseases and syndromes in which NER is deficient, showing symptoms of premature aging
and photosensitivity, such as CS and trichothiodystrophy (TTD), increased cancer risk, such
as xeroderma pigmentosum (XP), or other related pathologies. The role of CSB in TC-NER
implicates RNA polymerase II (RNAPII) and together they have been implicated in the
early steps of DNA damage recognition. Briefly, it has been found that while under normal
conditions, CSB transiently interacts with RNAPII, this interaction is stabilized upon DNA
damage [13]. In addition, CSB is required for the recruitment of the CSA/DDB1-Cul4A-
RBX1 E3 ubiquitin ligase (CRL4CSA) in complex with the COP9 signalosome, key NER
factors and chromatin modifiers such as p300 histone acetyltransferase and HMGN1 at the
site of damage-stalled RNA Pol II [14]. Upon efficient repair, a role of CSB in transcription
recovery from promoter proximal sites, which takes place via a CSB-mediated association
of the PAF1 complex with RNAPII, has been also highlighted recently [15]. Besides the
TC-NER repair pathway, CSB plays a role in the repair of oxidative DNA lesions via BER, in
interstrand crosslink (ICL) repair, in DNA double-strand break (DSB) repair and checkpoint
activation [16–21]. Finally, there is a number of studies indicating that CSB is involved in
transcription, in chromatin remodeling, in nucleolar rDNA transcription by RNA poly-
merase I, in mitochondrial function, in enhancement of the p53–chromatin association, in
p53 ubiquitination, in cell division completion and in telomere maintenance [22–30].

3. Regulatory Framework of CSB
3.1. Structural Regulatory Elements

The multiple roles of CSB highlight the need for a complex and reliable regulatory
mechanism to control protein function under normal conditions, and more importantly
under genotoxic stress conditions. The CSB protein can be divided into three distinct
segments: the N-terminal, the C-terminal and the central ATPase domain consisting of
seven conserved helicase motifs (Figure 1). At the N-terminal, an acidic-rich region has
been defined, whereas at the C-terminal, a ubiquitin-binding domain (UBD) and a winged
helix domain (WHD) have been identified at amino acid residues 1400–1428 and 1417–1493,
respectively [19,31,32]. An evolutionarily conserved CSA interaction motif (CIM) located
between amino acids 1385–1399 has also been discovered recently [33]. Two nuclear local-
ization sequences (NLSs) have been found on either side of the ATPase domain (amino acid
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residues 466–481 and 1038–1055), whereas a third NLS has been predicted via computational
analysis at amino acid residues 285–354 [34].

Mutational studies and genetic analyses of the mutations carried by CS patients have
revealed the functional importance of the different CSB domains (Figure 1). Cho et al. has
shown that removal of the 245–365 amino acids located at the N-terminus of the protein
disrupted the interaction between CSB and the NAP1L1 histone chaperone, affecting
the ATP-dependent chromatin remodeling activity of CSB [35]. Interestingly, apart from
the UBD that is considered essential for TC-NER [28], the last 30 C-terminal amino acid
residues (1464–1493) have been identified as essential for the repair of UV-induced DNA
lesions by TC-NER, given that the interaction of CSB with RNAPII and chromatin after
UV radiation, as well as the translocation of CSA to the nuclear matrix, were found to be
affected in mutants carrying such a deletion (CSB1−1463) [36]. These C-terminal amino
acids include the conserved W1486 and L1488 residues, which are part of the hydrophobic
core of the identified WHD [19]. The WHD of CSB, independently of its ubiquitin-binding
activity, was found to be essential for RNAPII abundance regulation at promoter proximal
pause (PPP) sites of actively transcribed genes [37]. On the other hand, both the WHD
and the UBD are considered necessary for the interaction of the C-terminal part with the
CSB ATPase domain, an interaction, which is disrupted upon UV-induced damage via
proper folding of the WHD [38]. Finally, in regard to the recently discovered CIM, due to
its position next to the UBD, van den Heuvel et al. speculated that CSB-CSA interaction is
stabilized by binding of the UBD of CSB to auto-ubiquitylated CSA [39].

