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The intestinal epithelial barrier is carrying out two major functions: restricting the entry of

potentially harmful substances while on the other hand allowing the selective passage

of nutrients. Thus, an intact epithelial barrier is vital to preserve the integrity of the host

and to prevent development of disease. Vice versa, an impaired intestinal epithelial barrier

function is a hallmark in the development and perpetuation of inflammatory bowel disease

(IBD). Besides a multitude of genetic, molecular and cellular alterations predisposing for

or driving barrier dysintegrity in IBD, the appearance of intestinal mucosal wounds is

a characteristic event of intestinal inflammation apparently inducing breakdown of the

intestinal epithelial barrier. Upon injury, the intestinal mucosa undergoes a wound healing

process counteracting this breakdown, which is controlled by complex mechanisms

such as epithelial restitution, proliferation and differentiation, but also immune cells

like macrophages, granulocytes and lymphocytes. Consequently, the repair of mucosal

wounds is dependent on a series of events including coordinated trafficking of immune

cells to dedicated sites and complex interactions among the cellular players and other

mediators involved. Therefore, a better understanding of the crosstalk between epithelial

and immune cells as well as cell trafficking during intestinal wound repair is necessary

for the development of improved future therapies. In this review, we summarize current

concepts on intestinal mucosal wound healing introducing the main cellular mediators

and their interplay as well as their trafficking characteristics, before finally discussing the

clinical relevance and translational approaches to therapeutically target this process in a

clinical setting.

Keywords: wound healing, intestinal epithelial cells, mucosal healing, IBD, intestinal epithelial barrier function

INTRODUCTION

The intestinal mucosa forms a tight barrier with two opposing functions. While it is selectively
permeable allowing the absorption of nutrients, it also separates the host from luminal toxins,
antigens and microbes that potentially promote disease [reviewed in (1)]. Upon mucosal damage,
the epithelial barrier gets leaky facilitating the translocation and therefore excessive exposure of
deeper layers of the mucosa to intestinal microbial antigens. This may lead to the recruitment
of immune cells releasing different cytokines and may result in disturbed homeostasis [further
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reviewed in (2, 3)]. Therefore, the regulation of the epithelial
barrier function is essential to maintain mucosal homeostasis.

A variety of factors may potentially contribute to mucosal
damage, including environmental factors, medication, diet,
the host microbiota, infections like HIV as well as genetic
factors such as polymorphisms in the CDH1 gene encoding E-
Cadherin, which is associated with increased risk to develop
ulcerative colitis (UC) [reviewed in (4, 5)]. In general, the
pathogenesis of several chronic inflammatory diseases including
the inflammatory bowel diseases (IBD) UC and Crohn’s disease
(CD) is associated with a dysfunctional intestinal epithelial
barrier as well as insufficient and delayed mucosal wound
healing (6–9). Particularly, wound repair as a pre-requisite
to re-establish the mucosal epithelial barrier and intestinal
homeostasis is crucial for efficient resolution of inflammation.
Hence, mucosal healing (MH) is an increasingly acknowledged
goal in IBD therapy in order to achieve and maintain long-
term remission. However, mucosal repair and wound healing
are complex processes coordinated by the dynamic crosstalk of
different cellular players including epithelial cells and infiltrating
immune cells as well as their mediators [reviewed in (10)]
that are still incompletely understood. A better understanding
of these interactions might therefore help to develop tissue-
specific approaches to promote wound healing and to treat
intestinal inflammation.

In the following paragraphs, we will review the current
concepts of intestinal mucosal wound healing, shedding light on
the contribution of infiltrating immune cells and their interaction
with epithelial cells. Finally, we highlight the clinical relevance
of MH and translational approaches to therapeutically target
this process.

INTESTINAL EPITHELIAL WOUND
HEALING

Intestinal epithelial wound healing is a complex process
modulated by various regulatory peptides, including growth
factors (GF), and cytokines. Three different phases can be
distinguished: Restitution, proliferation, and differentiation and
maturation. However, in vivo, these processes merge into each
other and overlap [reviewed in (11)].

First, epithelial cells surrounding the wound migrate rapidly
into the denuded area, form pseudopodia-like structures, re-
organize themselves in order to extend into the wound and then
re-differentiate after closing the wound defect. This process is
termed epithelial restitution and occurs within minutes to hours
[reviewed in (12)]. Interestingly, restitution is independent of
cell proliferation and one of the most important stimulators
of intestinal epithelial cell (IEC) restitution is transforming
growth factor β (TGF-β) (13–15). Within the intestinal mucosa,
TGF-β is produced by different cell types including epithelial
cells, stromal cells, regulatory T cells (Tregs), dendritic cells
(DC) and macrophages [reviewed in (16)]. Once TGF-β is
activated, it enhances restitution by upregulating the expression
of matrix metalloproteinase-1 (MMP-1), MMP-10 and a set of
genes, including Slc28a2, Tubb2a, and Cpe that are preferentially

expressed in fetal IECs (17, 18). Furthermore, mediators, such as
vascular endothelial growth factor (VEGF), which are released
from the inflamed mucosa, are involved in epithelial cell
migration in a TGF-β-dependent manner (19). In addition, it
was shown that amino acids like histidine and arginine play
an important role in TGF-β-mediated IEC restitution probably
via interaction with Smad signaling (20). Furthermore, Lopetuso
et al. (21) showed that during acute resolving colitis, IL-
33/ST2 promote epithelial repair and restitution by inducing
miR-320. It had earlier been demonstrated that miR-320 is
decreased in the context of intestinal inflammation, suggesting
that this might lead to an inherent defect of epithelial repair
(22). Recently, Desmocollin-2 (Dsc2), a desmosomal cadherin
exclusively expressed on IECs, was identified as a further key
contributor to IEC migration and restitution in vivo (23).

In order to increase the number of cells able to resurface the
wound area, proliferation is necessary and occurs within hours or
days [reviewed in (12)]. This phase is pre-dominantly promoted
by various GFs, such as epidermal growth factor (EGF),
keratinocyte growth factor (KGF), and fibroblast growth factor
(FGF) (24–27), as well as different cytokines including IL-28,
which was shown to control proliferation of IECs by activating
STAT1 (28), and IL-22, which induces STAT3 signaling, an
important regulator of immune homeostasis andmucosal wound
healing in the gut (29). Moreover, TLR2 was shown to suppress
apoptosis of IECs in vivo by selectively regulating trefoil factor
3 (TFF) expression and controlling intestinal epithelial wound
repair by modulating epithelial connexin-43 (30, 31).

Finally, differentiation and maturation is needed to re-
establish and maintain the mucosal barrier function. Under
normal conditions, Lgr5+ intestinal stem cells (ISCs),
which are located at the base of the crypts, differentiate
into short-lived proliferating transit-amplifying progenitors,
which further differentiate into absorptive (enterocyte) and
secretory progenitors under the control of Wnt/Notch signaling
[reviewed in (32, 33)]. Secretory precursors then develop into
enteroendocrine cells in a Neurog3-dependent manner or
into Goblet or Paneth cells following activation of Atoh1 also
known as Math1. Later on, the different cell types acquire their
lineage-specific expression of transcription factors (TFs), such as
Sox9 for Paneth cells and Klf4 for Goblet cells (34–36). It is also
worth mentioning, that there are two distinct ISC populations:
Crypt base columnar (CBC) cells, which are actively proliferating
and reserve intestinal stem cells (rISC) that are quiescent stem
cells until activated upon injury. In line with this, Gonzalez et al.
(37) showed that Hopx+ cells (rISC) are resistant to injury and
are the likely source of epithelial renewal following prolonged
ischemic injury (37).