A comprehensive study by Lake et al. has highlighted the existence of an auto-
regulatory mechanism of CSB protein function that involves all three regions of CSB [40].
In particular, mutational studies have shown that the central region of CSB displaying
the ATPase activity and the C-terminal region are necessary for the stable binding of CSB
to chromatin after exposure to UV radiation [40]. On the other hand, the N-terminal
region of CSB is responsible for the specificity of the C-terminal binding to chromatin and
acts as a negative regulator of this binding under normal conditions [40]. In response to
genotoxic stress, the negative regulation of the N-terminal is alleviated, a process fueled by
energy released from the hydrolysis of ATP [40]. Interestingly, in another study involving
oxidative DNA lesions, angelicin mono-adducts or trioxsalen interstrand crosslinks (ICLs),
a functional ATPase domain was not required for chromatin association [41]. In contrast,
other studies have proven that the ATPase activity is essential for the assembly of NER
factors and for loading and binding of homologous recombination (HR) proteins, while it is
dispensable for processing of 8-oxoguanine, an oxidative base lesion [42–44]. The ATPase
activity of CSB may also be affected by a high dose of trans-4-hydroxy-2-nonenal (HNE),
one of the major lipid peroxidation products, and at the same time it has been shown that
mutation of different ATPase motifs leads to different sensitivities to HNE [45]. The above
observations suggest that the function of the structural elements of CSB is differentially
regulated, depending on the type of damage, and therefore the type of repair mechanism
activated. Another example of the differential regulation of CSB upon UV damage and in
DSB repair is the fact that the first 30 amino acids reported as essential for HR-mediated
repair of DSBs are dispensable for UV repair [19,38].
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Figure 1. (A) Schematic representation of Cockayne syndrome protein B (CSB) structure. (B) Crystal
structures of ERCC6 proteins (i) A ribbon representation of the N-terminal coiled coil domain of the
human ERCC6 (PDB id: 4cvo; Uniprot id: q03468); (ii) the structure of the winged helix domain of a
specific ERCC6 variant (PDB id: 6a6i; Uniprot id: q59ff6) in complex with ubiquitin (ERCC6 ribbon:
blue, ubiquitin ribbon: red) [46,47].

3.2. Post-Translational Modifications

Although structural regulation of a protein through folding and refolding plays a
critical role in protein function, special reference should be made to its regulation via
post-translational modifications. In effect, the modification of amino acids and of their side
chains contributes significantly to the functional diversity of proteins and therefore may
alter their activity, the balance between their expression and degradation and interactions
with other proteins [48]. Especially for DNA repair proteins, such as CSB, their differential
regulation via post-translational modifications is very important, as the alternative would
be to synthesize the protein de novo, with the risk of synthesizing a mutated protein due
to existing lesions. In the case of CSB, several studies have been conducted to identify
its post-translational modifications, such as phosphorylation, ubiquitination, poly-ADP-
ribosylation and SUMOylation, and their biological importance (Figure 1).

3.2.1. CSB Phosphorylation

Regarding CSB phosphorylation, it has been found that upon exposure of cells to
hydrogen peroxide, the CSB protein is phosphorylated by c-Abl kinase at tyrosine 932 [49].
As a result, the protein is redistributed in the nucleus and is enriched in the nucleolus.
This altered subcellular localization of the phosphorylated CSB in response to oxidative
stress suggests that phosphorylation of CSB by c-Abl may play an important role in
the repair of oxidative damage [49]. In addition, Christiansen et al. suggest that CSB
is phosphorylated under normal conditions and is dephosphorylated after exposure to
UV irradiation, a modification which increased the ATPase activity of the protein [50].
In a similar manner, CSB has been found to be dephosphorylated in cells treated with
HNE [45]. Moreover, damage-induced phosphorylation of CSB on S10 by ATM and
cell cycle-dependent phosphorylation of CSB on S158 by cyclin A-Cdk2 was found to
be essential for its chromatin remodeling activity at DSBs [19]. These phosphorylation
events, which were found to be dispensable for the repair of UV-induced DNA lesions, are
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proposed to be responsible for the release of the auto-inhibitory signal of the N-terminal
region on its ATPase domain [19,38]. Finally, mass spectrometry studies have identified
several other potential phosphorylation sites of the CSB protein. Based on an in silico
analysis, 29 potential phosphorylation sites were obtained using only proteomic discovery
mass spectrometry [51]. The most prominent of these sites are the serine residues located
at the N-terminus of the CSB protein at positions 158, 429, 430, 486 and 489 (Figure 1) [51].