Furthermore, host-microbiota interactions may substantially
affect proliferation of epithelial cells and are implicated in
intestinal barrier function. E.g., short chain fatty acids (SCFAs)
produced by commensal bacteria promote proliferation and
differentiation of cells along the crypt-villus axis and, thus,
contribute to epithelial restitution (38). Moreover, they are also
directly implicated in upholding epithelial integrity to counteract
tissue damage (39). In addition to these direct effects on epithelial
cells, SCFAs also profoundly impact on the differentiation of
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mucosal T cells and induce Tregs (40), which are involved in
mucosal wound healing as described below. Further details on
this emerging field are reviewed elsewhere [reviewed in (41, 42)].

Another important cellular mechanism that should be
considered in the context of intestinal epithelial wound healing
is epithelial-mesenchymal transition (EMT). During this process
epithelial cells lose some of their epithelial characteristics, such
as polarity and adhesiveness and acquire migratory functions
and properties of mesenchymal cells. This transformation is
characterized by the interplay of different mediators like TFs,
RNAs, and TGF-β family proteins [reviewed in (43)]. In IBD
patients, Leeb et al. (44) reported a reduced migratory ability of
fibroblasts, which are normally essential in wound contraction
during the initial phase of wound healing (44, 45). Based
on these findings it is conceivable that epithelial cells are
forced to undergo EMT in order to compensate fibroblast
dysfunction and to rapidly restore the intestinal barrier function,
which, in turn, might predispose for CD-associated fistulae
formation (46).

CONTRIBUTION OF VARIOUS IMMUNE
CELL TYPES IN INTESTINAL REPAIR AND
THEIR INTERACTION WITH EPITHELIAL
CELLS

Lymphocytes and Innate Lymphoid Cells
Cytokines and other mediators secreted by different T cell subsets
play essential roles in wound healing (see Figure 1). Diverse
injury models in mice (including models focusing on other
organs than the gut, for which evidence is limited) show that
depletion of Tregs during different phases of wound healing
leads to a worse clinical outcome suggesting that they play an
important role in the regulation of wound healing probably
by counteracting pro-inflammatory stimuli (47–52). Nosbaum
et al. (53) showed that Tregs in cutaneous wounds attenuated
Interferon-γ (IFN-γ) production and reduced the accumulation
of pro-inflammatory macrophages. Their elimination resulted in
delayed wound re-epithelialization and wound closure. IFN-γ
had previously been shown to affect epithelial intercellular
junctions and to attenuate intestinal epithelial wound closure by
inhibiting epithelial cell migration in a β1 integrin-dependent
mechanism (54, 55). Nosbaum et al. (53) were also able to
show that, mechanistically, Tregs induced the expression of EGFR
early after wounding, and lineage-specific deletion of EGFR in
Tregs resulted in a reduced accumulation and activation as well
as increased accumulation of pro-inflammatory macrophages.
Furthermore, there is evidence that FGF2 produced by Tregs

together with IL-17 is involved in gene regulation to repair
damaged cutaneous and intestinal epithelium (53, 56). Moreover,
CD4+CD25+Foxp3+ Tregs isolated from peripheral blood of
healthy individuals were reported to induce a phenotypical
switch of human monocytes/macrophages to wound healing
macrophages (57). Following IL-33 release from damaged
epithelia, the GF amphiregulin is another mediator produced by
Tregs, which is involved in limiting inflammation and promoting
epithelial repair (47, 58).

Other important cell types involved in intestinal mucosal
wound healing are T helper cells (TH) and innate lymphoid
cells (ILCs). IL-22 is produced by TH17 and TH22 cells as well
as by group 3 ILCs (ILC3) at mucosal surfaces and is a key
mediator of this process [reviewed in (59)]. By activating STAT3,
IL-22 can not only accelerate proliferation of IECs, but also
induce the expression of mucus-associated molecules and the
restitution of mucus-producing cells (29, 60). Specifically, IL-
22 produced by ILC3s after intestinal injury has been shown
to activate intestinal stem cells to promote regeneration (61).
Upstream, upon tissue damage, IL-23 may be released leading
to the production of IL-22 by ILC3s (62). In line with this, mice
deficient for IL-36γ, a potent inducer of IL-23, showed reduced
levels of IL-22 and failed to recover from acute intestinal damage.
This impaired recovery could be rescued by exogenous IL-23
application (63).