3.2.2. CSB Ubiquitination

Several links between CSB and ubiquitin have been documented. First, as already
mentioned, a small part of the carboxyl terminal of the CSB protein (less than 30 amino
acids long), the so called UBD, has been identified as responsible for binding to ubiquitin
(Figure 1) [32]. This region is regarded as essential for DNA repair via the TC-NER
mechanism, since its deletion resulted in lower rates of excision and removal of le-
sions [32]. This notion was challenged by Takahashi et al., who identified the WHD,
which folds as a single globular domain and interacts with ubiquitin via its second
α-helix and C-terminal extremity, as the minimal ubiquitin binding domain of CSB [52].
Second, Groisman et al. identified CSB as a substrate of CSA for ubiquitination and
degradation at the late stages of repair after UV irradiation [53]. On the other hand, Wei
et al. identified a CSA-independent CSB protein ubiquitination pathway in which CSB
is poly-ubiquitinated by the BRCA1 protein soon after exposure to UV irradiation, and
even before repair by TC-NER is completed [54]. In addition, a site of CSB ubiquitination
(at lysine residue 991) has been identified [55], acting as another example of differential
regulation of the role of CSB in the different pathways, as it was found to be dispensable
for TC-NER but was essential for repair of oxidative damage via the BER mechanism
and genome stability [55]. Finally, a CSB deubiquitinating enzyme called Ubiquitin
-specific protease 7 (USP7), together with its partner protein UVSSA, was identified and
its role in increasing the protein levels after its initial decrease (an identified biphasic
response) upon UV-induced DNA damage has been proposed in order to fine-tune
TC-NER (Figures 1 and 2) [56,57].

Cells 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Multifunctional role of CSB (A) and related pathologies (B). Abbreviations: TC-NER: Transcription-Coupled 
Nucleotide Excision Repair, BER: Base Excision Repair, NHEJ: Non-Homologous End Joining, HR: Homologous Recom-
bination, DSBs: Double-Strand Breaks, COFS: Cerebro-Oculo-Facio-Skeletal Syndrome, UVSS: UV-Sensitive Syndrome. 

3.2.4. CSB SUMOylation 
Finally, the most recently identified post-translational modification of CSB, in re-

sponse to UV irradiation, is SUMOylation (Figure 1). In one study, three potential 
SUMOylation sites were proposed, two at the carboxyl terminal (K1487, K1489) and one 
at the N-terminal of the protein (K205). However, both a double mutant CSBK1487R, 
K1489R (2K→R) as well as a triple mutant CSBK1457R, K1487R, K1489R did not abolish 
the modification of CSB by SUMO2 [28]. On the other hand, mutation of lysine 205 (K205) 
partially abolished SUMOylation of CSB and affected the function of CSB in TC-NER, 
resulting in the failure to recover RNA synthesis, which is a hallmark characteristic of CS 
cells, indicating a role for CSB SUMOylation in TC-NER [36,59]. In fact, very recently, 
Liebelt et al. targeted five lysines, which were embedded in the SUMO consensus motif 
(K32, K205, K481, K1359 and K1489) and after mutation analyses (including a K481, 1359 
1489R triple mutant, a K205, 481, 1359 1489R quadruple mutant, a quintuple mutant and 
finally a K32, K205 double mutant) the authors concluded that CSB is SUMOylated pre-
dominantly at the two N-terminal lysines (32 and 205) [60]. Interestingly, the same study 
highlighted that active transcription and stalling of RNAPII at the site of DNA damage is 
a prerequisite for the modification of CSB by SUMO2. Furthermore, they show that the 
CSA–CRL4 complex regulates the stability of the modified protein in response to dam-
age, and although the exact mechanism remains elusive, it does not involve a 
CSA-dependent ubiquitination and degradation of CSB after UV damage, as suggested 
by Groisman et al. [53,60]. 
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Cerebro-Oculo-Facio-Skeletal Syndrome, UVSS: UV-Sensitive Syndrome.
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3.2.3. CSB Poly-ADP-Ribosylation