ILC1 show a similar cytokine expression pattern as TH1 cells
and mainly exhibit their function by secreting tumor necrosis
factor α (TNF-α) and IFN-γ to recruit and activate other
inflammatory cells (64). As mentioned above, IFN-γ is also
involved in the regulation of epithelial barrier integrity (54, 55).
Thus, it is not surprising that depletion of intraepithelial ILC1s
was associated with reduced proximal colon inflammation in a
mouse model of colitis (65).

By contrast, ILC2s produce TH2-cell-associated cytokines
including IL-4, IL-5, IL-9, and IL-13 [reviewed in (66, 67)].
Upon stimulation by IL-33 and similar to Tregs, ILC2s produce
amphiregulin, which was shown to promote intestinal epithelial
cell regeneration in dextran sodium sulfate (DSS)-treated
mice (58).

Furthermore, γδ T cells need to be considered when talking
about intestinal wound healing as they are the major source of
KGF in the mucosa. KGF released from intraepithelial γδ T cells
is important formaintaining intestinal epithelial cell proliferation
and villus growth, for promoting the repair of epithelial lesions
and is also involved in epithelial cell differentiation (68). It was
shown that mice lacking γδ T cells have increased susceptibility
to DSS-induced colitis and reduced ability to repair damaged
epithelia (69). In line with this, Chen et al. (70) found that
intraepithelial γδ T cells preserve the integrity of damaged
epithelial surfaces by localized delivery of KGF (70, 71).

Neutrophils
Neutrophils play a crucial role in the first line of defense
against microbes. Their antimicrobial machineries include the
formation of neutrophil extracellular traps called “NETs” (72)
and the elimination of invading microbes through phagocytosis,
degranulation and production of reactive oxygen species (ROS)
[reviewed in (73)]. These mechanisms are essential for wound
healing by on the one hand preventing infection through
pathogen translocation, and on the other hand by mediating
the early so-called inflammatory phase of wound healing. The
recruitment of murine neutrophils to the site of cutaneous
injury begins 4 h after the initial injury and peaks after 18 h
(74). Depletion of neutrophils in damaged mucosa was shown
to lead to a severer colitis as well as impaired recovery
and restoration of epithelial integrity (75–77). Furthermore,
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FIGURE 1 | Contribution of some of the most important immune cells to intestinal wound healing. Circulating immune cells are recruited to the wound area by cell

trafficking processes. After entering the tissue these cells may undergo differentiation processes and secrete various mediators, which promote or repress mucosal

wound healing (for details cf. main text).

it was shown that neutrophils enhance the production of
amphiregulin by IECs promoting epithelial barrier function
and tissue repair (75). Another mechanism contributing to
the wound healing properties of neutrophils is their ability to
generate a hypoxic microenvironment within the wounded tissue
by producing ROS, which in turn leads to the stabilization
of HIF-1α in the intestinal mucosa (78). HIF-1α was shown
to enhance the epithelial expression of TFF3, which has a
barrier-protective function (79). In addition, HIF-1α as a TF
promotes the upregulation of genes involved in wound healing
including adhesion proteins, different GFs and extracellular
matrix components [reviewed in (80)]. Moreover, neutrophils
produce IL-22 and IL-23, which are both essential mediators of
wound healing as mentioned above (77, 81, 82).

However, neutrophils may also have a negative impact on
wound healing. For instance, it was shown that counteracting
the alarmin HMGB1 leads to reduced NET formation
resulting in improved wound healing and inhibition of
NETosis improves wound healing in diabetic mice (83).
Furthermore, the accumulation of double strand breaks
in the mucosa induced by neutrophils led to impaired
wound healing and genomic instability (84). In summary,
the effects of neutrophil in this process can be seen as a
double-edged sword.

Monocytes and Macrophages
Circulating monocytes are rapidly recruited to sites of tissue
damage or infection, where they further differentiate into
inflammatory M1-like macrophages or wound healing M2-
like macrophages. Although this classification has been used
to explain many experimental observations, it is meanwhile
regarded as oversimplification (85).

While the level of CD16 and CD14 expression can be used
to differentiate three different monocyte subsets in humans,
they are divided into two subpopulations based on their surface
expression of Ly6C and/or CX3CR1 in mice (86, 87). Ly6Chi

monocytes were shown to be more dominant in the early
inflammatory phase exhibiting phagocytic and inflammatory
functions, whereas Ly6Clow monocytes dominate the later phase
displaying anti-inflammatory properties and promoting healing
(88). The supportive role of macrophages for barrier function
was shown by their ability to increase transepithelial electric
resistance and cell height of enteroid monolayers (89). Depletion
of macrophages in different mouse models led to severely
altered wound morphology, delayed re-epithelialization, reduced
collagen deposition, impaired angiogenesis, and decreased
cell proliferation in the healing wounds (90, 91). Due to
their heterogeneity, macrophages play essential roles in all
phases of wound repair. More specifically, depletion after the
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inflammatory phase increased injury and delayed regeneration
while depletion in the early inflammatory phase significantly
reduced the formation of vascularized granulation tissue,
impaired epithelialization, but also resulted in reduced scar
formation in kidneys and skin (92, 93). As mentioned
above, IL-23 is an important mediator of wound healing and
macrophages were identified as a major source of this cytokine
(94). Furthermore, the release of IL-10 by macrophages leads
to endothelial cell proliferation and activation of epithelial
pro-proliferative pathways in the intestine (95). Interestingly,
monocytes and macrophages express virtually all known
collagen and collagen-related mRNAs, which is essential for
the remodeling phase of wound healing (96). Macrophages also
have an impact on other immune cells, e.g., by inducing the
differentiation of Foxp3+ Tregs in the lamina propria (97).

The polarization of macrophages to a wound healing
phenotype is essential for repair processes and is regulated by
different mediators. Blockade of IL-1β was shown to prime the
generation of M2-like macrophages in diabetic mice and IL-33
significantly enhanced intestinal wound healing by promoting
the M2 phenotype (98, 99). Moreover, STAT6-mediated M2
polarization promoted repair in 2,4,6-trinitrobenzenesulfonic
acid (TNBS) treated mice through activation of the Wnt
signaling pathway (100). In addition, IL-4 or IL-13 in
combination with apoptotic cells are capable of activating wound
healing macrophages. In the absence of apoptotic signals, the
proliferation of tissue-resident macrophages, the induction of
anti-inflammatory and tissue repair genes are impaired after
induction of colitis (101). Recently, Fpr2/3, which is expressed by
epithelial cells was shown to regulate the migration of monocytes
to sites of mucosal injury, and CX3CR1 was important for the
accumulation of macrophages in the wound (102).

However, monocytes andmacrophagesmay also have negative
effects on the epithelial barrier. Mononuclear phagocytes
interact with IECs by E-Cadherin leading to dysregulated
epithelial cell differentiation and intestinal inflammation by
disrupting mucosal homeostasis (103, 104). In line with this,
a combination of paracrine and hetero-cellular communication
between IECs and macrophages was suggested to play a pivotal
role in regulating epithelial cell function and dysregulation of
intestinal epithelial barrier (105). Sablet et al. demonstrated that
inflammatory monocytes contribute to the loss of intestinal
barrier function during cryptosporidiosis by producing TNF-α
and IL-1β (106).

Taken together, macrophages are crucially involved in many
aspects of intestinal wound healing. Depending on their
polarization and the phase of wound healing, they may either
promote wound closure or predispose for dysregulation of MH.