Another post-translational modification of CSB, which takes place upon damage, is
poly-ADP-ribosylation. In particular, it has been found that after exposure to oxidative
stress, CSB is modified by poly (ADP-ribose) polymerase-1 (PARP1) enzyme and the
addition of an ADP ribose and this modification results in the inhibition of CSB’s DNA-
dependent ATPase activity [58]. The role of this inhibition still remains elusive. The authors
speculate that this inhibition might be a secondary effect caused by an alteration in DNA
binding of the modified CSB or that, since ATP hydrolysis by CSB has been shown to cause
unwrapping of the DNA, this modification of CSB might result in an increase in DNA
wrapping by CSB [19,58].

3.2.4. CSB SUMOylation

Finally, the most recently identified post-translational modification of CSB, in response
to UV irradiation, is SUMOylation (Figure 1). In one study, three potential SUMOylation
sites were proposed, two at the carboxyl terminal (K1487, K1489) and one at the N-terminal
of the protein (K205). However, both a double mutant CSBK1487R, K1489R (2K→R) as
well as a triple mutant CSBK1457R, K1487R, K1489R did not abolish the modification of
CSB by SUMO2 [28]. On the other hand, mutation of lysine 205 (K205) partially abolished
SUMOylation of CSB and affected the function of CSB in TC-NER, resulting in the failure
to recover RNA synthesis, which is a hallmark characteristic of CS cells, indicating a role
for CSB SUMOylation in TC-NER [36,59]. In fact, very recently, Liebelt et al. targeted five
lysines, which were embedded in the SUMO consensus motif (K32, K205, K481, K1359
and K1489) and after mutation analyses (including a K481, 1359 1489R triple mutant, a
K205, 481, 1359 1489R quadruple mutant, a quintuple mutant and finally a K32, K205
double mutant) the authors concluded that CSB is SUMOylated predominantly at the two
N-terminal lysines (32 and 205) [60]. Interestingly, the same study highlighted that active
transcription and stalling of RNAPII at the site of DNA damage is a prerequisite for the
modification of CSB by SUMO2. Furthermore, they show that the CSA–CRL4 complex
regulates the stability of the modified protein in response to damage, and although the
exact mechanism remains elusive, it does not involve a CSA-dependent ubiquitination and
degradation of CSB after UV damage, as suggested by Groisman et al. [53,60].

4. CSB in Pathology
4.1. Cockayne Syndrome

Cockayne syndrome (CS) is characterized by a broad spectrum of clinical features
including cachectic dwarfism, cutaneous photosensitivity, microcephaly, growth and de-
velopmental abnormalities, neurological and retinal degeneration, physical impairment,
deafness and premature aging (reviewed in [61]). Analyses of large cohorts of CS patients
have shown that there is no definite correlation between the genotype (mutations identified)
and the symptomatology (clinical manifestations) [62,63]. In fact, as far as CSB mutations
are concerned, neither the affected region nor the nature of the mutation is linked to specific
clinical manifestations or to the severity of the disease, although a tendency to more severe
phenotypes has been proposed in patients with mutations downstream of the PiggyBac
insertion in intron 5 [62]. Interestingly, almost all of the missense mutations analyzed
were positioned in or next to one of the seven helicase domains, a fact that underlines the
clinical importance of these domains [62]. Apart from the two principal complementation
groups of CS (CSA and CSB) with mutations in the ERCC8 and ERCC6 genes, respectively,
a small number of CS cases have been reported to carry mutations in the ERCC1 and ERCC4
(xeroderma pigmentosum complementation group F-XPF) genes [64].