CELL TRAFFICKING IN THE CONTEXT OF
INTESTINAL MUCOSAL WOUND HEALING

As all of the immune cells discussed in the scope of this review
are circulating cells or descendants from such cells, there is
an obvious need of trafficking for these effectors to reach the
site of insult. Thus, cell trafficking should be considered as an

integral part of wound healing processes and will shortly be
reviewed here.

Described in greater detail elsewhere, cell trafficking describes
all processes that are involved in the localization of cells and
therefore comprises cellular influx to, retention in and egress
from effector tissues [as reviewed in (3, 107)]. Influx from
the circulation is regulated by a tightly controlled multistep
adhesion cascade. As a prerequisite for transmigration through
the endothelium, interaction of selectins and their respective
ligands on endothelial cells recruit circulating cells to the
vessel walls of high endothelial venules (HEVs) leading to
rolling and reduced velocity (108). This slow-down increases
the availability of circulating cells to chemotactic stimuli,
especially to chemokines, thereby enabling chemokine-induced
conformational changes of heterodimeric integrins. Activated
integrins are able to firmly bind to endothelial cell adhesion
molecules, leading to the arrest of circulating cells on the vessel
wall and subsequent para- or intracellular transmigration and
target tissue invasion (109).

With regard to gut homing, the α4β7 integrin-mucosal
vascular addressin cell adhesion molecule 1 (MAdCAM-1)
axis was identified as important due to the virtually exclusive
expression of MAdCAM-1 on HEVs of the intestinal tract
(110). The relevance of this axis in intestinal wound healing
was recently demonstrated, as anti-α4β7 antibody treatment
of mice in a colon wound model led to impaired intestinal
wound closure, most likely due to reduced homing of non-
classical monocytes (NCMs) and a reduction of NCM-derived
wound healing macrophages (111). Further, gut specificity in
trafficking processes may be provided by the exclusive expression
of chemokines in the intestine, as for instance of the CCR9 ligand
CCL25 and the GPR15 ligand in the small and large intestine,
respectively (112, 113). Their participation in cell recruitment
to intestinal wounds has not been studied so far and needs
to be further elucidated. Interestingly, both α4β7 and CCR9
are induced on gut-homing T cells through retinoic acid (RA)
produced by dendritic cells in the gut-associated lymphoid tissue.
With regard to ILCs, it has been shown that this is the case
only for ILC1s and ILC3s, while α4β7 expression on ILC2s
occurs independent of RA and is already induced in the bone
marrow (114). In connection with the above-mentioned roles
of ILCs in wound healing, it is tempting to speculate that this
might lead to continuous gut homing of amphiregulin-secreting
ILC2s promoting homeostasis, while ILC3 recruitment might
be regulated by the level of inflammation present. However,
it is difficult to envision the consequences for wound healing,
since ILC3s not only promote mucosal repair through IL-22,
but may also promote inflammation and, thus, secondary tissue
injury (115).

Retention of homed cells within the target tissues is either
controlled indirectly by the regulation of egress signal receptors
or by direct anchoring to tissue structures. A key example of
indirect retention is the interaction of CD69 with sphingosine
1-phosophate receptor-1 (S1PR1), leading to degradation of the
latter and inhibition of extravasation along the S1P gradient
into the bloodstream (116, 117). Further extravasation signals
might be provided by the interaction of CCR7 and CCL19 or
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CCL21, facilitating the recruitment of receptor-bearing cells to
the lymphatic system (118, 119). Direct anchoring of recruited
cells can be provided by the interaction of integrins with cell
adhesion molecules in the tissue. E.g., αE-integrin (CD103)
dimerizes with β7-integrin andmediates tissue retention through
interaction with E-Cadherin (120, 121). Although the retention
of cells in the wound area or their recirculation to the
blood will certainly be of relevance in the spatiotemporal
orchestration of the wound healing process, since it might
lead to the accumulation or reduction of repair-promoting or
-impeding cell populations, these mechanisms have not been
specifically investigated in this context in the gut. However, and
interestingly, there is evidence from skin models, that tissue
resident memory T cells (TRM cells), which play important roles
in the pathogenesis of IBD (122), promote epithelial wound
healing (123, 124).

It is also worth mentioning that mucosal cytokine profiles
differ between CD and UC. While UC is dominated by TH2-
associated cytokines like IL-5, IL-13, IL-9, and IL-4 (125–129),
CD is marked by cytokines, such as IFN-γ and IL-2, associated
with a TH1 phenotype (125, 130). TH17 cells and cytokines
seem to be involved in both entities (131). At the same time,
macroscopic differences in ulcerations between CD and UC exist
(132) and inflammation patterns between CD and UC differ
with immune cell infiltration restricted to the mucosa of the
colon in UC, but being transmural and potentially occurring
in the whole gastrointestinal tract in CD [reviewed in (133)].
This strongly suggests that different homing mechanisms apply
for immune cells in CD and UC that might also impact wound
healing. Interestingly, differences in the expression of gut homing
markers on different T cell subsets and differential usage of
gut homing pathways in ileal CD as compared to colonic
UC have been observed [reviewed in (134, 135)]. However,
further dedicated studies are needed to explore this assumption
in depth.

Taken together, the implications of immune trafficking for
intestinal wound healing are obvious. Particularly, they need to
be considered in a therapeutic context, especially when trafficking
mechanisms are directly manipulated by antibodies. This also
highlights the need for further investigation of the trafficking
mechanisms participating in intestinal wound healing.

CLINICAL RELEVANCE OF MUCOSAL
HEALING AND THERAPEUTIC
APPROACHES

Mucosal healing (MH), a term coined by Truelove and Witts in
1955 (136), is nowadays considered an important study endpoint
and increasingly important treatment goal in IBD. Several clinical
trials showed the importance and improved clinical outcomes
after achieving MH, defined as absent or low signs of mucosal
injury on endoscopy (137–141). In UC and CD, it is associated
with long-term remission and reduced need for surgery (142,
143). On tissue level and mechanistically, it is obvious that
wound healing and restitution of the intestinal epithelial barrier
function are major steps in achieving MH. Consequently, the

promotion of wound healing has been suggested as a potential
therapeutic tool (144). Calprotectin is a soluble protein in the
cytosol of neutrophils and known to be elevated in both the
intestinal mucosa and feces of IBD patients (145). Several studies
have shown a correlation between low fecal calprotectin (FC)
concentration and histological remission as well as MH in
UC and CD patients. Therefore, low calprotectin levels might
be an early predictor of therapeutic success in terms of MH
(146, 147).

One experimental approach to achieve wound healing that
was addressed by several studies, but not in the gut, was
the promotion of recruitment and polarization of monocytes
and wound healing macrophages (148, 149). Maruyama and
colleagues (150) showed that upon injection of IL-1β-activated
macrophages in mice, the production of VEGF-C was increased
and cutaneous wound healing improved. Interestingly, one
mechanism of action of corticosteroids is M1 macrophage
suppression in response to LPS stimulation, which involves the
miR-155 (151). Moreover, neutrophils as cellular mediators can
be targeted. In the context of peritonitis, Norling et al. (152)
showed that nanoparticles containing aspirin-triggered resolvin
D1 or a lipoxin A4 analog reduced polymorphonuclear cell influx
and enhanced wound healing. As different GFs like EGF, VEGF,
and KGF mediate epithelial repair, they might also be interesting
candidates [reviewed in (153)]. Another promising therapeutic
approach is targeting IL-22, which is considered to promote
epithelial integrity via STAT3. Consequently, an IL-22 IgG4 Fc
fusion protein (UTTR1147A) is currently tested in patients with
moderate-to-severe UC and CD (ClinicalTrials.gov Identifier:
NCT03558152, NCT03650413).