4.2. Models of Cockayne Syndrome

In order to decipher the systemic effects and to better understand the mechanisms of
Cockayne syndrome progression, several animal models have been generated, including
mice, Caenorhabditis elegans, zebrafish and, recently, rats. The first mouse model (CSBm/m),
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which recapitulated some of the CS phenotypic characteristics, was developed by introduc-
ing the same truncation mutation found in a human CS1AN patient [65]. The CSB-deficient
mice exhibited similar characteristics to their human counterpart cell models, including UV
sensitivity, deficient TC-NER, proficient global genome nucleotide excision repair (GG-NER
or GGR, a subpathway of NER responsible for the repair of bulky DNA lesions throughout
the genome) and inability to recover RNA synthesis after UV irradiation [65]. In addition,
as far as their clinical manifestations are concerned, the mice exhibit photophobia, paraker-
atosis, minor growth disturbance, deafness and mild neurodegeneration [65]. However, in
contrast to humans, they did not show signs of severe neurodegeneration, impaired sexual
development or reduced lifespan [54]. Notably, the mutant mice, in contrast to human CS
patients, appear to have increased susceptibility to cancer [65]. It is important to emphasize
on a source of confusion in the literature concerning the fact that not only CS patients, but
also XP patients, exhibit neurodegeneration [12,66]. However, XP neurologic disease is
very different from CS neurodegeneration as it affects primarily the large neurons in many
brain and spinal cord regions as well as in the peripheral nervous system [12,66]. On the
other hand, in CS neurodegeneration, the myelin-forming glial cells (oligodendrocytes) are
primarily affected and, as a result, tigroid demyelination is observed [12,66]. Moreover,
CS patients develop calcifications in the basal ganglia and in the cerebellar white matter
and may also develop brain vascular defects [12,66,67]. Although the single CSB knockout
mouse model failed to accurately mimic the typical disease manifestation seen in humans,
a double knockout mouse lacking both the XPA or XPC and the CSB genes produced a
more CS-like phenotype, presenting severe neurodegeneration, compromised growth, low
weight, premature death, etc. [68,69]. Furthermore, depletion of CSB by RNA interference
in C. elegans (csb−1) led to hypersensitization to UV exposure and resulted in enhanced
germ cell proliferation arrest and apoptosis and increased embryonic lethality, whereas de-
pletion of CSB in zebrafish embryos using antisense morpholino oligonucleotides resulted
in severe developmental abnormalities upon UV damage [70,71]. Finally, the first rat model
of CS was recently developed using CRISPR/Cas9-mediated genome editing [72]. The
Csb-deficient rats (CsbR571X) demonstrated brain abnormalities such as cerebellar atrophy,
thinning of the layers of the cerebellar cortex and degeneration of Purkinje neurons, which
were features that have already been seen in some CS mouse models (such as Xpg -/-), but
they also displayed reduced myelination in the cerebellum, the key aforementioned notable
feature of the human CS neurologic disease, a characteristic not seen in CSB mice [72,73].

4.3. Other CSB-Related Pathologies

Apart from Cockayne syndrome, mutations in the ERCC6 gene (CSB) are implicated in
the clinical manifestation of two other TC-NER deficiency syndromes, so-called UV-sensitive
syndrome (UVSS) and cerebro-oculo-facio-skeletal (COFS) syndrome (Figure 2). Cells from
UVSS patients are UV sensitive, are characterized by deficient TC-NER and exhibit almost
identical cellular and biochemical responses to UV compared to CS patients [74]. On the
other hand, UVSS patients share only mild symptoms with CS, such as photosensitivity,
mild freckling and telangiectasia, and notably show no signs of neurological or growth
abnormalities [75]. Spivak and Hanawalt proposed that the aforementioned difference lies
in the fact that UVSS patients, in contrast to CS patients, are proficient in repair of oxidative
base damage [76]. Another interesting fact, opposite from what one might expect, is that a
mutation (R77X), which resulted in incomplete absence of a functional CSB (null mutation),
did not cause a more severe phenotype with signs of developmental or/and neurological
defects but instead was characterized only by the mild symptoms present in UVSS [77]. An
explanation proposed by Horibata et al. is that in CSB cells, truncated CSB polypeptides are
produced, which may interfere with the essential cellular processes of repair, transcription
and transcriptional bypass or repair of oxidative DNA damage, resulting in a more severe
clinical phenotype [77]. Apart from ERCC6 mutations, UVSS is also caused by mutations
in the ERCC8 (CSA) and UV-stimulated scaffold protein A (UVSSA) genes. As mentioned
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above, UVSSA has been found to protect CSB from UV-induced degradation, by targeting the
ubiquitin-specific protease USP7 to a DNA lesion-stalled RNAPII complexes [56,57].