In addition to these experimental concepts, several current
IBD treatments were shown to have a protective or regenerative
effect on the damaged epithelium and to promote MH
[reviewed in (154)]. Aminosalicylates not only affect intestinal
inflammation via various signaling pathways such as NF-κB, but
also directly stimulate epithelial wound healing by enhancing
epithelial cell restitution and proliferation (155–157). Anti-
TNF-α antibodies such as infliximab and adalimumab are able
to induce and maintain MH (144, 158–160) by restricting
the inflammatory infiltrate and T cell proliferation within
the lamina propria and by downregulating the expression of
metalloproteinases and pro-inflammatory molecules (161). For
infliximab, a single nucleotide polymorphism in the TRAP1 gene
has been described to be associated with MH in CD patients
(162). Moreover, anti-TNF-α antibodies support regenerative
processes by reducing inflammation, restoring gut barrier
function, mucosal secretion and by activating fibroblasts (163).
In addition, it has been suggested that these antibodies mediate
Fc region-dependent induction of wound healing macrophages.
It was shown that infliximab as well as adalimumab can induce
wound healing macrophages in vitro and in vivo (164, 165).
Similarly, ustekinumab, a monoclonal antibody directed against
IL-12 and IL-23, successfully induced MH in CD patients (166).

As the JAK/STAT pathway seems to play an important role
in the interaction of lymphocytes and IECs through a variety of
cytokines, it is not surprising that tofacitinib, a JAK inhibitor
routinely used in UC treatment, is able to induce and maintain
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MH (167). Lechner et al. (168) recently demonstrated that
tofacitinib specifically reduces pro-inflammatory cytokines that
are produced by lamina propria T cells and affects their homing
potential by suppressing the surface integrin expression on T
cells. However, in an experimental model of intestinal mucosal
wounding, high concentrations of tofacitinib rather prolonged
wound healing (168), an observation that requires further
translational studies to reconcile it with the clinical outcomes.

Another important class of IBD therapeutics are anti-
trafficking agents [reviewed in (3)]. Vedolizumab, a humanized
monoclonal anti-α4β7 antibody, inhibits the binding and
subsequent migration of lymphocytes into the gut (169).
The GEMINI I trial showed that significantly more UC
patients treated with vedolizumab than with placebo achieved
MH (140, 170). However, mechanistic data explaining the
impact of vedolizumab on trafficking of cells implicated in
wound healing in inflammation are so far missing. Thus, it
is not clear, whether this is a direct effect or secondarily
resulting from reduced inflammation and associated changes
in the balance of cells promoting and counteracting mucosal
repair. In seeming contrast to data on MH as a study
endpoint assessing control of inflammation, several (but not
all) studies reported that patients treated with vedolizumab
are more vulnerable to post-operative complications (171–176).
A potential explanation might be that, according to a recent
study from our group, blocking α4β7 impaired gut homing of
NCMs, which was associated with delayed wound healing and
reduced perilesional presence of wound healing macrophages
(111). It is important to mention that this is not necessarily
contradicting the mentioned MH data, since this study
exclusively addressed exogenous tissue injury in the absence
of inflammation and it is likely that ongoing inflammation
will substantially modulate trafficking, communication and
signaling pathways.

Collectively, almost all available therapies for the treatment of
IBD have demonstrated their potential to induce MH, although
it is not clear to what extent this is a result from direct impact on
wound healing processes or a secondary effect of the reduction
of inflammation. Thus, further mechanistic data and additional

efforts to directly promote wound healing and barrier integrity in
the context of IBD are necessary.

CONCLUDING REMARKS

Intestinal mucosal wound repair are key steps for achieving
and maintaining MH, which is associated with beneficial clinical
outcomes. However, the interplay as well as the trafficking
characteristics of the most important cellular mediators like
lymphocytes, neutrophils and monocytes/macrophages are not
sufficiently characterized. Further research is necessary in
order to better understand the contribution of cell trafficking
to mucosal wound repair and to base targeted therapeutic
approaches on this process.
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