COFS syndrome represents the most severe end of the CS spectrum and appears to
have an early onset of symptoms [78]. Typical symptoms are congenital microcephaly,
congenital cataracts and/or microphthalmia, arthrogryposis, severe developmental de-
lay, severe postnatal growth failure and facial dysmorphism [79]. Similarly to CS and
UVSS cells, cells derived from COFS syndrome patients are UV sensitive and TC-NER
deficient [78]. Genes involved in the manifestation of the syndrome are CSB, XPD (ERCC2),
XPG (ERCC5) and ERCC1 [80–83].

Apart from UVSS and COFS syndrome, an inactivating mutation of CSB has been
reported in two CSB siblings showing symptoms of DeSanctis-Cacchione (DSC) syndrome,
which is a rare and severe form of XP with severe neurological abnormalities. Interestingly,
identical alterations have been reported in a patient with typical CS features, a fact that
underlines the complexity of correlating the genetic background to specific phenotypes [84].

Finally, from the point of view of CS-related pathologies, the rare combined XP/CS
phenotype, caused by specific mutations in XPD (ERCC2), XPB (ERCC3), XPF (ERCC4) or
XPG (ERCC5) genes, should be analyzed [85]. XP/CS patients develop combined clinical
feature of XP and CS syndrome, showing, on the one hand, increased cancer risk and
skin sensitivity and, on the other hand, severe developmental abnormalities such as short
stature, deficient sexual development and retinal atrophy similar to CS patients [1].

4.4. The Role of CSB in Cancer

Impaired NER has been associated with an increased prevalence of neurodegeneration
and cancer. On the one hand, CS patients are characterized by neurological abnormalities
and, although photosensitive, do not develop cancer [86–88]. On the other hand, XP
patients are 1000 times more prone to developing cancer [89]. Reid-Bayliss et al. suggested
that this increased susceptibility is due to the fact that CS cells, in contrast to XP cells, do not
show increased levels of UV-induced mutagenesis [89]. Notably, Caputo et al. have shown
that CSB is overexpressed in a number of cancer cell lines from different tissues and acts as
an anti-apoptotic factor for cancer cells, tipping the balance towards cell proliferation and
survival, and away from cell cycle arrest and senescence [90]. Therefore, it is postulated
that a lack of carcinogenicity seen in CS patients is a derivative of increased apoptosis of
DNA-damaged cells and cellular growth inhibition [90].

Overexpression of CSB in cancer cells supports the notion that CSB also plays an
important role in cancer development (Figure 2). In fact, it seems that CSB displays
a multifunctional role in this context as well [91]. Firstly, accumulation of the tumor
suppressor p53 results in either increased levels of apoptosis or growth arrest [92–94].
Inversely, p53 inactivation promotes not only the initiation of tumorigenesis, but also
possible metastasis, recurrence and lethality [93–96]. It is therefore notable that CSB is
part of an E3 ubiquitin ligase complex together with CSA, Mdm2 and p53, and controls
p53 levels by targeting it for ubiquitination in an Mdm2-dependent manner [97]. In line
with these findings, Paccosi and Proietti-De-Santis recently proposed a model in which
the sequestration of CS proteins to the site of damage may act as a “biological dosimeter”
to modulate the activity of p53 and therefore cell fate [98]. Furthermore, CSB has been
proven to act as a mediator of the hypoxic response by redistributing the transcriptional
co-activator p300 between hypoxia-inducible factor 1 (HIF1) and p53 [99]. Tolerance to
hypoxia (limited supply of oxygen), is a prominent characteristic that cancer cells have
developed in order to survive in a situation during which the pre-existent vascularization
cannot support their increasing mass [93,100]. HIF1 activates the transcription of pro-
survival genes implicated in angiogenesis, such as VEGF, and anaerobic glycolysis, such as
GAPDH, and therefore plays a major role in enabling cancer progression [95].

In addition to hypoxia adaptation, cancer cells need to respond to other type of stress
conditions, such as oxidative stress, for which balance of the intracellular reactive oxygen
species (ROS) levels is required, and endoplasmic reticulum (ER) stress, which triggers
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the unfolded protein response (UPR) (reviewed in [93,101,102]). As far as the former is
concerned, CSB appears to be involved in the control of the cellular redox balance and
repair of oxidative DNA lesions in the nucleus and in mitochondria and appears to act as
an electron scavenger in the mitochondria [103–105]. In regard to ER stress, CSB seems
to limit the level of misfolded proteins, while its suppression results in upregulation of
pro-apoptotic factors of the UPR-mediated apoptosis pathway and downregulation of the
UPR pro-survival mediators [106].

5. Future Prospects—Potential Therapeutic Targeting of CSB

Given the multiple roles CSB may play in cancer progression, a challenging task is
whether CSB can be an attractive candidate for therapeutic targeting. First and foremost, it
should be noted that ablation of CSB by antisense technology not only resulted in increased
levels of apoptotic death of cancer cells but most importantly did not affect the normal
cells, a key prerequisite for any candidate therapeutic approach [90].

Moreover, considering the role that CSB has in transcription-coupled repair of bulky
DNA adducts produced by platinum-based chemotherapeutic agents used in cancer ther-
apy, and the fact that the silencing of CSB by RNA interference has been proven to increase
the sensitivity of tumor cells to the chemotherapeutic agent cisplatin, one can acknowledge
the important effect that the silencing of CSB may confer in minimizing the chemotherapeu-
tic dose required to induce apoptosis, thereby reducing chemotherapy side effects [91,107].

There are several ERCC6 SNPs (Single-nucleotide polymorphism) that have been as-
sociated with increased cancer susceptibility or affected the response to chemotherapy.
Such examples include rs3793784: C > G (NC_000010.11:g.49539493G > C), an ERCC6
variant, which alters its transcriptional activity and may increase lung cancer susceptibil-
ity, as well as rs4253002: G > A (NC_000010.11:g.49539292C > T) and rs4253212: G > A
(NC_000010.11:g.49470166G > A), SNPs which are associated with toxicities (gastrointestinal
toxicity and neutropenia, respectively) after platinum-based chemotherapy in patients with
advanced non-small cell lung cancer [108,109]. On the other hand, there are SNPs, such as
rs12571445 (NC_000010.11:g.49514137A > G) and rs2281793 (NC_000010.11:g.49519496C > T),
which are associated with progression-free survival and overall survival, respectively, after
platinum-based chemotherapy in patients with advanced non-small cell lung cancer [108,109].
Additionally, a specific ERCC6-Q524* (COSV63389787; NP_000115.1: c.1570C > T) mutation
has been found to increase cisplatin sensitivity of epithelial ovarian cancer cells in vitro [110].
Finally, a study, in which 193 DNA repair genes were evaluated in regard to their mutation
frequency in sequenced tumor samples from the COSMIC database, revealed that ERCC6
is among the top 20 most frequently mutated genes in lung, breast and skin cancers [111].
Therefore, an analysis of the different polymorphisms may result in a number of interesting
candidate gene loci to be further evaluated for therapeutic targeting.

In conclusion, considering the multiple roles CSB may play in cancer progression, it
appears that inactivation of specific CSB loci, in a personalized manner, may significantly
contribute to cancer therapy.
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